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STEADY WATER WAVES IN THE PRESENCE OF WIND∗
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Abstract. In this paper we develop an existence theory for small amplitude, steady, two-
dimensional water waves in the presence of wind in the air above. The presence of the wind is modeled
by a Kelvin–Helmholtz type discontinuity across the air-water interface, and a corresponding jump
in the circulation of the fluids there. We consider both fluids to be inviscid, with the water region
being irrotational and of finite depth. The air region is considered with constant vorticity in the case
of infinite depth and with a general vorticity profile in the case of a finite, lidded atmosphere.
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1. Introduction. Understanding the precise means by which the wind creates
surface waves in the ocean is both a central problem in geophysical fluid dynamics and
a famously difficult one. From common experience, of course, the fact that wind blow-
ing over quiescent water will lead to the generation of waves is fairly obvious. Indeed,
the basic physical process appears straightforward: the jump in tangential velocity
across the air-water interface causes instability, creating growing modes, which even-
tually stabilize to become traveling waves. Were this the case, we might hope that
the salient features of the system might be captured by the Kelvin–Helmholtz (K–H)
model (cf., e.g., [10]). Intriguingly, this appears to be untrue. Including the effects of
surface tension, the K–H model predicts that the speed of the wind must be above
660 cm/sec in order to excite waves, which is an order of magnitude larger than
what observation suggests (cf. [16]). The discrepancy indicates that there are crucial
components of the system that have been overlooked by the K–H viewpoint.

The search for these missing features has led to a number of competing models
for the time-dependent wind-driven generation of water waves with perhaps the most
influential being that of Miles (cf. [18, 19]), which is based on the existence of a critical
layer in the continuous wind shear profile above the surface wave. (We will discuss
some aspects of this model in section 1.2 below.)

The authors will address the time-dependent problem in a later work, but in the
present paper we begin by considering the steady problem. That is, we investigate the
question of existence of traveling waves in a two phase air-water system. We endeavor
to do this in such a way that we can view the waves as the eventual byproduct of
wind blowing over water, though we shall remain agnostic as to how exactly that
generation took place. For us, this means that the circulation as a function of the
streamlines should be discontinuous over the air-water interface. Since the circulation
is conserved by the flow, this is a necessary condition for the traveling wave to be
dynamically accessible from an initial configuration with laminar flow in the air and
water with a jump in the tangential velocity over the boundary.
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STEADY WATER WAVES WITH WIND 2183

Fig. 1.1. The fluid domain Ω(t). The wave is assumed to propagate to the left with speed c.

In this section, we shall first describe the basic framework and then make an
informal statement of the results. The precise theorems will be given later in the text.

1.1. Eulerian formulation. Consider a two-dimensional surface wave in the
ocean, with an accompanying wave in the atmosphere above. Fix a Cartesian coor-
dinate system (X,Y ) so that the X-axis points in the direction of wave propagation,
and the Y -axis is vertical. We assume that the bed of the ocean is flat and occurs at
Y = −d, while the interface between the wave and the atmosphere is a free surface
given by the graph of a function η = η(X, t). We are particularly interested in the case
where η is periodic in X for fixed t. While these are not physical (they have infinite
energy), they are the type typically studied in connection with linear stability. Not
coincidentally, they are also more amenable to mathematical analysis since there is a
gain of compactness in the X-direction. We may normalize η by choosing the axes so
that the free surface is oscillating around the line Y = 0. The atmospheric domain can
be thought of as either unbounded or bounded in Y . The unbounded regime models
the situation in which the characteristic horizontal length scale is vastly smaller than
the vertical length scale. On the other hand, if the dynamics of the wave away from
the interface are deemed of secondary importance, a common practice is to take the
air region to be bounded above by a rigid lid at Y = ". All told, the fluid domain at
a given time t is

Ω(t) = Ω1(t) ∪ Ω2(t),

where

Ω1(t) := {(X,Y ) ∈ R2 : η(X, t) < Y < "}

is the air region (" = +∞ in the unbounded case) and

Ω2(t) := {(X,Y ) ∈ R2 : −d < Y < η(X, t)}

is the water region. The total width of the channel is thus W := "+d. In what follows,
we shall assume that " is fixed at the outset while d is to be determined during the
solution procedure. We point out also that we are not including the air-sea interface
{Y = η(X, t)} in the fluid domain, and thus Ω(t) is not connected.
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2184 SAMUEL WALSH, OLIVER BÜHLER, AND JALAL SHATAH

Let u = u(X,Y, t) and v = v(X,Y, t) denote the horizontal and vertical fluid
velocities, respectively. Let # = #(X,Y, t) > 0 be the density. We assume that
velocity field is incompressible

(1.1) uX + vY = 0 in Ω(t).

Conservation of mass is enforced by stipulating that the density of each fluid particle is
likewise preserved. For an inviscid fluid, this is equivalent to stating that the material
derivative of # is zero:

(1.2) #t + u#X + v#Y = 0 in Ω(t).

In this paper, we exclusively consider the case where the density in the air and water
regions is constant, that is,

#(t,X, Y ) = ρairχΩ(1)(t)(X,Y ) + ρwaterχΩ(2)(t)(X,Y ),

where χΩ(i)(t) is the characteristic function for the fluid region Ω(i)(t), i = 1, 2, and
ρair, ρwater are the given densities of water and air, respectively. Thus (1.2) will always
be satisfied. Note that because Ω(t) does not include the air-sea interface, the above
equation will hold in the classical sense.

The momentum equations for nondiffusive heterogeneous fluids are the Euler
equations,

(1.3)

{
#ut + #uuX + #vuY = −PX

#vt + #uvX + #vvY = −PY − g#
in Ω(t),

where P = P (X,Y, t) is the pressure and g is the gravitational constant. Again, given
our choice of #, one may alternatively view this as being satisfied in Ω(1)(t) and Ω(2)(t)
separately with # taking the appropriate constant value.

Let I(t) := ∂Ω1(t)∩∂Ω2(t) denote the interface between the air and water regions.
For simplicity, we shall use the convention that the restriction of any quantity defined
on Ω(t) or Ω(t) \ I(t) to the subset Ωi(t) is denoted by a superscript (i). Thus, for
example, u(i) := u|Ωi(t). Similarly, we define the jump operator

!·" := (·)(1)I(t) − (·)(2)I(t).

The dynamic boundary condition states that, ignoring the effects of surface ten-
sion, the pressure must be continuous across the interface. Stated in terms of the
operator !·", this is simply the statement that

(1.4) !P " = 0 on Y = η(X, t).

To couple the evolution of the boundary to that of the flow, we impose a kinematic
condition. More precisely, we suppose that I(t) is a material interface. This is enforced
by requiring that the normal velocity of the boundary agrees with the normal velocity
of the fluid. Since we are assuming a graph geometry for the free surface, we can
express this quite explicitly:

(1.5) v = ηt + uηX on Y = η(X, t).

Similarly, in the lidded regime, both upper and lower boundaries are unmoving, and
we must have

(1.6) v = 0 on Y = −d,

(1.7) v = 0 on Y = ".
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STEADY WATER WAVES WITH WIND 2185

When Ω2 is unbounded, the bed condition (1.6) remains valid, but (1.7) must be
replaced with

(1.8) (u, v) → (u∞, 0) as Y → ∞, uniformly in X and t, for some u∞ ∈ R.

Traveling wave solutions to (1.1)–(1.6) are those where, for some wave speed c > 0,
the change of variables

x = X − ct, y = Y,

eliminates time dependence. Physically, this means that viewed from a frame of ref-
erence moving with fixed speed c in the direction of propagation, (u, v, #, η, P ) all
appear steady. Reusing notation, from here on we shall simply identify (u, v, #, η, P )
with their stationary profiles. Observe that periodicity of the traveling wave is equiv-
alent to periodicity of the steady quantities in the x-variable. We shall therefore
require that (u, v, #, η, P ) are L-periodic in x for some L > 0.

In the moving frame (1.1)–(1.3) become

(1.9)






ux + vy = 0,
#(u − c)ux + #vuy = −Px

#(u − c)vx + #vvy = −Py − g#,
in Ω,

where Ω is the steady domain. The kinematic and dynamic conditions for the lidded
problem are likewise

(1.10)






v = 0 on y = ",
v = 0 on y = −d,
v = (u − c)ηx on y = η(x),

!P " = 0 on y = η(x).

The unbounded atmosphere case differs only in the condition at y = ∞, where we
require

(1.11) (u, v) → (u∞, 0) as y → ∞, uniformly in x for some u∞ ∈ R.

Recall, also, that we have chosen our axes so that η oscillates around the line y = 0:

(1.12)
1

L

∫ L/2

−L/2
η(x) dx = 0.

We note in passing that the steady Euler equations have an important consequence
for the Eulerian-mean momentum flux defined as

(1.13) FE(y) =
1

L

∫ L/2

−L/2
ρ(u − c)v dx.

Physically, the function FE(y) is the mean upward flux of horizontal momentum across
a line of constant altitude y. The steady Euler equations imply that dFE/dy = 0 and
hence FE does not depend on altitude y. This constant-momentum-flux result is also
obvious from a physical point of view: any vertical variation of FE would imply a
time-dependent accumulation of horizontal momentum within some altitude range,
which would be incompatible with the assumption of a steady flow field. Moreover,
the boundary condition v = 0 at the rigid lower boundary actually implies that FE = 0
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2186 SAMUEL WALSH, OLIVER BÜHLER, AND JALAL SHATAH

there, and therefore FE = 0 throughout the domain. This condition on FE must be
satisfied by all solutions to the steady equations.

Finally, another physical quantity of interest in the context of wind-driven waves
is the mean horizontal drag force exerted by the air on the water across the interface
y = η(x). This drag force equals minus the Lagrangian-mean momentum flux1 across
the undulating air-water interface, which is

(1.14) drag force = −FL =
1

L

∫ L/2

−L/2
ηx(x)P (x, η(x)) dx.

It is easy to show by integrating the steady Euler equations over a control volume
with lower boundary y = η(x) and an upper boundary of any constant altitude y
above the interface that

(1.15) FE = FL = 0

holds for steady waves, i.e., the Eulerian momentum flux equals minus the drag force
across the interface, and both are zero for steady waves. Conversely, a nonzero drag
force is incompatible with a steady flow, and this observation lies at the heart of
Miles’s theory for wind-driven water waves, which is briefly discussed in the next
section.

1.2. Critical layers and Miles’s theory. In this section, we briefly digress
from the steady theory to highlight some issues related to the time-dependent problem.
We would like to point out that what follows does not directly impact the analysis of
this paper. Rather, our purpose is to motivate somewhat our choice of steady regimes
and to connect the present work to a forthcoming paper treating the time-dependent
problem.

From (1.9) and (1.10) it is clear that points where u = c are of special importance.
When this occurs, the relative horizontal velocity appears to vanish in the moving
frame, meaning that the horizontal velocity of the fluid particle at that point matches
that of the wave. This scenario we refer to as stagnation. Note that this differs from
standard usage, since for us only the relative horizontal velocity needs to be zero. In
the classical theory of steady water waves, stagnation is closely associated with a loss
of regularity stemming from the degeneracy of the governing equations. The most
well-known instance of this phenomenon is the so-called extreme waves of Stokes (cf.,
e.g., [2]). Stagnation points play an even more central role in the time-dependent
theory of wind-driven water waves. Note that when a flow is laminar, i.e., it is of the
form (u, v) = (U(y), 0), the critical points will arrange themselves in horizontal lines
y = yc, say, such that U(yc) = c. These lines are called critical layers. The central
thesis of Miles’s theory is that the presence of a critical layer in the air region provides
a mechanism for the wind to impart horizontal momentum on the water via a nonzero
drag force in (1.14), and it is precisely this drag force that is responsible for creating
linear instability at slower wind speeds than predicted by K–H. (cf. [18]).

Specifically, if the vertical momentum flux FE at the upper domain boundary is
zero, which is consistent with a lidded domain, and if there is only a single critical
layer, then linear wave theory for weakly unstable waves predicts that FE has a jump
discontinuity across y = yc such that the drag force on the water is proportional to

1Eulerian and Lagrangian momentum flux definitions and their role in wave dynamics are dis-
cussed in detail in [5].
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STEADY WATER WAVES WITH WIND 2187

the ratio (−U ′′/U ′) evaluated at the critical level y = yc (cf. [18, 10]). This makes
obvious the crucial role played by a nonzero value of the second derivative U ′′(yc) at
the critical layer, without which there could be no wave growth induced by the critical
layer. Indeed, if U ′′(yc) is assumed to vanish, the critical layer is neutered or inactive:
the momentum flux FE is then continuous across y = yc, and the critical layer plays
no part in the generation of waves.

Now, for the purpose of studying steady waves one must either rule out criti-
cal layers a priori, or one must allow only inactive critical layers by requiring that
U ′′(yc) = 0. Indeed, the existence theory we present in section 6 for the constant
vorticity unbounded atmosphere case allows for these inactive critical layers.

The majority of the present paper is concerned with the lidded atmosphere case,
and in that we regime we restrict our attention to waves without stagnation and hence
without critical layers. The alternative approach of studying the existence of small
amplitude traveling water waves with stagnation points in various regimes has recently
been considered in several works (cf. [22, 11, 12, 17]). In each of these papers, the
authors prove that there exists a (local) curve of nonlaminar flows bifurcating from a
background laminar flow with a critical layer. Though it is not always stated explicitly,
in every case this is done under the assumption that the critical layer occurs only at
an inflection point of U and therefore U ′′(yc) = 0. If a similar restriction is taken, we
believe it would be possible to generalize the results (in lidded domains) given here
to allow for critical layers in the background flow. As the above discussion makes
clear, however, in the context of wind-driven waves these types of profiles are not
considerably more interesting than those without stagnation.

1.3. Stream function and circulation. Assuming an absence of stagnation,
(1.9) ensures that we may define a function ψ = ψ(x, y) by

(1.16) ψx = −√
#v, ψy =

√
#(u − c) in Ω.

This ψ is known as the (relative) pseudostream function for the flow. Here we have
the addition of a factor of # to the typical definition of the stream function for an
incompressible fluid. This is meant to account for the inertial effects of the density
variation (cf. [23, 24]). Observe also that the restriction u < c throughout the fluid
becomes the requirement

(1.17) ψy < 0.

It is evident from (1.16) that ψ is indeed a (relative) stream function in the sense that
∇⊥ψ is collinear with the vector field (u − c, v). In other words, the level sets of ψ,
which we call streamlines, coincide with the standard definition of streamlines in the
literature.

The kinematic condition in (1.10) implies precisely that the free surface, bed, and
lid are each level sets of ψ. As (1.16) only determines ψ up to a constant, we may
take ψ = 0 on the upper lid, so that ψ = −p0 on y = −d, where p0 is the (relative)
pseudovolumetric mass flux:

(1.18) p0 :=

∫ !

−d

√
#(x, y) [u(x, y)− c] dy.

