MATH/BIOL 255: Mathematics in Medicine and Biology Homework 3
 Due: Tuesday 09/27 3:30 PM

1) Consider a patient with heart disease that only has a single working heart chamber. The diagram below shows the schematic of this patient's circulation.

As in class, the model unknowns are the four pressures $P_{\mathrm{pa}}, P_{\mathrm{pv}}, P_{\mathrm{sa}}, P_{\mathrm{sv}}$, the four corresponding volumes, and the flow rate Q. Assuming the total volume of blood is constant at $V_{0}=5 \mathrm{~L}$, you will have 9 equations in 9 unknowns.
(a) Write the relationship between the volume and pressure in the veins and arteries (4 equations). [1 pt]
(b) Write the relationship between the flow rate Q and the pressure drop across the systemic organs and lungs (2 equations). [1 pt]
(c) What are the three remaining equations? Describe their meaning physically and explain how they differ (if at all) from the model derived in class. [3 pts]
(d) Solve the model to obtain the cardiac output Q. [2 pts]
(e) Using the "normal" parameters given in text Table 1.2, compare the cardiac output to a person with a normal heart. Treat the single ventricle as the left heart. [1 pt]
(f) Is it possible for the single ventricle to pump enough blood to restore normal cardiac output? Hint: what would the pump coefficient of the single ventricle have to be to obtain $Q=5.6$ $\mathrm{L} / \mathrm{min}$? [2 pts]
2) Remember (or learn) that the pressure of the air $P_{\text {atm }}$ changes with the height above sea level via the equation

$$
\begin{equation*}
\frac{d P}{d z}=-\rho_{a} g \tag{1}
\end{equation*}
$$

where g is the acceleration due to gravity and the density of air is given by the ideal gas law as

$$
\begin{equation*}
\rho_{a}(z)=\frac{P(z)}{R T}, \tag{2}
\end{equation*}
$$

(R is the gas constant and T the temperature).
(a) Solve for $P(z)$ if the pressure at sea level is P_{atm}. [2 pts]
(b) If air is 20% oxygen, find the partial pressure of oxygen in air. [1 pt]
(c) Suppose that the arterial blood is in equilibrium with the inspired air, and that oxygen forms a simple solution in blood with solubility σ. What is the concentration of oxygen in the arterial blood? [2 pts]
(d) Suppose that a hiker is climbing at a constant speed from $z=0$ to $z=H$ meters. In addition, the metabolic rate at which the hiker's muscles burn oxygen increases with z as

$$
\begin{equation*}
M(z)=\frac{M_{0}}{1+e^{-z / H}} . \tag{3}
\end{equation*}
$$

Find the minimum flow rate $Q(z)$ required to sustain this metabolic rate. [2 pts]
(e) Suppose that the hiker's stroke volume $V_{\text {stroke }}$ is relatively constant during the hike. Find an expression for how the heart rate $F(z)$ changes with height. [1 pt]

