## MATH/BIOL 255: Mathematics in Medicine and Biology Homework 2 Due: Tuesday 09/20 3:30 PM

1) Circulation times (variant of textbook problem 1.1).

- (a) Given that the total volume of blood in the circulation is  $V_0 = 5$  L and the cardiac output is  $Q_0 = 5.6$  L/min, calculate the time it takes for a "typical" red blood cell to go once around the circulation. This is called the *circulation time*. [2 pts]
- (b) Consider a more realistic model in which the circulation consists of n parallel loops. Let the volumes occupied by these loops be  $V_1, V_2, \ldots V_n$ , and their blood flows be  $Q_1, \ldots Q_n$ . Define  $V_0 = \sum_i V_i$  and  $Q_0 = \sum_i Q_i$ . Show that the weighted average circulation time of the parallel loops

$$\langle T_c \rangle = \frac{\sum_i T_i Q_i}{\sum_i Q_i}$$

is equal to the circulation time of a single circulatory system with blood volume  $V_0$  and cardiac output  $Q_0$ . [2 pts]

2) Consider a network of blood vessels moving fluid from high to low pressure as shown below. There are two resistance vessels in parallel, followed by a compliance vessel, and then a third resistance vessel.



- (a) Suppose only 2/3 of the total blood volume can flow through the second resistance vessel (the one with resistance  $R_2$ ). If  $R_1 = 6 \text{ mm Hg/(L/min)}$ , what is the minimum value of  $R_2$ ? [2 pts]
- (b) Suppose  $R_2$  takes its minimum value. What is  $P^*$  if the total volume of blood flow is 4 L/min? [2 pts]
- (c) Now consider the compliance vessel. Suppose it has dead volume  $V_d^* = 5$  L and the vessel is at its maximum volume of  $1.5V_d^*$ . What is  $C^*$ ? [2 pts]
- (d) What is the resistance  $R_3$  under these circumstances? [2 pts]
- (e) How much work (per unit time) is required to complete the circuit (i.e., pump the blood from the final node to the first node)? [2 pts]