It is straightforward to show that p0 is a (strictly negative) constant, i.e., it does not
depend on x (cf. [23]). Physically, p0 describes the rate of fluid moving through any
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2188 SAMUEL WALSH, OLIVER BÜHLER, AND JALAL SHATAH

vertical line in the fluid domain (and with respect to the transformed vector field√
#(u− c, v).) Notice that, although we shall allow u, v, and ρ to have discontinuities

across I, we assume that the pseudostream function is of class C(Ω). This is not an
assumption: because ψ is defined by (1.16) only up to a constant in each Ω(i), we may
without loss of generality take it to be continuous across the interface.

The conservation of mass in (1.9) implies that ∇# is orthogonal to the velocity
field, and hence we may let ρ : [−p0, 0] → R+ be given such that

(1.19) #(x, y) = ρ(−ψ(x, y))

throughout the fluid. We shall refer to ρ as the streamline density function, though
one may alternatively view it as the Lagrangian density. In the ocean, one typically
has that density is increasing with depth, meaning that the lighter fluid elements
rest on the heavier ones. Indeed, several physical mechanisms work independently
to enforce this situation: gravity naturally leads to increased salinity near the bed,
while temperature decreases substantially as one moves deeper into the ocean, where
the effects of the sun’s heating are attenuated. However, even near the surface, water
is on the order of 1000 times as dense as the air. The variations in the density are
within the air and water region are nowhere near as great as that across the interface,
so we shall suppose that # is constant in each region,

#(1) ≡ ρair, #(2) ≡ ρwater.

Stable stratification in this case simply means ρair < ρwater.
Conservation of energy can be expressed via Bernoulli’s theorem, which states

that the quantity

E := P +
#

2

(
(u − c)2 + v2

)
+ gρy

is constant along streamlines. (See [23] for an elementary proof.) If we evaluate the
jump of E on the interface, we may use the dynamic boundary condition to express
the pressure in terms of (u, v, η), which gives rise to the following:

(1.20)
#
|∇ψ|2

$
+ 2g !ρ" (η + d) = Q on y = η(x),

where the constant Q := 2 !E + gρd" gives roughly the jump in the energy density
across the free surface of the fluid. We treat Q as our parameter of bifurcation.

By taking the curl of the steady Euler’s equations, one arrives at the identity

{−∆ψ, ω} = 0 in Ω,

where {·, ·} is the Poisson bracket and ω is the scalar vorticity ω := vx − uy. Under
the assumption that u < c throughout the fluid, this allows us to conclude that there
exists a single-valued function γ, called the vorticity strength function, such that

ω(x, y) = γ(ψ(x, y)) in Ω.

The final ingredient in our model is a condition on the circulation on each stream-
line, namely, that the circulations in the air and water regions do not coincide. This
is meant to ensure that the waves we construct are dynamically accessible from an
initial configuration of a shear profile wind blowing over water. Since the circulation
will be constant along a streamline, we define the function Γ = Γ(p) defined by

(1.21) Γ(p) :=

∫

S (p)
(u(x, y), v(x, y)) · dx = Γ(p) for p0 < p < 0
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here S (p) := {(x, y) ∈ Ω : −L/2 < x < L/2, ψ(x, y) = −p}. For us, then, the pres-
ence of wind means that there is a discontinuity in Γ at the streamline corresponding
to the air-water interface.

1.4. Informal statement of results. Now that the basic objects have been in-
troduced, we can give a brief summary of our results. The precise theorem statements
are presented later.

(i) Consider the existence of steady wind-driven water waves with a lidded
atmosphere and irrotational flow in both the air and water and without stagnation.
Fix the period L, the density jump !ρ", the (pseudo) volumetric mass flux in the water
region p1, the (pseudo) relative circulation on the lid Γrel, and the height of the lid ".
Then, if a certain compatibility condition is met (3.2), there exists a family of laminar
flows that are exact solutions. Moreover, if a size condition is satisfied (ILBC), there
is a curve of small amplitude (classical) exact solutions bifurcating from this family.
See section 3 and Theorem 3.1.

(ii) Consider the situation as in (i), but where the flow in the air region is
rotational. There is a corresponding compatibility condition relating γ, Γrel, p1, and
" (4.2). If it is satisfied, there exists of a one-parameter family of laminar flows, each
with (pseudo) relative circulation Γrel. Moreover, under a certain local bifurcation
condition (LBC) (or size condition (4.9)), there is a curve of small amplitude (classical)
exact solutions bifurcating from this family. See section 4 and Theorem 4.1.

(iii) In the unbounded atmosphere regime, we fix the depth of the ocean d and
consider the existence of waves where the water region is irrotational and the wind has
constant vorticity γ0. There is a family of laminar flows, parameterized (essentially)
by the circulation at y = +∞, and, under analogous bifurcation conditions ((5.2)
for γ0 = 0 and (6.1) otherwise), there are curves of small-amplitude (classical) exact
solutions bifurcating from this family. See sections 5 and 6 and Theorems 5.1 and 6.1.
Note that these results do not require an absence of stagnation. In fact, when γ0 < 0,
there will be a critical layer in each of the background laminar flows.

Notice that in each of (i) and (ii) there are hypotheses relating Γrel, ", γ, and
p1. This is to be expected; in fact they can be viewed as a consequence of Stokes’
theorem. In our work, we elect to fix p0 and p1, as well as " in the lidded case. When
the atmosphere is irrotational, these choices determine Γrel by (3.2); if the atmosphere
is rotational, we take γ to be fixed and define Γrel according to (4.2). These choices
are of course arbitrary and one can instead choose Γrel and use (4.2) to define γ and ".

Let us now briefly discuss the place of these results in the existing literature. The
bifurcation theory techniques that we employ have a long history in the study of steady
water waves. For the lidded regimes (points (i) and (ii)), we consider a reformulation
of the problem in semi-Lagrangian coordinates, which has been used in a number of
works, notably Amick and Turner (cf., e.g., [20, 21, 1]) and Constantin and Strauss
(cf. [7]). Our approach follows the latter in relying on elliptic estimates rather than
variational techniques. More precisely, the method we employ can be viewed as an
adaptation of that in [23] to the case of a noncontinuously stratified fluid in a channel,
with additional considerations involving the (pseudo) relative circulation. A similar
problem was considered by Amick and Turner in [3], ignoring the important issue of
the circulation. They, however, were primarily interested in the solitary wave case and
so developed the periodic existence theory only in order to obtain solitary waves as a
limit as the period goes to +∞. As a consequence, this requires them to make certain
assumptions on γ (otherwise the limiting wave will not be irrotational and quiescent
at x = ±∞); we do not impose any such restriction. It should be pointed out that

D
ow

nl
oa

de
d 

11
/2

2/
13

 to
 1

28
.1

22
.8

1.
38

. R
ed

ist
rib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls/
oj

sa
.p

hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2190 SAMUEL WALSH, OLIVER BÜHLER, AND JALAL SHATAH

the results of Amick and Turner, as well as those of Constantin and Strauss, are
global in the sense that the bifurcating curve of solutions is extended to include waves
with finite amplitude. We believe that a similar result is possible in this case, since
the basic ingredients (mainly good Schauder-type a priori estimates for the elliptic
equations involved) are available. This is an interesting and important question but
beyond the scope of the preliminary investigations here.

Previous work on the infinite atmosphere case is comparatively sparse. In the
applied literature, this is simply because the lidded regime is seen as an adequate
idealization of the infinite atmosphere: so long as the wind curvature is evanescent
and the air density is constant there is no mechanism for propagation of waves to
or from vertical infinity, and hence the dynamics far away from the air-sea interface
decay exponentially with altitude and are not thought to be particularly relevant.
Mathematically, of course, removing the lid results in a loss of compactness, which
introduces some potentially serious difficulties. Nonetheless, we include as a simple
application of our machinery a mathematical treatment of the infinite atmosphere
regime in the case where the vorticity is constant in the air region.

2. Formulation.

2.1. Stream function formulation. The relevance of the pseudostream func-
tion and the vorticity strength function to the existence theory stems from the identity

−∆ψ = ω,

which, recalling the definition of the vorticity strength function, leads to the semilinear
elliptic equation

(2.1) − ∆ψ = γ(ψ) in Ω.

One important consequence of the lack of stagnation, or, more accurately, the absence
of active critical layers, is that the Euler system can be recast as the above scalar
problem.

Next, we note that the (steady) kinematic condition in (1.9) guarantees that the
interface I is a streamline. That is,

I = {ψ = −p1}

for some p1 > p0. The difference between p1 and the value of ψ at the top boundary
of the domain gives the (pseudo) volumetric mass flux in the air region. In the lidded
case we thus take p1 to be some fixed value and let ψ|y=! = 0. When the atmospheric
region is unbounded, however, we let ψ|I = 0, and thus ψ → +∞ as y → +∞.

Taken together, the considerations of the preceding paragraphs imply that obtain-
ing solutions to (1.3)–(1.21) with a lidded atmosphere for a given ρ and γ is equivalent

to solving the following problem: Find (ψ, η,Q) such that ψ(i)
y < 0 in Ω(i), and

(2.2)






∆ψ + γ(ψ) = 0 in Ω,#
|∇ψ|2

$
+ 2g !ρ" (η + d) − Q = 0 on y = η(x),

ψ = 0 on y = ",
ψ = −p1 on y = η(x),
ψ = −p0 on y = −d.

For any such solution, the relative circulation will then be given by (2.3). We shall
forestall a detailed discussion of the unbounded atmosphere case until section 5 and
section 6.
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Note that we have defined Ω so that it does not include the interface. Thus (2.2)
can be thought of as two separate elliptic problems in the domains Ω(1) and Ω(2),
which must then be matched along the interface according to the jump condition
(1.20). The advantage of this view point is that, while this a free boundary problem,
the coefficients of the elliptic equation are all smooth. Another way to proceed is
to pose (2.2) in a weak sense on Ω, with the jump condition being represented as a
measure supported on I. This conceptualization allows us to understand the matching
procedure in the more conventional framework of elliptic problems with nonsmooth
coefficients, for which there is a great deal of theory. As stated, we will be taking the
first view—namely, that (2.2) is two elliptic problems matched at the interface—but
occasionally will make use of the second view to derive some compactness properties
of the corresponding operator.

Finally, let us discuss the circulation for the reformulated problem. Since S (p)
is a level set of ψ and we have

(u, v) =
1

√
ρ
∇⊥ψ + (c, 0),

the circulation in the air is given by

Γ(p) = Lc−
∫

S (p)

1√
ρ(p)

|∇ψ| dH1,

whereH1 denotes one-dimensional Hausdorff measure, which is equal to the arc length
of the interface. It will be more convenient to consider the quantity

(2.3) Γrel(p) :=
1

L

∫

S (p)
|∇ψ| dH1,

which we call the (pseudo) relative circulation. Γ and Γrel are then related according
to the equation

(2.4) Γrel(p) =
√
ρ(p)

(
c− Γ(p)

L

)
.

The advantage of considering Γrel in place of Γ is merely that it is simpler to express
in terms of ψ, while being equivalent for a specified ρ, c, and L.

2.2. Height equation formulation. The main difficulty that remains in (2.2)
is that the domain Ω is an unknown. Absent stagnation, this can be rectified by
considering a change of variables (x, y) *→ (q, p), where

q := x, p := −ψ(x, y).

This procedure is known variously as the semi-Lagrangian transformation or the
Dubreil-Jacotin transformation. The effect is to map a single period of Ω into a union
of rectanglesD = D(1)∪D(2) ⊂ R2, since ∂Ω is mapped to the sets {p = 0}∪{p = p0}.
Note that, by definition, {p = p1} is the image of I under the transformation. The
image of the air region Ω1 is thus

D1 := {(q, p) ∈ D : 0 < q < L, p1 < p < 0},

while the water region is mapped to

D2 := {(q, p) ∈ D : 0 < q < L, p0 < p < p1}.
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With that in mind, we put

T := {p = 0}, I := {p = p1}, B := {p = p0}.

Let h = h(q, p) be the height above the bed of the point with x = q and lying on
the streamline {ψ = −p},

h(q, p) := y(q, p) + d,

where y = y(q, p) is the vertical variable y in the new coordinates. More explicitly, it
is the unique solution to

ψ(q, y(q, p)) = −p,

the existence of which is guaranteed by the absence of stagnation. By adopting the
semi-Lagrangian coordinates, we are strongly exploiting the fact that there are no
critical layers in the flow.

Equation (2.2) can be reformulated as an equivalent problem for h: Find (h,Q)
with h even in q, hp > 0 in D, and satisfying the height equation

(2.5)






(1 + h2
q)hpp + hqqh2

p − 2hqhphpq = −h3
pγ(−p) in D1 ∪ D2,

%
1 + h2

q

h2
p

&
+ 2g !ρ" h− Q = 0 on p = p1,

h = 0 on p = p0,
h = "+ d(h) on p = 0.

Here d is the depth operator

d(h) :=
1

L

∫ L/2

−L/2
h(q, p1) dq.

Note that we do not specify the value of d in advance; rather the correct value of
d(h) emerges self-consistently from the equations. These equations can be found
by applying the procedure as in [23] to obtain the interior equation and using the
following change of variables formulas to reformulate the jump condition:

hq =
v

u − c
, hp =

1
√
#(c − u)

, v = − hq√
#hp

, u = c − 1
√
#hp

,

∂x = ∂q − hq

hp
∂p, ∂y =

1

hp
∂p.

Note that the slope hq is continuous across the interface, so it could also be extracted
from the jump condition on p = p1. The relative circulation can be calculated from h
by

Γrel(p) =
1

L

∫ L/2

−L/2

1 + h2
q

hp
dq for p1 ≤ p ≤ 0.

Last, let us set down some notation and describe the regularity of the solutions we wish
to study. For any k ∈ N, α ∈ (0, 1), and smooth region R ⊂ R2, the space Ck+α

per (R) is
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defined as the set of Ck+α(R) that are L-periodic and even in their first coordinate.
We are seeking smooth solutions to the problems enumerated above. Specifically, we
look for solutions to the Euler problem of class S , the stream function problem of
class S ′, and the height equation of class S ′′ defined as follows:

(u, v, #, η) ∈ S :=
(
Cα

per(Ω) ∩ C1+α
per (Ω \ I)

)3 × C2+α
per (R),

(Q,ψ, η) ∈ S ′ := R× (C1+α
per (Ω1) ∩ C1+α

per (Ω2) ∩ Cα
per(Ω) ∩ C2+α

per (Ω \ I))
× C2+α

per (R),
(Q, h) ∈ S ′′ := R×

(
C1+α

per (D1) ∩C1+α
per (D2) ∩ Cα

per(D) ∩ C2+α
per (D \ I)

)
.

Put more plainly, we want, e.g., solutions to the height equation to be Cα in the
whole domain, C1+α up to the interface, and of class C2+α away from the interface.
The regularity of the other quantities is a direct consequence of that choice.

Lemma 2.1 (equivalence). The following statements are equivalent.
(i) There exists a solution of class S to the steady stably stratified Eulerian

problem (1.9)–(1.21) without stagnation.
(ii) There exists a solution of class S ′ to the stream function problem (2.2).
(iii) There exists a solution of class S ′′ to the height equation problem (2.5).
Proof. This lemma is routine. See, for example, [7, Lemma 2.1] or [23, Lemma 2.1].

One point worth mentioning is that, while in our discussion of the formulation we only
stated that ψ was continuous across the boundary, as a solution of (2.2) it must in
fact be of class Cα

per(Ω) by elliptic regularity (see Theorem A.2).

