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Acoustic streaming, the generation of mean flow by dissipating acoustic waves, provides
a promising method for flow pumping in microfluidic devices. In recent years, several
groups have been experimenting with acoustic streaming induced by leaky surface waves:
(Rayleigh) surface waves excited in a piezoelectric solid interact with a small volume of
fluid where they generate acoustic waves and, as result of the viscous dissipation of these
waves, a mean flow. We discuss the computation of the corresponding Lagrangian mean
flow, which controls the trajectories of fluid particles and hence the mixing properties
of the flows generated by this method. The problem is formulated using the averaged
vorticity equation which extracts the dominant balance between wave dissipation and
mean-flow dissipation. Particular attention is paid to the thin boundary layer that forms
at the solid/liquid interface, where the flow is best computed using matched asymptotics.
This leads to an explicit expression for a slip velocity, which includes the effect of the
oscillations of the boundary. The Lagrangian mean flow is naturally separated into three
contributions: an interior-driven Eulerian mean flow, a boundary-driven Eulerian mean
flow and the Stokes drift. A scale analysis indicates that the latter two contributions
can be neglected in devices much larger than the acoustic wavelength but need to be
taken into account in smaller devices. A simple two-dimensional model of mean flow
generation by surface acoustic waves is discussed as an illustration.
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1. Introduction

The numerous applications of microfluidic technology, in biology and chemistry in
particular, have stimulated a great deal of research about the physics of fluids at
small scales (e.g. Nguyen &Wereley 2002; Squires & Quake 2005 or Tabeling 2006
for an introduction). Many microfluidic devices require to mix reacting solutions
efficiently. As is well-recognized, this poses a challenge because the small values
of the diffusivity of most chemicals make molecular diffusion impractically slow,
while the low Reynolds numbers in typical devices preclude turbulent mixing.
Much effort has therefore been devoted to the design of efficient micromixers,
which typically rely on the formation of small-scale structures in the concentration
fields to enhance the effect of molecular diffusion.
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Although small-scale structures can be generated in steady flows, they develop
much more rapidly in time-dependent flows through the process of chaotic
advection (e.g. Ottino & Wiggins 2004; and other articles in the same journal
issue). It is therefore highly desirable to develop methods for the stirring of
microfluids that are flexible enough to generate time-dependent flows while
interfering as little as possible with whatever chemical or biological processes
might take place. One particularly attractive type of such methods is based on
acoustic waves: (ultra)sound waves propagating in a fluid induce a time-averaged
flow (or mean flow) through the nonlinear process known as acoustic streaming
(e.g. Lighthill 1978a,b). Time-dependent mean flows can readily be obtained by
varying the frequency of the waves and/or the location of the wave sources.
The potential of these methods has been demonstrated in a number of

experiments (Moroney et al. 1991; Suri et al. 2002; Wixforth 2003; Guttenberg
et al. 2004; Sritharan et al. 2006; Frommelt et al. 2008a; Du et al. 2009; Tan et al.
2009; Yeo & Friend 2009). Most of these share the same method of excitation
of acoustic waves in the fluid, based on leaky surface acoustic waves (LSAWs).
Surface acoustic waves (Rayleigh waves) are generated in a solid substrate by
piezoelectric excitation. These waves propagate along the surface of the solid
and, when this is in contact with a fluid above, radiate (leak) energy into the
fluid in the form of acoustic waves. In turn, these waves generate a mean flow by
acoustic streaming.
In this paper, we consider this physical mechanism and discuss its

mathematical modelling. Several recent papers complement the experimental
work with numerical simulations of the LSAWs and of the mean flow they
generate (Köster 2007; Frommelt et al. 2008b; Tan et al. 2009; Antil et al. 2010).
To compute the mean flow, these papers implement the formulation of Nyborg
(1953, 1965) based on the time-averaged momentum equation. This formulation
has the disadvantage of ignoring the implications of vorticity conservation: as
other mechanisms of wave–mean flow interaction (e.g. Bühler 2009), acoustic
streaming in a homogeneous fluid is strongly constrained by the fact that vorticity
cannot be generated by purely inviscid processes. As a result, the mean flow
forcing by acoustic waves depends entirely on dissipative processes. Because of the
high frequency of the waves involved (typically in the range 10–200MHz), these
processes are very weak: indeed, the averaged momentum equation is completely
dominated by the inviscid stress and pressure terms, which, however, balance
and hence do not contribute to mean flow generation. To make this explicit, we
use here the averaged vorticity equation in place of the momentum equation,
following the original formulation of Eckart (1948) and Westervelt (1953). This
formulation isolates the balance between the dissipation of the waves and of the
mean flow which controls the streaming, and leads to the well-known observation
that the streaming flow is independent of the value of the viscosity (or, more
precisely, depends only on the ratio of the shear viscosity to the bulk viscosity).
The vorticity formulation is particularly advantageous for the problem at hand
because the mean flow is non-divergent up to negligible terms.
There are two forms of acoustic streaming whose relative contribution to mean

