MATH/BIOL 255: Mathematics in Medicine and Biology Homework 5
 Due: Tuesday 10/18 3:30 PM

1) You are using a 10 meter long garden hose to fill up a salt-water swimming pool in your backyard. The inflow of the hose is $2 \mathrm{~L} / \mathrm{min}$. There is, however, a small 1 meter section beginning 4 meters from the start of the hose which has a leak in it. The leak gets wider along the section, the narrows again, so that the flux per unit length of water leaking out of the hose is

$$
f_{\mathrm{H}_{2} \mathrm{O}}(x)= \begin{cases}0 & x \leq 4 \\ (x-4)(5-x) & 4 \leq x \leq 5 \\ 0 & x \geq 5\end{cases}
$$

(a) Solve an ODE for the flow rate $Q(x)$ of the water in the hose. [3 pts]
(b) How fast is water entering the pool? [1 pt]
(c) What is the total amount of water leaking out of the hose per time? [1 pt]
(d) You have a 10 gallon (1 gallon $\approx 4 \mathrm{~L}$) bucket that collects the leaking water. How often will you have to change the bucket to prevent it overflowing? [1 pt]

Now let's consider the salt-water content of the pool. The goal is for the concentration to be equal to that of sea water ($35 \mathrm{~g} / \mathrm{L}$).
(e) Suppose that the holes in the hose act as a filter, so that no salt passes through them, only water. In that case, determine the concentration of salt leaving the hose as a function of the input concentration $c(0)$. [2 pts]
(f) What should the input concentration $c(0)$ be to get the correct concentration in the pool under these circumstances? [1 pt]
(g) Now suppose you are given an input concentration $c(0)=40 \mathrm{~g} / \mathrm{L}$, and you want to pump sodium out of the hose at constant rate f_{Na}^{*} (per unit length) so that the pool gets a concentration of $c(10)=35 \mathrm{~g} / \mathrm{L}$. What is the rate of pumping (per meter of hose)? [3 pts]