3. Local bifurcation for irrotational gravity waves. We begin by consider-
ing the simplest case where the flow in both the air and water regions is irrotational
(γ ≡ 0). In this setting we need only consider the value of Γrel on the lid. That is,
the presence of wind here we interpret as having a nonzero Γrel on p = 0. Without
loss, therefore, in this section we redefine Γrel to be a positive constant. The height
equation simplifies to

(3.1)






(1 + h2
q)hpp + hqqh2

p − 2hqhphpq = 0 in D1 ∪ D2,

%
1 + h2

q

h2
p

&
+ 2g !ρ"h− Q = 0 on p = p1,

h = 0 on p = p0,
h = "+ d(h) on p = 0,

and the relative circulation on the lid for a solution h is given by

1

L

∫ L/2

−L/2
hp(q, 0)

−1 dq = Γrel.

This follows from the fact that hq ≡ 0 on the lid.
Our main theorem on this topic is the following.
Theorem 3.1 (local bifurcation for irrotational flows). Consider the existence

of steady waves with a lidded atmosphere and irrotational flow in the air and water
regions, where Γrel is given by

(3.2) |p1| = Γrel".
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Assume that the following ideal local bifurcation condition holds:

(ILBC) − g !ρ" + Γ2
rel coth

(
p1

Γrel

)
> 0.

Then there exists a continuous curve of nonlaminar solutions to the height equation
for irrotational flow (3.1)

C′′
loc = {(Q(s), h(s)) : |s| < ε} ⊂ S ′′

for ε > 0 sufficiently small, such that (Q(0), h(0)) = (Q(λ∗), H(λ∗)), and, in a suf-
ficiently small neighborhood of (Q(λ∗), H(λ∗)) in S ′′, C′

loc comprises all nonlaminar
solutions.

Remark 1. Using the equivalence of the three formulations, the theorem can be
stated in terms of the original Eulerian problem as follows. Consider the existence
of steady waves with a lidded atmosphere and irrotational flow in the air and water
regions. Fix the (pseudo) volumetric mass flux in the air region to be p1 and the height
of the lid to be "; this forces any laminar flow to have (pseudo) relative circulation
Γrel defined by (3.2). If, in addition, the ideal local bifurcation condition (ILBC) is
satisfied, then there is a corresponding continuous curve

Cloc = {(Q(s), u(s), v(s), #(s), P (s), η(s)) : |s| < ε}

of small amplitude solutions to the Eulerian problem for an ideal fluid, which likewise
captures all nonlaminar solutions in a sufficiently small neighborhood of the point of
bifurcation.

It is also worth mentioning that, in contrast to the existence theory developed
in section 4, hypotheses (3.2) and (ILBC) are both necessary and sufficient for local
bifurcation to occur.

Remark 2. There are two limiting regimes of particular interest here: the vac-
uum limit when ρ(1) → 0 and the infinite atmosphere limit, where " → ∞. We shall
comment more on the latter in section 5, but let us now briefly discuss the vacuum
limit. Because ψ is the pseudostream function, taking ρ(1) → 0 corresponds to re-
quiring that ψ(1) be a constant. In the semi-Lagrangian framework, this means the
entire problem in the D1 region becomes degenerate, and the equivalence of the three
models proved in Lemma 2.1 breaks. In other words, this limit is highly singular,
so some real work would be required to show any sort of convergence of solutions.
That said, formally, we may simply take h(1), ρ(1), p1,Γrel = 0, and then consider
(3.1) posed only in the water region D2. In that case, the condition on the interface
matches the standard Bernoulli boundary condition (written in the semi-Lagrangian
coordinates), and so the problem reduces to a special case of that studied by Con-
stantin and Strauss [7]. Indeed, we point out that the exact same reasoning applies
in the rotational atmosphere case studied in the next section.

The proof of this is result is developed over the next several subsections.

3.1. Laminar flows. A laminar flow is one in which the free surface is un-
perturbed, meaning that η ≡ 0, and where the streamlines are parallel to the bed.
In terms of the height equation formulation, this entails a solution with the ansatz
h = H(p), and H(0) = d(H). For such solutions, the PDE in (3.1) reduces to an
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ODE:

(3.3)






Hpp = 0 in (p0, p1) ∪ (p1, 0),#
H−2

p

$
+ 2g !ρ"H − Q = 0 on p = p1,

H(0) = "+ d(H),

H(p0) = 0.

This problem can be easily solved explicitly, which leads to the following lemma.
Lemma 3.2 (laminar flow). For a fixed p0, p1, ", and !ρ", if Γrel is given by (3.2),

then there exists a one-parameter family of solutions {(H(·;λ), Q(λ)) : λ > 0} to
the laminar flow equation (3.3) with Hp > 0 and where each solution has relative
circulation Γrel on the lid. Explicitly,

(3.4) H(p;λ) =






p

Γrel
+ " +

p1 − p0
λ

, p1 < p < 0,

p− p0
λ

, p0 < p < p1

and

(3.5) Q(λ) =
2g !ρ" (p1 − p0)

λ
+ Γ2

rel − λ2.

In particular, the depth of the fluid at parameter value λ is

(3.6) d(λ) =
λ

p1 − p0
,

and the width of the corresponding channel is

(3.7) W (λ) := "+ d(λ) = "+
λ

p1 − p0
.

Remark 3. Let us make a few comments on this lemma.
1. The proof of this lemma is straightforward. Notice that (3.2) is required

to ensure that the resulting solution is continuous across the interface. Thus it is a
necessary condition for the existence of laminar flows.

2. Writing the corresponding solution in Eulerian form gives (u, v) = (U(y), 0),
where

U(y;λ) =






c − Γrel√
ρair

, 0 < y < "

c − λ
√
ρwater

−d < y < 0.

Thus the parameter λ essentially dictates the relative speed in the water region while
Γrel dictates the relative speed in the air.

3. Differentiating (3.5) in λ, it is clear that λ *→ Q(λ) is concave and has a
unique maximum at λ = λ0, where

(3.8) λ30 = −g !ρ" (p1 − p0).
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3.2. Linearized problem. Fixing λ > 0, we next linearize the full height equa-
tion problem (3.1) around (H(·;λ), Q(λ)), which results in the following:

(3.9)






mpp +mqqH2
p = 0 in D1 ∪ D2,#

H−3
p mp

$
= g !ρ"m on p = p1,

m = 0 on p = p0,
m− d(m) = 0 on p = 0.

For simplicity, we specialize to L = 2π; the general case can be approached via
rescaling. Now, since we seek solutions that are 2π-periodic and even in q, it is natural
to take m to have the ansatz m(q, p) = M(p) cos (nq) for some n ≥ 0. Inserting this
into (3.9) we see immediately that for n ≥ 1, M must satisfy the following:

(Pn)






a2λMpp = n2M in (p0, p1) ∪ (p1, 0),#
a3λMp

$
= g !ρ"M on p = p1,

M = 0 on p = p0,

M = 0 on p = 0.

Here we are denoting

aλ(p) := Hp(p;λ)
−1 =

{
Γrel p1 < p < 0,
λ p0 < p < p1.

On the other hand, when n = 0, the equation in the interior are the same as above,
but the depth operator d does not vanish, meaning that the boundary condition is
nonlocal:

(P0)






a2λMpp = 0 in (p0, p1) ∪ (p1, 0),#
a3λMp

$
= g !ρ"M on p = p1,

M = 0 on p = p0,

M(0) = M(p1).

Solving (Pn) for any value of n ≥ 1 will produce a 2π/n-periodic solution to
the linearized problem. The next lemma gives the relation between the wavelength,
circulation, and the parameter value λ (which, recall, is associated with the speed in
the water region). This can be seen as a form of dispersion relation.

Lemma 3.3. For each n ≥ 1, there exists a nontrivial solution M to (Pn) if and
only if λ = λn, where λn satisfies

(3.10)
g !ρ"
n

= Γ2
rel coth

(
np1
Γrel

)
− (λ∗n)

2 coth

(
n(p1 − p0)

λ∗n

)
.

Such a λ∗n will exist if and only if

(3.11)
g !ρ"
n

− Γ2
rel coth

(
np1
Γrel

)
< 0.

Indeed, if it exists, λn is unique. If (3.10) (or, equivalently, (3.11)) holds, the space
of solutions is one-dimensional and spanned by

(3.12) M∗
n(p) :=

{
sinh ( np

Γrel
) p1 < p < 0,

µ sinh (n(p−p0)
λ∗
n

) p0 < p < p1,

D
ow

nl
oa

de
d 

11
/2

2/
13

 to
 1

28
.1

22
.8

1.
38

. R
ed

ist
rib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls/
oj

sa
.p

hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STEADY WATER WAVES WITH WIND 2197

where

(3.13) µ = µ(λ, n) :=

sinh

(
np1
Γrel

)

sinh

(
n(p1 − p0)

λ

) .

Finally, there are nontrivial solutions to (P0) if and only if λ = λ0, where λ0 is as in
(3.8).

Proof. Fix n ≥ 1 and consider (Pn). By the ODE satisfied by M , we have
immediately that

M(p) = C1 exp (na
−1
λ p) + C2 exp (−na−1

λ p),

where

Ci =

{
C(1)

i in (p1, 0)

C(2)
i in (p0, p1)

for i = 1, 2.

From the boundary conditions on the top and bottom, we have

C(1)
1 = −C(1)

2 , C(2)
1 = −C(2)

2 exp

(
−2np0

λ

)
.

Continuity of M at the interface implies that

C(1)
1 sinh

(
np1
Γrel

)
= C(2)

1 exp
(np0
λ

)
sinh

(
n(p1 − p0)

λ

)
.

Incorporating these observations, we can write M in the simplified form

M (1)(p) = C sinh

(
np

Γrel

)
,

M (2)(p) = µC sinh

(
n(p− p0)

λ

)
,

(3.14)

where µ = µ(λ, n) is as defined by (3.13).
Last, we must ensure that the jump condition at the interface is met. We compute

from the above expression for M that

#
a3λMp

$
=

[
Γ3
relM

(1)
p − λ3M (2)

p

] ∣∣∣∣
p=p1

= CnΓ2
rel cosh

(
np1
Γrel

)

− µCnλ2 cosh

(
n(p1 − p0)

λ

)
.

Equating this to g !ρ"M(p1) found via (3.14) and simplifying yields

g !ρ" sinh
(
np1
Γrel

)
= nΓ2

rel cosh

(
np1
Γrel

)

− µnλ2 cosh

(
n(p1 − p0)

λ

)
.
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Recalling the definition of µ, this becomes

g !ρ"
n

= Γ2
rel coth

(
np1
Γrel

)
− λ2 coth

(
n(p1 − p0)

λ

)
,

which is the stated dispersion relation (3.10).
Fix n ≥ 1 and consider the map λ ∈ R+ *→ λ2 coth(n(p1 − p0)/λ) ∈ R+. Ele-

mentary calculus confirms that it is a strictly increasing and nonnegative. Therefore,
provided that (3.11) holds, i.e.,

g !ρ"
n

− Γ2
rel coth

(
np1
Γrel

)
< 0,

there is a unique λ = λ∗n for which the dispersion relationship (3.10) is satisfied. On
the other hand, if this inequality does not hold, then there will be no such λ and thus
no nontrivial solutions to the eigenvalue problem.

Next consider the zero-mode case n = 0. Letting m(q, p) = M(p) in (3.9) we see
that M must be piecewise linear. Moreover, the condition at p = 0 implies

M(0) = d(M) = M(p1).

From this we infer that M ≡ M(0) on the interval [p1, 0]. Due to the boundary
condition at p0 and the piecewise linearity of M , we know

M(p) = M(p1)
p− p0
p1 − p0

, p ∈ [p0, p1].

Using this to evaluate the jump condition reveals that

− λ3

p1 − p0
M(p1) = g !ρ"M(p1).

Thus there is a nontrivial zero-mode solution if and only if

λ3 = −g !ρ" (p1 − p0) = λ30.

This completes the proof.
One final technical point needs to be made: since the laminar curve is parame-

terized by λ, and the solutions we seek depend on Q, we need to ensure that at the
point of bifurcation Q is an invertible function of λ. This is demonstrated in the next
lemma.

Lemma 3.4. For each n ≥ 1 such that (3.11) holds, Q is an invertible function
of λ in a neighborhood of λ∗n.

Proof. Fix n ≥ 1 satisfying (3.11) and let λ∗n and M∗
n be defined as in (3.10) and

(3.12), respectively. From the formula (3.5), it is obvious that Q is a strictly concave
function of λ, and hence to prove the lemma it suffices to show that λ∗n /= λ0, where
λ0 is the unique critical point of Q.

Multiplying (Pn) by M∗
n and integrating by parts, we obtain

∫ 0

p0

a3λ∗
n
(∂pM

∗
n)

2 dp+ n2

∫ 0

p0

aλ∗
n
(M∗

n)
2 dp+ g !ρ"M∗

n(p1)
2 = 0.

Upon regrouping terms, this becomes

(3.15) 0 > −n2

∫ 0

p0

aλ∗
n
(M∗

n)
2 = g !ρ"M∗

n(p1)
2 +

∫ 0

p0

a3λ∗
n
(∂pM

∗
n)

2 dp.
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On the other hand, as M∗
n(p0) = 0,

M∗
n(p1)

2 =

(∫ p1

p0

(∂pM
∗
n) dp

)2

≤
(∫ p1

p0

a3λ0
(∂pM

∗
n)

2 dp

)(∫ p1

p0

a−3
λ0

dp

)

=

(∫ p1

p0

a3λ0
(∂pM

∗
n)

2 dp

)(
p1 − p0
λ30

)

= − 1

g !ρ"

∫ p1

p0

a3λ0
(∂pM

∗
n)

2 dp.

From this it follows that

(3.16) 0 ≤ g !ρ"M∗
n(p1)

2 +

∫ p1

p0

a3λ0
(∂pM

∗
n)

2 dp.

Inequalities (3.15) and (3.16) cannot be reconciled if λ0 = λ∗n, allowing us to conclude
that this is never the case.

3.3. Proof of local bifurcation. The objective of this section is to apply the
theory of local bifurcation from simple eigenvalues to construct small amplitude (non-
laminar) solutions to the wind wave problem, eventually culminating in Theorem 3.1.
The machinery we employ is the classical work of Crandall and Rabinowitz, which,
in the interest of readability, is included in the appendix as Theorem A.1.

Our first task is to put our problem into the framework of Theorem A.1. One
cosmetic difference is that we wish to bifurcate from the family of laminar solutions,
whereas Theorem A.1 concerns bifurcation from solutions of the form (λ, 0). With that
in mind, let (h,Q) solve the height equation, and suppose h(q, p) = H(·;λ) +m(q, p)
and Q = Q(λ). Then

(3.17)






(1 +m2
q)(mpp +Hpp) +mqq(mp +Hp)2

− 2mq(Hp +mp)mpq = 0 in D1 ∪ D2,

%
1 +m2

q

(Hp +mp)
2

&
+ 2g !ρ" (m+H) − Q = 0 on p = p1,

m = 0 on p = p0,
m+H − "− d(m) − d(H) = 0 on p = 0.