flow generation depends on the size of the devices. Interior streaming is associated
with the vorticity that appears when the irrotational acoustic waves dissipate in
the fluid’s interior. Boundary streaming, on the other hand, is associated with
a vortical part of the acoustic waves which is confined to thin boundary layers.
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To date, the boundary contribution to streaming in LSAW devices has received
little attention (see Tan et al. 2009; however). In this paper, we consider both
forms of streaming. We provide explicit expressions for the wave and mean flow
structure inside the boundary layers and hence obtain the slip velocity that can
be used as a boundary condition for the averaged vorticity equation. Because the
boundaries of LSAW devices are oscillating, this requires extending the standard
analysis of boundary streaming (e.g. Lighthill 1978a) in a manner analogous to
Longuet-Higgins’ (1953) treatment of incompressible flows.
The main point of interest in the study of LSAW micromixers is the mean

motion of fluid particles. This is governed by the Lagrangian mean flow which
sums the Eulerian mean flow discussed above with the Stokes drift (e.g. Bühler
2009). The Stokes drift, which results from the nonlinearity of the advection
equation, contributes directly to the mean advection; it also impacts the Eulerian
mean flow through boundary conditions, since it is the total Lagrangian mean
flow which satisfies no-slip boundary conditions (e.g. Bradley 1996).
The paper is organized as follows. In §2, we present the equations used to model

the fluid, introduce their small-amplitude expansion, and define the mean flows
to be evaluated. Section 3 discusses a solution procedure yielding the form of the
acoustic waves while taking advantage of the small viscosity/high frequency of
LSAW devices. The Eulerian and Lagrangian mean flows are considered in §4.
The averaged vorticity equation governing the interior mean flow is derived, and
the slip velocity is computed from the boundary-layer solution. The modelling
of the solid supporting the LSAWs is described in §5: for simplicity, we restrict
ourselves to a simple two-dimensional configuration and treat the solid as a linear
elastic isotropic material. Section 6 presents results for this configuration with
a choice of physical parameters that correspond to the experiments mentioned
above. The paper concludes with a discussion in §7. Two appendices give
technical details.

2. Formulation

The fluid is modelled by the compressible Navier–Stokes equations

r(vtu + u · Vu)= −Vp + mV2u + m′VV · u (2.1)

and

vtr + V · (ru)= 0, (2.2)

for the fluid’s velocity u, density r and pressure p (e.g. Landau & Lifschitz 1987).
Here, m is the shear viscosity and m′ = mb + m/3, where mb is the bulk viscosity. The
shear and bulk viscosities are assumed constant; both contribute substantially to
the dissipation of acoustic waves (e.g. Lighthill 1978b). We ignore the thermal
dissipation of acoustic waves as is appropriate for liquids, but not for gases.
Equations (2.1) and (2.2) are complemented by an equation of state

p= p(r). (2.3)

Since the phenomenon of interest is usually characterized by small wave
amplitudes, we can simplify (2.1)–(2.3) using a perturbation expansion based
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on a parameter a # 1 estimating the ratio of the density fluctuations to the
background density. Thus, we introduce expansions of the form

u = au1 + a2u2 +O(a3), r = r0 + ar1 + a2r2 +O(a3) (2.4)

and
p= ap1 + a2p2 +O(a3), (2.5)

where r0 is a constant, into the equations.
We assume a time-harmonic forcing with (angular) frequency u. The O(a)

solution, which we term the wave solution, can then be written in the form

u1 = ûe−iut + c.c., (2.6)

where c.c. denotes the complex conjugate of the previous term. Similar expressions
hold for r1 and p1. The hatted fields are time-independent, complex fields that
are computed in §3 below. Once they are determined, the O(a2) fields generated
nonlinearly can be obtained. Our focus is on the time-averaged response, and
specifically on the Eulerian mean velocity

ūE = ū2, (2.7)

where the overbar denotes time average, and on the Stokes drift

ūS = x1 · Vu1, (2.8)

where x1 is the linearized particle displacement, which satisfies vtx1 = u1. Both
the Eulerian mean flow and Stokes drift contribute at the same order to the
Lagrangian mean velocity

ūL = ūE + ūS, (2.9)

which gives the average motion of particles in the fluids to O(a2) (e.g. Bühler
2009). Note that

r0ūL = r0ū2 + r1u1 + r0V · (x1 ⊗ u1), (2.10)

where the divergence term vanishes only in special circumstances. Thus, r0ūL is
not necessarily the O(a2) approximation to the mean mass flux ru.

