MATH/BIOL 255: Mathematics in Medicine and Biology
 Homework 2
 Due: Tuesday 09/20 3:30 PM

1) Circulation times (variant of textbook problem 1.1).
(a) Given that the total volume of blood in the circulation is $V_{0}=5 \mathrm{~L}$ and the cardiac output is $Q_{0}=5.6 \mathrm{~L} / \mathrm{min}$, calculate the time it takes for a "typical" red blood cell to go once around the circulation. This is called the circulation time. [2 pts]
(b) Consider a more realistic model in which the circulation consists of n parallel loops. Let the volumes occupied by these loops be $V_{1}, V_{2}, \ldots V_{n}$, and their blood flows be $Q_{1}, \ldots Q_{n}$. Define $V_{0}=\sum_{i} V_{i}$ and $Q_{0}=\sum_{i} Q_{i}$. Show that the weighted average circulation time of the parallel loops

$$
\left\langle T_{c}\right\rangle=\frac{\sum_{i} T_{i} Q_{i}}{\sum_{i} Q_{i}}
$$

is equal to the circulation time of a single circulatory system with blood volume V_{0} and cardiac output Q_{0}. [2 pts]
2) Consider a network of blood vessels moving fluid from high to low pressure as shown below. There are two resistance vessels in parallel, followed by a compliance vessel, and then a third resistance vessel.

(a) Suppose only $2 / 3$ of the total blood volume can flow through the second resistance vessel (the one with resistance R_{2}). If $R_{1}=6 \mathrm{~mm} \mathrm{Hg} /(\mathrm{L} / \mathrm{min})$, what is the minimum value of R_{2} ? [2 pts]
(b) Suppose R_{2} takes its minimum value. What is P^{*} if the total volume of blood flow is 4 $\mathrm{L} / \mathrm{min}$? [2 pts]
(c) Now consider the compliance vessel. Suppose it has dead volume $V_{d}^{*}=5 \mathrm{~L}$ and the vessel is at its maximum volume of $1.5 V_{d}^{*}$. What is $C^{*} ?[2 \mathrm{pts}]$
(d) What is the resistance R_{3} under these circumstances? [2 pts]
(e) How much work (per unit time) is required to complete the circuit (i.e., pump the blood from the final node to the first node)? [2 pts]