This can be restated equivalently as

F(λ,m) = 0,

where F = (F1,F2,F3,F4) : R× X → Y is defined by

F1(λ,w) := (1 + (w(1)
q )2)(w(1)

pp +Hpp) + w(1)
qq (w

(1)
p +Hp)

2

− 2w(1)
q (Hp + w(1)

p )w(1)
pq ,

F2(λ,w) := (1 + (w(2)
q )2)(w(2)

pp +Hpp) + w(2)
qq (w

(2)
p +Hp)

2

− 2w(2)
q (Hp + w(2)

p )w(2)
pq ,

F3(λ,w) := −
'

1 + w2
q

(Hp + wp)
2

(
− 2g !ρ" (w +H)|I +Q,

F4(λ,w) := (w − d(w) +H − d(H) − ") |T .

(3.18)
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Here, the Banach spaces X and Y = Y1 × Y2 × Y3 × Y4 are

X := {h ∈ C2+α
per (D \ I) ∩ Cα

per(D) : h(p0) = 0, h(i) ∈ C1+α
per (Di)},

Y1 := C2+α
per (D1 \ I) ∩ Cα

per(D1), Y2 := C2+α
per (D2 \ I) ∩ Cα

per(D2),

Y3 := Cα
per(I), Y4 := C2+α

per (T ).

Observe that, by Lemma 3.2, F(λ, 0) = 0 for every positive λ. In particular, we shall
consider bifurcation from the lowest eigenvalue of the linearized problem found in the
previous section. We shall therefore assume that (3.11) holds for n = 1 and denote
λ∗ := λ∗1.

For later reference, we now record the Fréchet derivative of F with respect to w
at (λ∗, 0):

Fiw(λ
∗, 0)ϕ =

(
∂2p +H2

p∂
2
q

)
ϕ(i) for i = 1, 2,

F3w(λ
∗, 0)ϕ = 2

#
H−3

p ϕp

$
− 2g !ρ"ϕ,

F4w(λ
∗, 0)ϕ = (ϕ− d(ϕ))T .

(3.19)

Lemma 3.5 (null space). The null space of Fw(λ∗, 0) is one-dimensional.
Proof. Let ϕ ∈ N (Fw(λ∗, 0)) be given. By evenness, we can express ϕ via a

cosine expansion:

ϕ(q, p) =
∞∑

n=0

ϕn(p) cos (nq).

It follows that

Fw(λ
∗, 0)(ϕn(p) cos (nq)) = 0, n ≥ 0.

Equivalently, we must have that ϕn solves (Pn). By Lemma 3.3 and the definition of
λ∗, we know that ϕ1 is nontrivial and that ϕn vanishes identically for n /= 1. We have
therefore shown that N (Fw(λ∗, 0)) is one-dimensional and spanned by ϕ∗ := ϕ1, the
unique solution to (Pn) for n = 1.

Now that we have ascertained the dimension of the null space, the natural next
step in showing that F is Fredholm of index 0 is to prove that the range is the
(weighted) orthogonal complement of the null space.

Remark 4. For the case we are studying where the air is irrotational, this is not
particularly difficult if one takes the following approach. To study the solvability of
Fw(λ∗, 0)ϕ = A for A ∈ Y , we may project onto the individual modes by expanding
ϕ(q, p) =

∑
n ϕn(p) cos (nq). Doing so, we see that ϕn solves an inhomogeneous

version of the linearized problem (Pn). When n ≥ 1, the problem can be viewed
simply as two second-order ODEs with Dirichlet boundary conditions on the top and
bottom, which must then be matched so that the jump condition on the interface is
satisfied. The fact that the range has codimension 1 will arise as from this matching
and classical existence theory for ODEs. As before, the zero mode must be dealt with
using the fact for λ∗ there is no 0 eigenvalue. This procedure gives solutions of class
C2 away from the interface; the proof that the solution is in X follows from elliptic
regularity, as described in Theorem A.2.

In section 4, however, we allow the atmosphere to be rotational, and one of the
effects of the vorticity is to make the linearized problem corresponding to (Pn) onerous
to solve explicitly. With that in mind, it seems that a better adapted approach is to
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avoid separating variables, relying instad on purely PDE existence theory. Done this
way, the proof of the range lemma is nearly identical in both regimes, and so this is
the manner in which we have chosen to present it here.

Even using PDE methods, though, the zero mode is somewhat special, since it is
only there where the nonlocal operator d can be seen. For that reason, we will still
wish to begin by projecting elements of X and Y onto their zero modes. We adopt
the following notation:

(Pg)(·) := 1

2π

∫ π

−π
g(q, ·) dq for any g ∈ X,Y1, Y2, Y3, Y4, or Y5.

Lemma 3.6 (range). A = (A1,A2,A3,A4) ∈ Y is in the range of Fw(λ∗, 0) if
and only if it satisfies the following orthogonality condition:

(3.20)

∫∫

D1

a3A1ϕ
∗ dq dp+

∫∫

D2

a3A2ϕ
∗ dq dp+

1

2

∫

I
A3ϕ

∗ dq+

∫

T
a3A4ϕ

∗
p dq = 0.

Proof. We begin by demonstrating necessity. Suppose that A ∈ R(Fw(λ∗, 0)).
We may therefore let ϕ be given such that Fw(λ∗, 0)ϕ = A. It follows that

(
a3ϕ∗,A1

)
L2(D1)

+
(
a3ϕ∗,A2

)
L2(D2)

=

∫∫

D1

a3
(
ϕpp +H2

pϕqq

)
ϕ∗ dq dp

+

∫∫

D2

a3
(
ϕpp +H2

pϕqq

)
ϕ∗ dq dp

= −
∫∫

D1

a3ϕpϕ
∗
p dq dp

−
∫∫

D2

a3ϕpϕ
∗
p dq dp

−
∫

I

#
a3φpϕ

∗$ dq

+

∫∫

D1∪D2

aϕϕ∗
qq dq dp.

(3.21)

Here we have exploited periodicity and the fact that ϕ∗ vanishes identically on T .
Continuing with the computation,

(
a3ϕ∗,A1

)
L2(D1)

+
(
a3ϕ∗,A2

)
L2(D2)

=

∫∫

D1∪D2

(
a3ϕ∗

pp + aϕ∗
qq

)
ϕdq dp

+

∫

I

(#
a3ϕ∗

pϕ
$
−

#
a3ϕpϕ

∗$) dq

−
∫

T
a3A4ϕ

∗
p dq − d(ϕ)

∫

T
a3ϕ∗

p dq

=

∫

I
g !ρ"ϕ∗ϕdq

+

∫

I

(
−1

2
A3 − g !ρ"ϕ

)
ϕ∗ dq

−
∫

T
a3A4ϕ

∗
p dq.
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Simplifying, we see that, indeed, the orthogonality relation (3.20) must be satisfied.
The proof of necessity is complete.

The next (more difficult step) is to show that (3.20) is sufficient. Suppose now that
A satisfies (3.20); we wish to prove that there exists ϕ ∈ X such that Fw(λ∗, 0)ϕ = A.
First we consider the zero mode problem found by applying the projection P to the
equation, which gives

A1 = ∂2pϕ for p1 < p < 0,

A2 = ∂2pϕ for p0 < p < p1,

A3 = 2
#
a3ϕp

$
− 2g !ρ"ϕ,

A4 = (ϕ− d(ϕ))T ,

(3.22)

where

ϕ := Pϕ, A = (A1,A2,A3,A4) := (PA1,PA2,PA3,PA4).

Hence,

ϕ(1)(p) =

∫ p

p1

∫ r

p1

A1(s) ds dr + C1p+ C2,

ϕ(2)(p) =

∫ p

p0

∫ r

p0

A2(s) ds dr + C3(p− p0)

(3.23)

for some constants C1, C2, and C3. The condition on T tells us that

(3.24) − C1p1 = A4 −
∫ 0

p1

∫ p

p1

A1(r) dr dp.

Continuity across the interface implies

(3.25) C1p1 + C2 − (p1 − p0)C3 =

∫ p1

p0

∫ p

p0

A(r) dr dp.

Last, the jump condition requires that

(3.26) Γ3
relC1 − (λ∗)3

(∫ p1

p0

A2(p) dp+ C3

)
− g !ρ" (C1p+ C2) =

1

2
A3.

Collecting together (3.24), (3.25), and (3.26), an easy calculation reveals that unique
solvability of the zero mode problem is equivalent to

−g !ρ" (p1 − p0) /= (λ∗)3.

But this is just the statement λ∗ /= λ0, which is proved in Lemma 3.4. We have
therefore shown that the zero-mode problem has a unique solution.

Returning to the question of solvability of the full problem, we observe that, in
light of the previous analysis, it suffices to assume

A ∈ Y0 := (1 − P)Y = {B ∈ Y : PB = 0}

and to solve in the space

ϕ ∈ X0 := (1 − P)X = {φ ∈ X : Pφ = 0}.

In fact, this means that we may take d(ϕ) = 0.
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We shall approach the question of solvability incrementally. Fix ε > 0, and define
L(ε) : X0 → Y0 by

L(ε) = (ε − F1w(λ
∗, 0), ε− F2w(λ

∗, 0), −F3w(λ
∗, 0), −F4w(λ

∗, 0)).

First consider the approximate problem:

(3.27) L(ε)ϕ(ε) = A.

Claim 1. For a sequence of ε > 0 tending to 0, there exists a unique solution ϕ(ε)

to (3.27). To see this, note that by a method of continuity argument, the solvability
of (3.27) is equivalent to that of the equation

L̃(ε)ϕ(ε) = A,

where

L̃(ε)
i := L(ε)

i for i /= 3, L̃(ε)
3ϕ

(ε) := 2
)
a3ϕ(ε)

p

*
.

That is, we may safely ignore the zeroth-order term on the interface. Let ξ ∈ Cα
per(D)∩

C2+α
per (D1) ∩C2+α

per (D2) be any function that exhibits the following properties:

ξ|B = 0,
#
a3ξp

$
= −A3, ξ|T = −A4, and Pξ = 0.

Then, the solvability of (3.27) is equivalent to that of

(3.28) L̃(ε)ϕ̃(ε) = Ã,

where ϕ̃(ε) := ϕ(ε) − ξ, and

Ã := (A1 − L(ε)
1 ξ, A2 − L(ε)

2 ξ, 0, 0).

The Fredholm solvability of (3.28) follows from linear elliptic theory (cf. Theorem
A.2); we therefore need only to prove that the homogeneous problem associated with

L̃(ε) has no nontrivial solutions. Suppose that φ solves the homogeneous problem for
some fixed ε > 0. By evenness and the fact that Pφ = 0, we can expand φ in a cosine
series of the form

φ(q, p) =
∞∑

n=1

φn(p) cos (nq).

Applying the operator L̃(ε) to φ reveals that φn satisfies the eigenvalue problem

∂2pφn = (ε+ n2H2
p )φn,

#
a3∂pφn

$
= φn(p0) = φn(0) = 0.

This is a consequence of the fact that d(φn) = 0, as n ≥ 1. This equation can be
easily solved explicitly, and one can readily see that for generic ε small, there are no
nontrivial solutions for any n ≥ 1. We omit the details in the interest of brevity. The
first claim is proved.

We may therefore let εn be a positive sequence converging to 0 as in Claim 1, and
consider the corresponding sequence of solutions to (3.27), call them {ϕ(n)}.
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Claim 2. {ϕ(n)} is bounded uniformly in C1+α
per (D1) ∩ C1+α

per (D2). We argue by

contradiction. Suppose that {ϕ(n)} is not bounded uniformly. Possibly by passing to a
subsequence, we may suppose that ‖ϕ(n)‖C1+α

per (D1)
+‖ϕ(n)‖C1+α

per (D2)
→ ∞. Let φ(n) :=

ϕ(n)/(‖ϕ(n)‖C1+α
per (D1)

+‖ϕ(n)‖C1+α
per (D2)

). Thus {φ(n)} has unit C1+α
per (D1)∩C1+α

per (D2)-
norm, and, by linearity, is a solution to

L(εn)φ(n) =
A

‖ϕ(n)‖C1+α
per (D1)

+ ‖ϕ(n)‖C1+α
per (D2)

=: A(n).

Since A(n) converge to 0 in C1+α
per (D1) ∩ C1+α

per (D2), we may extract a subsequence

{φ(nk)} converging to φ ∈ C2(D \ I) ∩ C1(D1) ∩ C1(D2), a classical solution of

Fw(λ
∗, 0)φ = 0.

This is achieved by using Schauder-type estimates for the approximate problem and
the compactness of the embedding of Ck+α into Ck on bounded domains. From
Lemma 3.5 it follows that φ = νϕ∗ for some ν ∈ R. Finally, we note that it must be
the case that ‖φ‖C1+α

per (D1)
+ ‖φ‖C1+α

per (D2)
= 1, and hence ν /= 0.

Recall that, by the definition of ϕ(n), we have

a3ϕ∗L(εn)ϕ(n) = a3ϕ∗A.

Integrating over D, we obtain

(
a3ϕ∗,A1

)
L2(D1)

+
(
a3ϕ∗,A2

)
L2(D2)

=

∫∫

D1

a3ϕ∗(εnφ
(n) − φ(n)pp − H2

pφ
(n)
qq ) dq dp

+

∫∫

D2

a3ϕ∗(εnϕ
(n) − ϕ(n)

pp − H2
pφ

(n)
qq ) dq dp

= εn

∫∫

D1∪D2

a3ϕ∗ϕ(n) dq dp

+

∫

I

()
a3ϕ(n)ϕ∗

p

*
−

)
a3ϕ(n)

p ϕ∗
*)

dq

+

∫

T
a3ϕ∗

pϕ
(n) dq

= εn

∫∫

D1∪D2

a3ϕ∗ϕ(n) dq dp

− 1

2

∫

I
a3A3ϕ

∗ dq −
∫

T
a3A4ϕ

∗
p dq.

By the orthogonality condition (3.20), all the terms involving A cancel, leaving only
the statement that

∫∫

D1∪D2

a3ϕ∗ϕ(n) dq dp = 0 for all n ≥ 1.

As an immediate consequence, we have

∫∫

D1∪D2

a3ϕ∗φdq dp = 0,
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which contradicts the fact that φ = νϕ∗. This completes the proof of the second
claim.

Up to this point we have shown that there exists solutions {ϕ(n)} to (3.27) for a
sequence of εn → 0 that are uniformly bounded in C1+α. By passing to a subsequence,
we have that there exists a weak solution to the original problem Fw(λ∗, 0)ϕ = A.
Elliptic regularity ensures that the weak solution is actually strong, and, in particular,
is an element of X (cf. Theorem A.2). It follows that A is in the range. The proof of
the lemma is complete.

Lemma 3.7 (transversality). The following transversality condition holds:

(3.29) Fλw(λ
∗, 0)ϕ∗ /∈ R(Fw(λ

∗, 0)).

Here ϕ∗ denotes a generator of N (Fw(λ∗, 0)).
Proof. In view of Lemma 3.6, it suffices to show that A := Fλw(λ∗, 0)ϕ∗ fails to

satisfy the orthogonality condition (3.20). That is, if we put

Ξ :=

∫∫

D1

a3A1ϕ
∗ dq dp+

∫∫

D2

a3A2ϕ
∗ dq dp+

1

2

∫

I
A3ϕ

∗ dq +

∫

T
a3A4ϕ

∗
p dq,

we must prove Ξ /= 0. To do this, we first compute

F1λw(λ
∗, 0)ϕ∗ = 0,

F2λw(λ
∗, 0)ϕ∗ = − 2

(λ∗)3
ϕ∗
qq ,

F3λw(λ
∗, 0)ϕ∗ =

(
−3(λ∗)2(ϕ∗

p)
(2)

)

I
,

F4λw(λ
∗, 0)ϕ∗ = 0.

By the equation satisfied by ϕ∗, we see that

−∂2qϕ∗ = ϕ∗ = a2∂2pϕ
∗.

Thus,

(λ∗)2(ϕ∗ϕ∗
p)p = (λ∗)2(ϕ∗

p)
2 + (ϕ∗)2 in D2.

From this we deduce

(3.30)

∫∫

D2

a3A2ϕ
∗ dq dp = 2

∫∫

D2

(ϕ∗)2 dq dp,

and

1

2

∫

I
A3ϕ

∗ dq = −3(λ∗)2

2

∫

I
(ϕ∗

p)
(2)ϕ∗ dq

= −3(λ∗)2

2

∫∫

D2

(ϕ∗
p)

2 dq dp − 3

2

∫∫

D2

(ϕ∗)2 dq dp.

(3.31)

In light of (3.30)–(3.31) and the calculated values of the remaining components of A,

(3.32) Ξ =
1

2

∫∫

D2

(ϕ∗)2 dq dp− 3

2
(λ∗)2

∫∫

D2

(ϕ∗
p)

2 dq dp.
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Recall that (ϕ∗)(2) takes the form

ϕ∗(p) = µ sinh

(
p− p0
λ∗

)
in D2

for an explicit constant µ. Hence,

(λ∗)2ϕ∗
p(p)

2 = µ2 cosh2
(
p− p0
λ∗

)
in D2,

and thus

ϕ∗(p)2 − 3(λ∗)2ϕ∗
p(p)

2 = −µ2

(
1 + cosh2

(
p− p0
λ∗

))
in D2.

From this we conclude Ξ < 0.
With these lemmas, Theorem 3.1 becomes a simple consequence of the Crandall–

Rabinowitz bifurcation theorem.
Proof of Theorem 3.1. Assuming (3.2) and (ILBC), we are justified in defining

F and λ∗ as in (3.18) by Lemma 3.2 and Lemma 3.3, respectively. To complete the
proof, we need only confirm that the hypotheses of Theorem A.1 are satisfied. But
parts (i) and (ii) of the Crandall–Rabinowitz theorem are obviously true. Lemma 3.5
and Lemma 3.6 together give (iii), while (iv) was proved in Lemma 3.7.

4. Local bifurcation with vorticity in the atmosphere. Next we consider
the case where the density remains constant in each region, but we assume that the
air region has a nontrivial vorticity strength function. The height equation for this
scenario is

(4.1)






(1 + h2
q)hpp + hqqh2

p − 2hqhphpq = −γ(−p)h3
p in D1 ∪ D2,

%
1 + h2

q

h2
p

&
+ 2g !ρ" h− Q = 0 on p = p1,

h = 0 on p = p0,
h = "+ d(h) on p = 0.

Written in the new variables, the relative circulation becomes

Γrel =
1

L

∫ L/2

−L/2

1 + h2
q

hp
dq for p1 ≤ p ≤ 0.

Our main theorem is the following.
Theorem 4.1 (local bifurcation with atmospheric vorticity). For given p1, ",

and γ, define Γrel by

(4.2) ∂p(Γrel(p)
2) = 2γ(−p), " =

∫ 0

p1

dp

Γrel(p)
.

If the local bifurcation condition holds (cf. Definition 4.5), then there exists a contin-
uous curve of nonlaminar solutions to the height equation for irrotational flow in the
water and vorticity strength function γ in the air (4.1)

C′′
loc = {(Q(s), h(s)) ∈ R × X : |s| < ε}
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for ε > 0 sufficiently small, such that (Q(0), h(0)) = (Q(λ∗), H(λ∗)), a laminar solu-
tion with (pseudo) relative circulation Γrel, and, in a sufficiently small neighborhood
of (Q(λ∗), H(λ∗)) in R × X, C′

loc comprises all nonlaminar solutions.
Remark 5. As in Theorem 3.1, we can interpret the above statement in terms of

the Eulerian formulation. The resulting statement is as follows. Fix the period to be
2π, (pseudo) volumetric mass flux in the air region p1, lid height ", and with vorticity
strength function γ and define Γrel by (4.2). If the local bifurcation condition holds,
then there is a corresponding continuous curve

Cloc = {(Q(s), u(s), v(s), #(s), P (s), η(s)) : |s| < ε}

of small amplitude solutions to the Eulerian problem with an irrotational water region
and a vorticity strength function γ in the air region, which likewise captures all
nonlaminar solutions in a sufficiently small neighborhood of the point of bifurcation.

Lemma 4.6 provides an explicit size condition (4.9) under which the local bifur-
cation condition holds. We have left it in the more abstract form here in order to
give the most general statement. On the other hand, the compatibility condition is,
in fact, necessary for the existence of laminar solutions.

4.1. Laminar flows. Consider the laminar flow problem where we seek a solu-
tion to (4.1) with the ansatz h(q, p) = H(p). Then the PDE simplifies to the following:

(4.3)






Hpp = 0 in (p0, p1),

Hpp = −γ(−p)H3
p in (p1, 0),#

H−2
p

$
+ 2g !ρ"H − Q = 0 on p = p1,

H(0) = "+ d(H),

H(p0) = 0.

Evaluating the relative circulation gives

H−1
p = Γrel in [p1, 0].

Again, this is explicitly solvable, but there are some compatibility conditions that
are necessary to ensure continuity across the interface.

Lemma 4.2 (laminar lemma). If the compatibility condition (4.2) is satisfied,
then there exists a one-parameter family of solutions {(H(·;λ), Q(λ)) : λ > 0} to
the laminar flow equation (4.3) with Hp > 0, where each member of the family has
prescribed relative circulation Γrel. It has the explicit form

(4.4) H(p;λ) =






∫ p

p1

dr

Γrel(r)
+

p1 − p0
λ

, p1 < p < 0,

p − p0
λ

, p0 < p < p1

and

(4.5) Q(λ) =
2g !ρ" (p1 − p0)

λ
+ Γrel(p1)

2 − λ2.

The depth of the fluid at parameter value λ is

(4.6) d(λ) =
λ

p1 − p0
,
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and the width of the corresponding channel is

(4.7) W (λ) := "+ d(λ) = "+
λ

p1 − p0
.

Proof. Examining the ODE in the air region reveals that

∂p

(
1

2H2
p

)
= γ for p ∈ (p1, 0).

This implies directly that (Γ2
rel)

′ = 2γ. Integrating the equation H−1
p = Γrel, we have

H(1)(p) =

∫ p

p1

dr

Γrel(r)
+ C

for some constants C. Since Hpp vanishes in the water region, and H(p0) = 0,

H(2)(p) =
p − p0
λ

for some constant λ > 0. Continuity at the interface then implies that C = (p1−p0)/λ.
Using this and the fact that d(H) = H(p1), the condition on T becomes

" =

∫ 0

p1

dr

Γrel(r)
,

which is the second part of the compatibility condition (4.2).
Last, we use the jump condition on the interface to determine Q as a function of

λ:

Q =
#
H−2

p

$
+ 2g !ρ"H(p1) = Γrel(p1)

2 − λ2 + 2g !ρ" p1 − p0
λ

,

which is (4.5).
Remark 6. The dependence of Q on λ is essentially unchanged from the ideal

case (3.5). In particular, it is concave with a unique maximum occurring at λ0 as
defined in (3.8).

4.2. Linearized problem. Proceeding as before, we seek to linearize the full
height equation around the curve of laminar flows. For a fixed λ > 0, this gives

(4.8)






(a3mp)p + (amq)q = 0 in D1 ∪ D2,#
a3mp

$
= g !ρ"m on p = p1,

m = 0 on p = p0,

m− d(m) = 0 on p = 0.

Here we are again using the convention

a = a(p;λ) = Hp(p;λ)
−1 =

{
Γrel(p), p1 < p < 0,
λ, p0 < p < p1.

Note that the linearization of the circulation identity is

1

2π

∫ π

−π
amp dq = 0 for p1 < p < 0,
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and hence each of the solutions of the linearized problem will have no relative circu-
lation in the air region.

We seek solutions with the ansatz m(q, p) = M(p) cos (nq). First consider the
case where n = 0, i.e., there is no q-dependence. Then






(a3Mp)p = 0 in D1,

Mpp = 0 in D2,#
a3Mp

$
= g !ρ"M on p = p1,

M = 0 on p = p0,

M − d(M) = 0 on p = 0.

Since M is linear in D2, the boundary condition at the bottom implies that it takes
the form

M (2)(p) =
p− p0
p1 − p0

M(p1), p ∈ [p0, p1].

On the other hand, since M(0) = d(M) = M(p1), we must have that Mp vanishes at

least once in the interior of D1. Since a3Mp is constant in D1, we conclude that M
(1)
p

must, in fact, be identically zero. Thus the jump boundary condition states

− λ3

p1 − p0
M(p1) = g !ρ"M(p1).

Just as in the irrotational case, we see that there can be a zero-mode solution if and
only if λ3 = −g !ρ" (p1 − p0), that is, λ = λ0 (cf. Lemma 3.3).

If we take n ≥ 1, then (4.8) becomes

(P ′
n)






(a3Mp)p = n2aM in (p0, p1) ∪ (p1, 0),#
a3λMp

$
= g !ρ"M on p = p1,

M = 0 on p = p0,

M = 0 on p = 0.

Notice that periodicity implies that d(M) = 0.
We shall approach the problem of finding solutions to (P ′

n) using a variational
method. Define the Rayleigh quotient R by

R(ϕ;λ) :=
g !ρ"ϕ(p1)2 +

∫ 0
p0

a3ϕ2
p dp

∫ 0
p0

aϕ2 dp
, λ > 0, ϕ ∈ A ,

where the admissible set

A := {φ ∈ L2([p0, 0]) ∩ H1([p0, p1)) ∩ H1((p1, 0]) : φ(0) = φ(p1) = 0}.

A straightforward argument then gives the following lemma.
Lemma 4.3. If for fixed λ > 0, ϕ is a critical point of R(·;λ) and R(ϕ;λ) = −n2

for some n ≥ 1, then ϕ solves (P ′
n) for this value of n.

Using very basic estimates, we can show that for λ sufficiently large, minA R(·;λ)
will be greater than −1. More generally, we can show that the minimum goes to −∞
as λ→ +∞. This is the content of the next lemma.

D
ow

nl
oa

de
d 

11
/2

2/
13

 to
 1

28
.1

22
.8

1.
38

. R
ed

ist
rib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls/
oj

sa
.p

hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2210 SAMUEL WALSH, OLIVER BÜHLER, AND JALAL SHATAH

Lemma 4.4. Let amin be the minimum value of a on [p1, 0] (which does not depend
on λ). Then, for each n ≥ 1, if

λ2 > a2min − 1

2n
g !ρ" ,

we have R(ϕ;λ) > −n2 for every ϕ ∈ A .
Proof. Fix any λ as in the hypothesis and let ϕ ∈ A be given. Then

∫ 0

p1

(
a3ϕ2

p + n2aϕ2
)
dp ≥ amin

∫ 0

p1

(
(aminϕp)

2 + (nϕ)2
)
dp

≥ 2na2min

∫ 0

p1

ϕpϕdp = −2na2minϕ(p1)
2.

On the other hand, since a(2) = λ,
∫ p1

p0

(
a3ϕ2

p + n2aϕ2
)
dp ≥ 2nλ2ϕ(p1)

2.

Summing these together and recalling how we chose λ, we find
∫ 0

p0

(
a3ϕ2

p + n2aϕ2
)
dp ≥ (2nλ2 − 2na2min)ϕ(p1)

2 > −g !ρ"ϕ(p1)2.

Rearranging terms, this implies that R(ϕ;λ) > −n2.
Let us define

ν(λ) := min
ϕ∈A
ϕ )≡0

R(ϕ;λ).

Then, if we can show that ν(λ∗n) = −n2 for some λ∗n, Lemma 4.3 guarantees the
existence of a solution to (P ′

n), and thereby a 2π/n-periodic solution to the linearized
problem. We are most interested in showing that −1 is in the range of ν. The
preceding lemma provides a lower bound for ν when λ is sufficiently large. In order to
guarantee that −1 is in the range of ν, therefore, we need only verify that ν(λ) < −1
for some positive λ. This will not be true in general, and so we are forced to make it
a hypothesis.

Definition 4.5. We say that the local bifurcation condition is satisfied provided
that

(LBC) inf
λ>0

ν(λ) < −1,

or, equivalently, if

(LBC′) there exists a nontrivial solution to the linearized problem (P ′
n) for n = 1.

These are abstract conditions that are both necessary and sufficient for local
bifurcation. One way to derive an explicit sufficient condition is to require that
R(ϕ; ε) < −1 for some ε > 0 and a conveniently chosen ϕ ∈ A . This is the approach
of the next lemma.

Lemma 4.6 (size condition). Suppose that the prescribed circulation Γrel, the
pseudo-volumetric mass flux in the air region p1, and the density jump !ρ" collectively
satisfy the following size condition:

(4.9) g !ρ" p21 +
∫ 0

p1

(
Γrel(p)

3 + p2Γrel(p)
)
dp < 0.

Then (LBC) holds.
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Proof. This can be seen easily by taking

ϕ(p) :=

{
p/p1, p1 ≤ p ≤ 0,
(p − p1)/(p1 − p0), p0 ≤ p ≤ p1

and evaluating limλ→0 R(ϕ;λ). Here we have made use of the fact that a(1) = Γrel to
express the size condition only in terms of prescribed quantities.

Lemma 4.7 (monotonicity of ν). If ν(λ) < 0, then dν(λ)/dλ > 0.
Proof. Let Lϕ := −(a3ϕp)p. Then for each λ, let ϕ ∈ A solve the problem






Lϕ = ν(λ)aϕ in (p0, p1) ∪ (p1, 0),#
a3ϕp

$
= g !ρ"ϕ on I,

ϕ = 0 on T ∪ B.

From this we compute





Lϕ̇ = (3a2ȧϕp)p + ν̇aϕ+ νȧϕ+ νaϕ̇ in (p0, p1) ∪ (p1, 0),#
a3ϕ̇p

$
+

#
3a2ȧϕ

$
= g !ρ" ϕ̇ on I,

ϕ̇ = 0 on T ∪ B,

where a dot denotes differentiation with respect to λ. Letting (·, ·) be the standard
L2-inner product, we have

(Lϕ̇, ϕ) − (Lϕ, ϕ̇) = ν̇(aϕ, ϕ) + ν(ȧϕ, ϕ) +
(
(3a2ȧϕp)p, ϕ

)
.

Upon integrating the last term by parts, we ultimately find that

(Lϕ̇, ϕ) − (Lϕ, ϕ̇) = ν̇(aϕ, ϕ) + ν(ȧϕ, ϕ) − 3(a2ȧϕp, ϕp)−
#
3a2ȧϕp

$
ϕ(p1).

However, if we simply compute the difference using integration by parts, we see
that

(Lϕ̇, ϕ) − (Lϕ, ϕ̇) =
#
a3ϕ̇p

$
ϕ(p1) −

#
a3ϕp

$
ϕ̇(p1).

Equating the last two lines and exploiting the jump conditions satisfied by ϕ and ϕ̇,
we obtain the following identity:

ν̇(aϕ, ϕ) + ν(ȧϕ, ϕ) = 3(a2ȧϕp, ϕp).

Observe that a > 0 and ȧ ≥ 0 (in fact, ȧ(2) = 1 and ȧ(1) = 0), and hence the
right-hand side above is positive. If ν is negative, it must then be the case that
ν̇ > 0.

Lemma 4.8 (existence of the minimizer). Suppose that the size condition (4.9)
holds. Then there exists a unique value λ∗ > 0 such that ν(λ∗) = −1. Equivalently,
there is a unique value of λ for which there is a nontrivial solution to (4.8) with
the ansatz m(q, p) = M(p) cos q. Moreover, Q is an invertible function of λ in a
neighborhood of λ∗.

Proof. From Lemma 4.4, we have that ν(λ) > −1 for λ sufficiently large, while
from Lemma 4.6 we know that ν(λ) < −1 for λ sufficiently small. By continuity,
there exists λ∗ such that ν(λ∗) = −1. Moreover, the monotonicity of ν established in
Lemma 4.7 implies that λ∗ is unique.
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Next, since Q is a concave function of λ according to (4.5), it will be a bijection
locally so long as λ∗ does not coincide with the unique critical point λ0 of Q. Recall
that λ0 satisfies

λ30 = −g !ρ" (p1 − p0),

or, put more suggestively,
∫ p1

p0

a−3
λ0

dp = λ−3
0 (p1 − p0) = − 1

g !ρ" .

Then, for any ϕ ∈ A , we have the estimate

ϕ(p1)
2 =

(∫ p1

p0

ϕp dp

)2

≤
(∫ p1

p0

a3λ0
ϕ2
p dp

)(∫ p1

p0

a−3
λ0

dp

)

= − 1

g !ρ"

∫ p1

p0

a3λ0
ϕ2
p dp.

It follows that

0 ≤ g !ρ"ϕ(p1)2 +
∫ p1

p0

a3λ0
ϕ2
p dp ≤ g !ρ"ϕ(p1)2 +

∫ 0

p0

a3λ0
ϕ2
p dp.

As this implies R(ϕ;λ0) ≥ 0 for all ϕ ∈ A , we conclude that µ(λ0) /= −1, and hence
λ∗ /= λ0. This completes the proof.

4.3. Proof of local bifurcation. Let us set h(q, p) = H(p;λ) + m(q, p) and
Q = Q(λ). The equation satisfied by m is thus

F(λ,m) = 0,

where F = (F1,F2,F3,F4) : R× X → Y is defined by

F1(λ,w) := (1 + (w(1)
q )2)(w(1)

pp +Hpp) + w(1)
qq (w

(1)
p +Hp)

2

− 2w(1)
q (Hp + w(1)

p )w(1)
pq + γ(Hp + w(1)

p )3,

F2(λ,w) := (1 + (w(2)
q )2)(w(2)

pp +Hpp) + w(2)
qq (w

(2)
p +Hp)

2

− 2w(2)
q (Hp + w(2)

p )w(2)
pq + γ(Hp + w(2)

p )3,

F3(λ,w) := −
'

1 + w2
q

(Hp + wp)
2

(
− 2g !ρ" (w +H)|I +Q,

F4(λ,w) := (w − d(w) +H − d(H) − ") |T .

(4.10)

Here, the Banach spaces X and Y = Y1 × Y2 × Y3 × Y4 are

X := {h ∈ C2+α
per (D \ I) ∩ Cα

per(D) : h(p0) = 0, h(i) ∈ C1+α
per (Di)},

Y1 := C2+α
per (D1 \ I) ∩ Cα

per(D1), Y2 := C2+α
per (D2 \ I) ∩ Cα

per(D2),

Y3 := Cα
per(I), Y4 := C2+α

per (T ).

For later reference, we now record the Fréchet derivative of F with respect to w
at (λ∗, 0):

Fiw(λ
∗, 0)ϕ =

(
∂2p +H2

p∂
2
q + 3γH2

p∂p
)
ϕ(i) for i = 1, 2,

F3w(λ
∗, 0)ϕ = 2

#
H−3

p ϕp

$
− 2g !ρ"ϕ,

F4w(λ
∗, 0)ϕ = (ϕ− d(ϕ))T .

(4.11)
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Lemma 4.9 (nullspace). The null space of Fw(λ∗, 0) is one-dimensional.
Proof. Let ϕ be an element of the nullspace. By the evenness built into the

definition of X , we may expand ϕ via a cosine series:

ϕ(q, p) =
∞∑

n=0

ϕn(p) cos (nq).

It follows that

Fw(λ
∗, 0)(ϕn(p) cos (nq)) = 0, n ≥ 0.

Equivalently, we must have that ϕn solves (P ′
n). By Lemma 4.8 and the definition of

λ∗, we know that ϕ1 is nontrivial. We have already seen that there are no nontrivial
solutions of (P ′

n) with n = 0, and hence ϕ0 must vanish identically. If ϕn /≡ 0 for some
n > 1, then it belongs to the admissible set A and hence R(ϕn;λ∗) = −n2 < −1.
This contradicts the definition of λ∗ as the minimizer. Thus all the ϕn with n > 1
vanish identically. We conclude that the nullspace is generated by ϕ1 = ϕ∗.

Lemma 4.10 (range). A = (A1,A2,A3,A4,A5) ∈ Y is in the range of Fw(λ∗, 0)
if and only if it satisfies the following orthogonality condition:

(4.12)

∫∫

D1

a3A1ϕ
∗ dq dp+

∫∫

D2

a3A2ϕ
∗ dq dp+

1

2

∫

I
A3ϕ

∗ dq+

∫

T
a3A4ϕ

∗
p dq = 0.

Proof. First assume that A is in the range of Fw(λ∗, 0). Then there exists ϕ ∈ X
such that Fw(λ∗, 0)ϕ = A. Writing Fiw(λ∗, 0) for i = 1, 2 in self-adjoint form, we
have

a−3∂p
(
a3∂pϕ

(i)
)
+ a−2∂2qϕ

(i) = A(i), i = 1, 2.

Thus

(
a3ϕ∗,A1

)
L2(D1)

+
(
a3ϕ∗,A2

)
L2(D2)

=

∫∫

D1

(
(a3ϕp)p + aϕqq

)
ϕ∗ dq dp

+

∫∫

D2

(
(a3ϕp)p + aϕqq

)
ϕ∗ dq dp

= −
∫∫

D1

a3ϕpϕ
∗
p dq dp

−
∫∫

D2

a3ϕpϕ
∗
p dq dp−

∫

I

#
a3φpϕ

∗$ dq

+

∫∫

D1∪D2

aϕϕ∗
qq dq dp.

Here we have exploited the periodicity and the fact that ϕ∗ vanishes identically on
T . This is precisely what we have in (3.21), and, since the conditions on the interface
are unchanged, proceeding as in that proof shows that (4.12) is necessary.

The sufficiency of (4.12) follows from a straightforward generalization of the ar-
gument given in Lemma 3.6, which we omit.

Lemma 4.11 (transversality). The following transversality condition holds:

(4.13) Fλw(λ
∗, 0)ϕ∗ /∈ R(Fw(λ

∗, 0)).

Here ϕ∗ denotes a generator of N (Fw(λ∗, 0)).
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Proof. In view of Lemma 3.6, it suffices to show that A := Fλw(λ∗, 0)ϕ∗ fails to
satisfy the orthogonality condition (4.12). That is, if we put

Ξ :=

∫∫

D1

a3A1ϕ
∗ dq dp+

∫∫

D2

a3A2ϕ
∗ dq dp+

1

2

∫

I
A3ϕ

∗ dq +

∫

T
a3A4ϕ

∗
p dq,

we must prove Ξ /= 0. To do this, we first compute

F1λw(λ
∗, 0)ϕ∗ = 0,

F2λw(λ
∗, 0)ϕ∗ = − 2

(λ∗)3
ϕ∗
qq − 6γ

(λ∗)3
ϕ∗
p,

F3λw(λ
∗, 0)ϕ∗ =

(
−3(λ∗)2(ϕ∗

p)
(2)

)

I
,

F4λw(λ
∗, 0)ϕ∗ = 0.

By the equation satisfied by ϕ∗ (P ′
n), we see that

−∂2qϕ∗ = ϕ∗ = a−1∂p(a
3∂pϕ

∗).

Thus,

(λ∗)2(ϕ∗ϕ∗
p)p = (λ∗)2(ϕ∗

p)
2 + (ϕ∗)2 in D2.

From this we deduce
∫∫

D2

a3A2ϕ
∗ dq dp = 2

∫∫

D2

(ϕ∗)2 dq dp− 6γ

∫∫

D2

ϕ∗ϕ∗
p dq dp

= 2

∫∫

D2

(ϕ∗)2 dq dp
(4.14)

and

1

2

∫

I
A3ϕ

∗ dq = −3(λ∗)2

2

∫

I
(ϕ∗

p)
(2)ϕ∗ dq

= −3(λ∗)2

2

∫∫

D2

(ϕ∗
p)

2 dq dp − 3

2

∫∫

D2

(ϕ∗)2 dq dp.

(4.15)

In light of (4.14)–(4.15) and the calculated values of the remaining components of A,

Ξ =
1

2

∫∫

D2

(ϕ∗)2 dq dp− 3

2
(λ∗)2

∫∫

D2

(ϕ∗
p)

2 dq dp.

Since the equation satisfied by (ϕ∗)(2) is the same as for the irrotational atmosphere
case treated in the previous section, we know that Ξ < 0 by the same argument as
Lemma 3.7 (cf. (3.32)). This completes the proof of the lemma.

Proof of Theorem 4.1. Under the assumption that the compatibility condition
(4.2) and the local bifurcation condition (LBC) hold, Lemmas 4.9–4.11 verify that
the hypotheses for Theorem A.1 are satisfied. The conclusions of Theorem 4.1 follow
immediately.
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5. Local bifurcation with an unbounded irrotational atmosphere. In
this section and the next we consider the situation where the atmosphere region Ω(1)

has infinite vertical extent. We begin by supposing that the flow in both the water
and air are irrotational. In the moving frame, the governing equations for the stream
function formulation are as in (2.2) (taking ρ(i) to be constants, d = 1, and γ ≡ 0),
with the only difference manifesting in the boundary condition at infinity:

(5.1)






∆ψ = 0 in Ω,#
|∇ψ|2

$
+ 2g !ρ" (η + 1)− Q = 0 on y = η(x),

ψ = 0 on y = η(x),

ψ = −p0 on y = −1,

∇⊥ψ → (−λ, 0) uniformly in x as y → ∞.

Here λ =
√
ρ(1)(U − c) is the speed of the undisturbed wind in the co-moving frame

multiplied by the square root of the air density.
The change in the domain necessitates a change in the spaces in which we seek

solutions. In particular, we must specify the behavior as y → ∞. As can be seen in
(5.1), for the irrotational regime we are interested the case where (u, v) → (U, 0) for
some constant U < c as y → ∞, which is equivalent to requiring that ∇⊥ψ limits to
(−λ, 0) for some positive constant λ. With that in mind, we define

S0 := {(u, v, #, η) ∈ S : ∃U < c, (u, v) → (U, 0) uniformly as y → ∞},
S ′

0 := {(Q,ψ, η) ∈ S ′ : ∃λ > 0,∇⊥ψ → (−λ, 0) uniformly as y → ∞}.

Theorem 5.1 (local bifurcation with unbounded irrotational atmosphere). Sup-
pose that the volumetric mass flux in the water region p0 and the density jump !ρ"
satisfy the LBC

(5.2) p20 coth 1 + g !ρ" > 0,

and then the following statements are true.
(i) There exists a continuous curve of nonlaminar solutions to the stream func-

tion equation for irrotational flow in the air and water, and unbounded atmosphere
region (5.1)

C′
loc = {(Q(s), ψ(s), η(s)) ∈ S ′

0 : |s| < ε}

for ε > 0 sufficiently small, such that (Q(0), ψ(0)) = (Q∗,Ψ∗
0), and, in a sufficiently

small neighborhood of (Q∗,Ψ∗
0) in R×X, C′

loc comprises all nonlaminar solutions. In
particular, we have

η(s)(·) = s cos (·) + o(s) in C2+α
per (R).

(ii) There is a corresponding continuous curve

Cloc = {(Q(s), u(s), v(s), #(s), P (s), η(s)) ∈ S0 : |s| < ε}

of small amplitude solutions to the Eulerian problem which likewise captures all non-
laminar solutions in a sufficiently small neighborhood of the point of bifurcation.
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2216 SAMUEL WALSH, OLIVER BÜHLER, AND JALAL SHATAH

Unlike for the explicit size condition (4.9) obtained in the rotational lidded regime,
(5.2) is both necessary and sufficient. We caution, however, that (5.2) is stated in
dimensional variables, and so some additional work must be done before attempting
to draw physical conclusions. For instance, note that we are taking d = 1, effectively
setting the length scale of the system to match the depth of the ocean (which is
typically greater than 3000 meters), and constructing minimally 2π-periodic waves.
Clearly such waves are not typical.

A simple generalization of Theorem 5.1 can be made where we allow an arbitrary
depth d > 0 and perturbations of the form 2π/k, k ≥ 1. Let k∗ be the smallest
natural number such that

(5.3) p20k
∗ coth (k∗d) + gd2 !ρ" > 0.

Then the conclusions of Theorem 5.1 hold, with the only modification being that the
nonlaminar solutions are of the form

η(s)(x) = s cos (k∗x) + o(s)

and the depth of the water region is d. Notice that k∗ = 1 and d = 1 if and only if
(5.2) holds.

Remark 7. It is natural to ask how this theorem compares to Theorem 3.1.
From a physical standpoint, it is intuitive that solutions to the unbounded model
that decay at infinity can approximate the solutions of the type we constructed in
section 3. However, the actual bifurcation arguments are quite different; in particular,
the parameters of bifurcation do not agree. Thus the hypotheses of the theorems,
though superficially similar, are not directly relatable.

5.1. The transformed problem. At a mathematical level, the major differ-
ence in going from the lidded to the unbounded case is the loss of compactness in the
domain. If we were to attempt to use semi-Lagrangian coordinates and the height
equation formulation, we would not expect the operator F to be Fredholm. This is
a substantial technical obstacle, but one that has been grappled with extensively in
the literature of traveling waves in oceans of infinite depth (cf., e.g., [13, 14]) and
solitary waves (cf., e.g., [4]). Typically, the strategy is to rely on concentration com-
pactness arguments or a Nash–Moser iteration scheme. But aside from the inherent
complexities of these tools, were we to attempt this approach, we would still be forced
to require the absence of stagnation points and critical layers in order to justify the
Dubreil-Jacotin transformation. This an especially restrictive assumption in the un-
bounded atmosphere regime. To see why, consider flows with a constant nonzero
vorticity in the air region, which is the subject of the next section. A laminar flow
(U, 0) of this type will necessarily satisfy |U | → ∞ as y → ∞. Thus, depending on
the sign of the vorticity, critical layers are expected, though they are neutered. (See
the remark following Lemma 6.2.)

Rather than adopting semi-Lagrangian coordinates, therefore, we shall employ
a more robust (though less elegant) transformation to fix the domain. Let Ω0 =

Ω(1)
0 ∪ Ω(2)

0 , where

Ω(1)
0 = [−π, π] × [0,∞), Ω(2)

0 = [−π, π] × [−1, 0].

Suppose η(ε, ·) is a one-parameter family of free surfaces with η(0, ·) ≡ 0. Then we
may take Ω(ε) and ψ(ε, ·) to be the corresponding families of fluid domains and stream
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functions, respectively. Let T = T (ε, x, y) : Ω(ε) → Ω0 be a smooth diffeomorphism
mapping Ω(ε) to Ω0 for each ε ≥ 0 such that

T (0, ·) = ιΩ0 (the identity map on Ω0),

T (ε, x, η(x)) = (x, 0),

T (ε, x,−1) = −1,

[T (ε, ·)− ιΩ(ε)] → 0 as y → ∞, uniformly in x and ε.

Any such map will serve the purpose of fixing the domain, but for simplicity we
make a particular choice. Suppose that in a neighborhood of the x-axis, T is just the
flattening map:

T1(ε, x, y) := π1(x, y) := x,

T2(ε, x, y) :=
y − η(ε, x)
1 + η(ε, x)

χ(ε, y) + y(1 − χ(ε, y)),
(5.4)

where χ is a fixed, smooth cutoff function with support on {(x, y) : y < η(ε, x)+2} and
chosen so that T (ε, ·) is a diffeomorphism. Because we are fixing a representation for
T , the only unknowns in the problem are ψ, η, and Q. In particular, T is determined
entirely by η. We remark that this map has been the basis for a number of studies
of water waves. To reference only the most immediately relevant results, we point
out that Wahlén, Ehrström, and co-authors rely on it in their investigations of steady
waves with critical layers (cf. [22, 12, 11]).

For notational convenience, we denote the inverse of T (ε, ·) by S(ε, ·). We shall
also use the convention that the coordinates in Ω0 are in the variables (x̄, ȳ), while
the unbarred variables indicate coordinates in Ω(ε), ε /= 0.

Define the transformed stream function Ψ by the relation

ψ(ε, ·) = [Ψ(ε, ·)] ◦ T (ε, ·),

or, equivalently,

(5.5) Ψ(ε, ·) := [ψ(ε, ·)] ◦ S(ε, ·).

We shall suppose that Ψ(0, x̄, ȳ) = Ψ0(ȳ), meaning that the unperturbed flow is
laminar.

Let ∂i denote partial differentiation with respect to the ith physical variable for
i = 1, 2, and for any function f of two variables, let f,i := ∂if . Then an elementary
computation confirms that −∆ψ(ε, ·) = γ(ψ) in Ω(ε) if and only if Ψ(ε, ·) satisfies the
following equation in Ω0:

(5.6) E(η)Ψ := Aij∂i∂jΨ +Bi∂iΨ + γ(Ψ) = 0 in Ω0 for all ε.

Here we are adopting the summation convention over repeated indices, γ represents
the vorticity strength function for the flow (γ = 0 for irrotational flow), and

Aij = Aij(η) := [(∂kTi)(ε, ·)(∂kTj)(ε, ·)] ◦ S(ε, ·),
Bi = Bi(η) := [(∂j∂jTi)(ε, ·)] ◦ S(ε, ·).

(5.7)

Note that are we stating that E depends on η, while only T occurs above. This is
valid because T is determined uniquely by η in view of (5.4).
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The jump condition on the boundary in (5.1) can likewise be reformulated in
terms of Ψ, resulting in

(5.8)
#
(Cij∂iΨ)2

$
+ 2g !ρ"H − Q = 0 on ȳ = 0,

where H(ε, x̄, ȳ) := S2(ε, x̄, ȳ) − S2(ε, x̄,−1) is the height above the ocean bed in the
terms of the coordinates (x̄, ȳ), and

(5.9) Cij = Cij(η) := [(∂jTi)(ε, ·)] ◦ S(ε, ·).

The Dirichlet conditions for Ψ derive from those for ψ and the definition of T :

(5.10)

{
Ψ = −p0 on ȳ = −1,
Ψ = 0 on ȳ = 0.

Last, the Neumann boundary condition at y = +∞ translates to the same con-
dition for Ψ, since we have that T asymptotically approaches the identity:

(5.11) ∇⊥Ψ → (−λ, 0) as ȳ → ∞ uniformly in x̄ and ε.

In summary, we find that there exists a nonlaminar solution to (ψ, η,Q) to
(5.1) provided that there exists (η, λ,Q) for which there are nontrivial solutions
(Ψ, H,Q(λ)) to (5.6)–(5.11). To make the latter problem tractable, we suppose that
there is a unique solution Ψ for given (η, λ). This is valid since, when η = 0, T = ιΩ0

and thus E(λ, 0) = ∆. It follows that the operator is an isomorphism for ε in a
neighborhood of 0. Explicitly, we define Ψ(1) = Ψ(1)(λ, η) to be the solution of

(5.12)






E(λ, η)Ψ(1) = 0 in Ω(1)
0 ,

Ψ(1) = 0 on ȳ = 0,
∇⊥Ψ(1) → (−λ, 0) as y → ∞ uniformly in x̄

and define Ψ(2) = Ψ(2)(λ, η) to be the unique solution of

(5.13)






E(λ, η)Ψ(2) = 0 in Ω(2)
0 ,

Ψ(2) = 0 on ȳ = 0,
Ψ(2) = −p0 on ȳ = −1.

Then solving (5.6)–(5.11) is equivalent to the following: find (λ, η) such that G(λ, η) =
0, where

(5.14) G(λ, η) :=
#
(Cij(η, λ)∂iΨ(η, λ))2

$
+ 2g !ρ" (H(η))|ȳ=0 − Q.

Notice that a laminar flow corresponds to a solution where η = 0 and H = π2 + 1.
(Since we have dictated that T1 = π1, this is equivalent to saying T = ι.)

5.2. Linearization. Echoing the approach in section 3 and section 4, we begin
by proving the existence of a one-parameter family of laminar flows. We the proceed
to linearize (5.14) along this family in order to lay the groundwork for a bifurcation
theory argument.

Lemma 5.2 (laminar flows). There exists a one-parameter family of laminar solu-
tions (Q(λ), 0) to (5.14) for λ ≥ 0. The corresponding family of laminar transformed
streamed function Ψ0(λ) are given by

(5.15) Ψ0(λ, ȳ) =

{
−λȳ for ȳ > 0,
p0ȳ for y ≤ 0,
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and

(5.16) Q(λ) := 2(λ2 − p20) + 2g !ρ" .

Proof. For the flow to be laminar, we must have that H = π2 + 1, so that from
(5.1) we see that the transformed laminar stream function Ψ0 = Ψ0(λ, π2) is harmonic

in Ω(1)
0 ∪ Ω(2)

0 and has the following boundary data:

Ψ0(0) = 0, Ψ0(−1) = −p0, Ψ′
0 → −λ as y → ∞.

We deduce that it must be as in (5.15). The formula for Q(λ) then follows from
(5.14).

Fixing λ, we now compute the Fréchet derivatives of E and G. In what follows, Dη

denotes Fréchet differentiation with respect to η, while ∂ε is the (finite-dimensional)
partial derivative with respect to ε. Also, where there is no risk of confusion, we shall
suppress the λ dependence.

Let the variations be denoted by

h := (∂εH)|ε=0, Φ := (∂εΨ)|ε=0, φ := (∂εψ)|ε=0,

ζ := (∂εη)|ε=0, τ := (∂εT )|ε=0, σ := (∂εS)|ε=0.

Remark 8. There are a few points that should be made here:
(i) φ is not continuous over the x̄-axis. (Indeed, it is not well defined there at

all.)
(ii) An elementary calculus results states τ = −σ.
(iii) Chasing the definitions, it is obvious that σ2 = h.
(iv) Since Ψ vanishes on the x̄-axis for all values of ε, we have

0 = Ψ(ε, x, T2(ε, x, η(ε, x)))

= Φ(x, 0) + Ψ′
0(0) (τ2 + T2,2(0, x, 0)ζ(x)) .

By (ii) and the fact that T2(0, ·) = π2(·), this implies

h = ζ on ȳ = 0.

In other words, ζ is the trace of h on the x̄-axis.
Now

∂εAij = [Ti,kε(ε, ·)Tj,k(ε, ·) + Ti,k(ε, ·)Tj,kε(ε, ·)] ◦ S(ε, ·)
+ S!,ε(ε, ·)[Ti,k!(ε, ·)Tj,k(ε, ·) + Tj,k!(ε, ·)Ti,k(ε, ·)] ◦ S(ε, ·),

and thus, evaluating at ε = 0 we find

(DηAij)(0) = δjkτi,k + δikτj,k = ∂iτj + ∂jτi.

Here we have used the fact that S(0, ·) = T (0, ·) = ιΩ0 .
The calculation of the linearization of the first-order coefficients proceeds in the

same fashion:

∂εBi = [Ti,jjε(ε, ·)] ◦ S(ε, ·) + Sk,ε(ε, ·)[Ti,jjk(ε, ·)] ◦ S(ε, ·),
DηBi(0) = τi,jj + σk[∂

2
kδik]

= ∂j∂jτi.
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Collecting these two facts, we see that

〈Eη(λ, 0),Φ〉 = Aij(0)∂i∂jΦ +Bi(0)∂iΦ

+ 〈(DηAij)(0), ∂i∂jΨ0〉 + 〈(DηBi)(0), ∂iΨ0〉
= ∆Φ − Ψ′

0∆h.(5.17)

Note that the last line follows from observing that τ2 = −σ2 = −h.
Remark 9. This formula can also be obtained formally by noting that

∂ε [Ψ(ε, ·)] = ∂ε [ψ(ε, S(ε, ·))]
= ψ,ε(ε, S(ε, ·)) + ψ,1(ε, S(ε, ·))S1,ε(ε, ·) + ψ,2(ε, S(ε, ·))S2,ε(ε, ·),

and thus, evaluating at ε = 0, we have

Φ = φ+ Ψ′
0h.

Taking the Laplacian of both sides of the equation leads to (5.17).
Next we consider the linearization of G, the transmission boundary condition:

∂εCij = [Ti,jε(ε, ·)] ◦ S(ε, ·) + Sk,ε(ε, ·)[Ti,jk(ε, ·)] ◦ S(ε, ·),

whence

(DηCij)(0) = τi,j + σk∂k(δij) = −∂jσi.

Using this identity with (5.14), we compute

〈Gη(0, λ), ζ〉 = 2 !(〈(DηCij)(0), h〉∂iΨ0 + Cij(0)∂iΦ)(Cij(0)∂iΨ0)"
+ 2g !ρ" ζ

= 2 !(−Ψ′
0∂2h+ ∂2Φ)Ψ′

0" + 2g !ρ" ζ.(5.18)

As a consequence of our choice of T in (5.4), we have

S2(ε, x̄, ȳ) = (η(ε, x̄) + 1)ȳ + η(ε, x̄) in a neighborhood of {ȳ = 0},

and thus

h(x̄, ȳ) = ζ(x̄)ȳ + ζ(x̄) in a neighborhood of {ȳ = 0}.

This implies ∂2h = ζ on ȳ = 0. Therefore (5.18) can be written

〈Gη(λ, 0), ζ〉 = 2
(
g !ρ" −

#
(Ψ′

0)
2
$)
ζ + 2 !Ψ′

0∂2Φ" .

Finally, to make sense of this, we compute explicitly the dependence of ∂2Φ on ζ.
From (5.17) we have that Φ solves

(5.19)






∆Φ = Ψ′
0∆h in Ω0 \ {ȳ = 0},

Φ = 0 on ȳ = 0,
Φ = 0 on ȳ = −1,
∇⊥Φ(1) → (0, 0) as ȳ → ∞ uniformly in x̄ and ε.
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Equivalently,

(5.20)






∆(Ψ′
0Φ − (Ψ′

0)
2h) = 0 in Ω0 \ {ȳ = 0},

(Ψ′
0Φ − (Ψ′

0)
2h)(1) = −ζ((Ψ′

0)
2)(1) on ȳ = 0,

(Ψ′
0Φ − (Ψ′

0)
2h)(2) = −ζ((Ψ′

0)
2)(2) on ȳ = 0,

Ψ′
0Φ − (Ψ′

0)
2h = 0 on ȳ = −1,

∇⊥(Ψ′
0Φ − (Ψ′

0)
2h) → (0, 0) as ȳ → ∞ uniformly in x̄ and ε.

Taking Υ := Ψ′
0Φ − (Ψ′

0)
2h, (5.20) makes clear that Υ depends only on the trace of

h on {ȳ = 0}, i.e., on ζ. Moreover, because of the evenness and periodicity, we can
compute Υ = Υ(ζ) quite explicitly. Letting ·̂ designate the Fourier transform in the
x̄-coordinate with Fourier variable k, we have

(̂Υ(1))(k, y) = −λ2ζ̂(k) (cosh (ky) − sinh (ky)) ,

(̂Υ(2))(k, y) = −p20ζ̂(k) (coth (k) sinh (ky) + cosh (ky)) .
(5.21)

From this we readily obtain

(5.22) !̂∂2Υ"(k) = kζ̂(k)
(
p20 coth k − λ2

)
= (p20D cothD − λ2D)ζ.

That is, we may view Gη(λ, 0) as a Fourier multiplier:

〈Gη(λ, 0), ζ〉 = 2g !ρ" ζ + 2 !∂2Υ(ζ)"
= 2(p20D cothD − λ2D + g !ρ")ζ.

(5.23)

Here (abusing notation slightly) D = −i∂x̄.

5.3. Proof of local bifurcation. With the expressions for Gη(λ, 0) derived in
the previous subsection, the proof of the local bifurcation theorem is relatively simple.

Define

X := C2+α
per ([−π, π]), Y := C1+α

per ([−π, π]).

In what follows, G is considered as an operator with domain R×X and codomain Y .
Lemma 5.3 (null space and range). Under the assumption that the LBC (5.2)

holds, there exists a λ∗ ≥ 0 such that the following statements are true:
(i) Gη(λ∗, 0) is a Fredholm operator of index 0;
(ii) N (Gη(λ∗, 0)) is one-dimensional and spanned by ζ∗(x̄) := cos x̄; moreover

(iii) ξ ∈ R(Gη(λ∗, 0)) if and only if ξ̂(1) = 0.
Proof. By (5.23), we know that ζ ∈ N (Gη(λ∗, 0)) if and only if it satisfies

(p20k coth k − λ2k + g !ρ")ζ̂(k) = 0 for all k ≥ 0.

For each λ ≥ 0,

m(k;λ) := p20k coth k − λ2k + g !ρ"

is injective as a function of k, and, fixing k ≥ 0, m(k;λ) → −∞ as λ→ ∞. The LBC
implies that m(1;λ) > 0, and hence there exists a λ∗ such that

(5.24) p20k coth k − (λ∗)2k + g !ρ" = 0 if and only if k = 1.

For this choice of λ we must have ζ̂(k) = 0 for k /= 1, and thus evenness dictates that
ζ ∈ span(cos (x̄)). We conclude the null space is one-dimensional, proving (b).
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On the other hand, suppose that ξ ∈ R(Gη(λ∗, 0)). Then

ξ̂(k) = m(k;λ∗)ζ̂(k) for k ≥ 0,

and, in particular, ξ̂(1) = 0, by the definition of λ∗ in (5.24). It follows that ξ̂(1) = 0
is a necessary condition for inclusion in the range. Conversely, if ξ is any element of
Y with ξ̂(1) = 0, then ζ ∈ X defined by

ζ̂(k) :=
1

m(k;λ∗)
ξ̂(k) k /= 1

is in the preimage of ξ under Gη(λ∗, 0). Note that this definition is permissible since
m(k;λ∗) is nonvanishing for k /= 1, again by (5.24). We have therefore shown that
ξ ∈ R(Gη(λ∗, 0)) if and only if ξ̂(1) = 0, which is (iii). Of course, this implies
immediately that the codimension of the range is one, and so (i) follows.

Remark 10. Equation (5.24) in fact gives an explicit definition for the point of
bifurcation:

λ∗ =
√
p20 coth 1 + g !ρ".

Proof of Theorem 5.1. In the previous lemma, we confirmed hypothesis (iii) of
Theorem A.1, while (i) and (ii) clearly hold. All that remains is the transversality
condition, hypothesis (iv). But observe that

(〈Gηλ(λ∗, 0), ζ∗〉)̂ (k) = −4λ∗kζ̂∗(k) = −4λ∗δ1k.

By Lemma 5.23(c), 〈Gηλ(λ∗, 0), ζ∗〉 cannot be an element of the range of Gη(λ∗, 0). The
statement of the theorem then follows from a straightforward application of Theorem
A.1.

6. Local bifurcation for shear flow in the atmosphere. In fact, a fairly
simple extension of Theorem 5.1 is possible when we assume that the flow in the
atmosphere region has constant vorticity. Let

γ =

{
γ0 in Ω(1),
0 in Ω(2),

where γ0 is a fixed constant. Rather than study the relative stream function directly,
we instead look at the perturbation of the stream function for the background shear
flow. In other words, let

ψ̃ := ψ +
γ

2
y2

so that

∆ψ̃ = ∆ψ + γ = 0 in Ω.

We shall call ψ̃ themodified stream function. It is worth noting that this same strategy,
i.e., working with ψ̃ in place of ψ, has been used to great effect recently by Constantin
and Varvaruca to prove existence for the one-phase, constant vorticity gravity wave
problem with stagnation (cf. [8]). The boundary conditions for ψ̃ follow naturally
from those for ψ enumerated in (5.1). Notice, however, that the interpretation of the

condition ∇⊥ψ̃ → (−λ, 0) as y → ∞ is different: we are now imposing the precise
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way in which the shear of the velocity field approaches infinity, instead of the limiting
value of the velocity. Even more importantly, we point out that ψ̃ is not continuous
due to the jump in γ over the interface. The appropriate choice of Banach spaces in
this setting is therefore

S̃0 := {(u, v, #, η) ∈ S : ∃U < c, (u − Uy, v) → (0, 0) uniformly as y → ∞},

S̃ ′
0 := {(Q, ψ̃, η) : (Q,ψ, η) ∈ S ′, ∇⊥ψ̃ → (−λ, 0) uniformly as y → ∞}.

With the notation established, we can now state our main result for the shear
flow.

Theorem 6.1 (local bifurcation for unbounded shear atmosphere). Suppose the
following local bifurcation condition holds:

(6.1) p20 coth 1 + g !ρ" − 1

4
(γ−0 )2 +

1

2
γ0γ

−
0 > 0,

where γ−0 := min{γ0, 0}. Then the following statements hold.
(i) There exists a continuous curve of nonlaminar solutions to the stream func-

tion equation for irrotational flow in the air and water, and unbounded atmosphere
region (5.1)

C′
loc = {(Q(s), ψ̃(s), η(s)) ∈ S̃ ′

0 : |s| < ε}

for ε > 0 sufficiently small, such that (Q(0), ψ(0)) = (Q∗, Ψ̃∗
0), and, in a sufficiently

small neighborhood of (Q∗, Ψ̃∗
0) in R×X, C′

loc comprises all nonlaminar solutions. In
particular,

η(s)(·) = s cos (·) + o(s) in C2+α
per (R).

(ii) There is a corresponding continuous curve

Cloc = {(Q(s), u(s), v(s), #(s), P (s), η(s)) ∈ S̃0 : |s| < ε}

of small amplitude solutions to the Eulerian problem which likewise captures all non-
laminar solutions in a sufficiently small neighborhood of the point of bifurcation.

Remark 11. As in Theorem 5.1, a simple generalization of this result is possible;
we have depth d > 0 and allow perturbations of the laminar flow with minimal period
2πk∗, where k∗ is the smallest nonnegative integer satisfying

p20
d2

k∗ coth (k∗d) + g !ρ" − 1

4
(γ−0 )2 +

1

2
γ0γ

−
0 > 0.

We also note that when γ0 ≥ 0, (6.1) reduces to (5.2).

6.1. The transformed problem. Define the transformations T as in section 5.1,
and put

Ψ̃ := ψ̃ ◦ S.

Since ψ̃ is harmonic in the unknown domain, Ψ̃ will be in the kernel of the elliptic
operator E(η), just as Ψ was in the previous section. The main difference will come
in the boundary condition, and, most significantly, in the transmission boundary
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condition. Writing Ψ̃ − γȳ2/2 = Ψ and inserting this in to the Bernoulli equation, we
find that the entire problem is equivalent to the vanishing of the operator

G̃(λ, η) :=
)
(Cij(η)∂iΨ̃(η, λ))2

*
+ 2

)
γS2(η)Ci2(η)∂iΨ̃(λ, η)

*

+ 2g !ρ" (H(η))|ȳ=0 − Q,
(6.2)

where Ψ̃(λ, η) is defined to be the (unique) solution to

(6.3)






E(η)Ψ̃ = 0 in Ω0 \ {ȳ = 0},
Ψ̃(1) − γ0

2
S2
2 = 0 on ȳ = 0,

Ψ̃(2) = 0 on ȳ = 0,

Ψ̃ = −p0 on ȳ = −1,

∇⊥Ψ̃ → (−λ, 0) as ȳ → ∞.

The laminar solution Ψ̃0 = Ψ̃0(λ, 0) is the same as for the ideal flow, i.e., Ψ̃0 = Ψ0.
This is simply because the only way in which the vorticity appears in (6.3) is as a
coefficient of S2, but S2(0) = 0. We record this fact in the following lemma.

Lemma 6.2 (laminar flows). There exists a one-parameter family of laminar
solutions (Q(λ), 0) to (5.14) for λ ≥ 0. The corresponding family of modified laminar
transformed streamed function Ψ̃0(λ) are given by

(6.4) Ψ̃0(λ, ȳ) =

{
−λȳ for ȳ > 0,
p0ȳ for y ≤ 0,

and

(6.5) Q(λ) := 2(λ2 − p20) + 2g !ρ" .

Remark 12. Recalling the definition of the modified stream function, we have

Ψ̃0 = Ψ0 +
γ

2
y2,

where Ψ0 is the stream function for the laminar flow. Thus,

Ψ′
0 = Ψ̃′

0 − γ0y = −λ− γ0y.

In other words, if γ0 < 0, then there is a critical layer in the air at ȳ = |γ0|/λ. Of
course, because Ψ′′′

0 vanishes identically, this will be a neutered layer in the sense
discussed in the introduction.

6.2. Proof of local bifurcation. Next consider the linearization of the oper-
ators Ẽ and G̃ around the laminar flows. Let the variation of Ψ̃ be denoted by Φ̃,
and otherwise adopt the same notation as in the ideal atmosphere case considered in
section 5. Then

〈G̃η(λ, 0), ζ〉 = 2
)
(−Ψ̃0∂2h+ ∂2Φ̃)Ψ̃′

0

*
− 2γ0ζλ + 2g !ρ" ζ

= 2
(
g !ρ" −

)
(Ψ̃′

0)
2
*

− 2γ0λ
)
ζ + 2

)
Ψ̃′

0∂2Φ̃
*
.(6.6)

On the other hand, Ψ̃ solves (5.19), and so we may define Υ̃ := Ψ̃′
0Φ̃ − (Ψ̃′

0)
2h, and

from an identical argument we find
)
∂2Υ̃

*
= −

)
(Ψ̃′

0)
2
*
ζ +

)
Ψ̃′

0∂2Ψ̃
*
,
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which can be understood as a Fourier multiplier using (5.22):

(6.7) 〈G̃η(λ, 0), ζ〉 = 2(p20D cothD − λ2D + g !ρ" − γ0λ)ζ.

Observe that the only difference between the symbol in (6.7) and that in (5.23) is the
−2γ0λζ term.

Lemma 6.3 (null space and range). Assume that the local bifurcation condition
holds. Then there exists a λ∗ > 0 such that the following statements hold:

(i) G̃η(λ∗, 0) is a Fredholm operator of index 0;

(ii) N (G̃η(λ∗, 0)) is one-dimensional and spanned by ζ∗(x̄) := cos x̄; moreover

(iii) ξ ∈ R(G̃η(λ∗, 0)) if and only if ξ̂(1) = 0.

Proof. From (6.7) it is clear that ζ ∈ N (G̃η(λ∗, 0)) if and only if

m̃(k;λ∗)ζ̂(k) = 0 for all k ≥ 0,

where

m̃(k;λ) := p20k coth k − λ2k + g !ρ" − γ0λ.

First we note that for any fixed λ ≥ 0, k *→ m̃(k;λ) is a strictly decreasing function
and thus any root is unique. Since we are primarily interested in the case where the
perturbations of the laminar flow are minimally 2π-periodic, we wish to consider λ
for which m(1;λ) = 0. Differentiating, it becomes clear that m(1;λ) is a concave
function of λ tending to −∞ as λ → ∞ and that the maximum occurs at

λ =
(
−γ0

2

)+
= −1

2
γ−0 .

The local bifurcation condition (6.1) implies that

max
λ≥0

m̃(1;λ) ≥ m̃

(
1;−1

2
γ−0

)
> 0.

By continuity, we have that there exists a λ∗ such that m̃(1;λ∗) = 0 and m̃(k;λ∗) /= 0
for k /= 1. This proves (ii). The proof of the remaining parts follows exactly as in
Lemma 5.3.

Proof of Theorem 6.1. We have already laid the groundwork for a bifurcation
argument via Crandall and Rabinowitz. The only detail that remains to be checked
is the transversality condition. With that in mind, we calculate

(〈G̃ηλ(λ∗, 0), ζ∗〉)̂ (k) = −4λ∗kζ̂∗(k) − 2γ0ζ̂∗(k)

= −4λ∗δ1k − 2γ0δ1k.

In light of Lemma 6.3(c), the only way for ζ∗ to be an element of R(G̃η(0, λ∗)) is if
2λ∗ = −γ0. But this scenario is excluded by the local bifurcation condition (6.1), as
m̃(1;−γ−0 /2) > 0 while m̃(1;λ∗) = 0. This confirms that the transversality condition
holds, and thus we obtain the theorem via a routine application of Theorem A.1.

Appendix. Here we present two standard theorems. The first is the classical
work of Crandall and Rabinowitz on bifurcation from simple (generalized) eigenvalues.

Theorem A.1 (Crandall and Rabinowitz [9]). Let X and Y be Banach spaces
and I ⊂ R be an open interval with λ∗ ∈ I. Suppose that F : I × X → Y is a
continuous map with the following properties:

(i) F(λ, 0) = 0 for all λ ∈ I;
(ii) D1F , D2F , and D1D2F exist and are continuous, where Di denotes the

Fréchet derivative with respect to the ith coordinate;
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(iii) D2F(λ∗, 0) is a Fredholm operator of index 0, in particular, the null space
is one-dimensional and spanned by some element w∗;

(iv) D1D2F(λ∗, 0)w∗ /∈ R(D2F(λ∗, 0)).
Then there exists a continuous local bifurcation curve {(λ(s), w(s)) ∈ R×X : |s| < ε}
with ε > 0 sufficiently small such that (λ(0), w(0)) = (λ∗, w∗), and

{(λ,w) ∈ U : w /= 0,F(λ,w) = 0} = {(λ(s), w(s)) ∈ R × X : |s| < ε}

for some neighborhood U of (λ∗, 0) in R× X. Moreover, we have

w(s) = sw∗ + o(s) in X, |s| < ε.

If D2
2F exists and is continuous, then the curve is of class C1.
The reader should view this as a special case of the more general Lyapunov–

Schmidt reduction procedure, a good discussion of which can be found in [6].
The second theorem is on the Fredholm solvability and regularity of solutions

to linear elliptic equations with jump conditions across an interface. A classical ref-
erence for this is [15]. We quote here a parsed version of Theorem 16.1 from that
book, incorporating the discussion preceding and following the theorem statement
and simplifying the hypotheses to better match our needs.

Let Ω = Ω(1) ∪ Ω(2) be a domain in R2 with smooth boundary of class C2+α,
where Ω(1) and Ω(2) are the connected components of Ω and their shared boundary
I := ∂Ω(1) ∩ ∂Ω(2) is a simple curve (which will also be of class C2+α). Consider the
elliptic problem

(A.1)






∂xi(aij∂xju) + bi∂xiu+ cu = f in Ω,

!u" = 0 on I,
!d∂νu" + σu = g on I,
u = h on ∂Ω \ I.

Here we are using summation conventions, ∂ν denotes the conormal derivative with
respect to aij , σ is a real constant, and the coefficients and forcing terms are assumed
to have the following regularity:

(A.2)

aij uniformly elliptic, d ≥ d0 > 0,

bi, c, f ∈ Cα(Ω(1)) ∩ Cα(Ω(2)),

aij , d, g ∈ C1+α(Ω(1)) ∩C1+α(Ω(2)),

h ∈ C2+α(Ω(1)) ∩ C2+α(Ω(2)).

Theorem A.2 (Ladyzhenskaya–Ural’tseva [15, Theorem 16.1]). Consider the
elliptic problem (A.1) with the assumptions listed in (A.2). Then the following state-
ments hold:

(i) (Fredholm solvability) The existence of a classical solution

u ∈ C2+α(Ω \ I) ∩ C1+α(Ω(1)) ∩ C1+α(Ω(2))

is implied by the uniqueness of solutions.
(ii) (Elliptic regularity) Note that, due to the fact that the !u" = 0, a classical

solution can be extended to Ω as a continuous function. In fact, if a classical solution
u exists, then its extension to Ω is of class Cα(Ω).
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