3. Acoustic waves

We introduce the expansions (2.4) and (2.5) into (2.1) and (2.2), and collect the
O(a) terms. Using the Helmholtz decomposition into irrotational and divergence-
free flow

u1 = Vf1 + V × j1, with V · j1 = 0, (3.1)

we obtain, after some manipulations, the damped wave equation

v2ttf1 = c2V2f1 + (n + n′)vtV2f1 (3.2)

for the scalar potential f1, and the equation

vt(V × j1)= nV2(V × j1) (3.3)

for the vector potential (e.g. Nyborg 1965). Here, we have introduced the
kinematic viscosities n = m/r0 and n′ = m′/r0, and the sound speed c2 = dp/dr|0.
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In the absence of interior forcing, the vorticity V2j1 is exponentially confined
near the boundaries of the fluid, so that the wave solution in the interior of the
fluid is irrotational. If the viscosity is small, the computation of the wave solution
can therefore be much simplified using matched asymptotics. The condition for
this to apply is that the boundary-layer thickness, given by

d =
√
2n
u
, (3.4)

be much smaller than the inverse wavenumber of the acoustic waves, k−1 say. In
typical applications of LSAW-induced flows in water, u is in the range 0.1–1GHz
and we estimate that d is of the order of 40 nm; correspondingly, dk =

√
2nu/c

is of the order of 10−2, so that an asymptotic treatment of the wave problem is
well justified. The smallness of dk also implies that the waves are only weakly
dissipated in the fluid interior: solving equation (3.2) for plane waves gives their
spatial damping rate

g = (n + n′)k2

2c
= (n + n′)d2k3

4n
(3.5)

(Nyborg 1965). Thus, dk # 1 clearly implies that g/k # 1, corresponding to weak
interior dissipation. The viscous dissipation of the waves is, however, significant
for the wave solution in devices whose size is of the order g−1 or larger; it is also
key to the mean flow generation. Note that the boundary layer is much thicker
than the typical fluid-particle displacements associated with the LSAWs, which
are of the order of a nanometre or less. Therefore, the condition dk # a, required
to expand the equations in powers of a before expanding in d, is met.
Taking advantage of the smallness of dk gives a straightforward procedure

for the computation of the wave solution. First the time-harmonic version of
equation (3.2),

V2f̂ = − u2

c2 − i(n + n′)u
f̂, (3.6)

is solved to obtain the potential part of the wave field. It is not appropriate here
to neglect the viscous term since the solution needs to be valid over distances that
may be large compared with g−1. The boundary conditions, however, are those
appropriate for an inviscid fluid: no normal flow across the boundary and, in the
case of a dynamic boundary, continuity of normal stress and zero tangential stress
(see §5 below). The result, then, is an approximation to the exact potential f̂,
with O(dk) errors stemming from the approximate boundary conditions.
Once this approximation to f̂ is obtained, the leading-order, O(dk) vector

potential ĵ1 is found by solving equation (3.3) using a boundary-layer approach
of the type pioneered by Rayleigh (1896, art. 352). This part of the solution
ensures that the tangential velocity in the fluid also matches that of the boundary.
Consistent with the linearization leading to equations (3.2) and (3.3), the
boundary conditions are imposed at the undisturbed location of the boundary
in the case of a dynamic boundary.
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Let us consider a solid boundary at z = 0 that is possibly oscillating with
velocity us(x , y, 0, t)= ûs(x , y, 0) exp(−iut)+ c.c. The fluid velocity is written as

u1(x , y, z)= Vf1(x , y, z)+ dV × J1

(
x , y,

z
d

)
, (3.7)

with a contribution of the vector potential that decreases exponentially as

Z = z
d

(3.8)

tends to ∞. The scaling (3.7) ensures that the leading-order contribution of the
divergence-free flow is the O(1) tangential velocity needed to enforce no slip.
To leading order, the three components of the velocity in the boundary layer

thus have the form

u1= vxf1− vZJ(2)+O(d), v1= vyf1+ vZJ(1)+O(d) and w1= vzf1+O(d),
(3.9)

where we have written J1 = (J(1),J(2),J(3)) and used O(d) as a shorthand for
O(dk). Introducing equation (3.7) into equation (3.3), we obtain the leading-order
equations

v3ZZZ Ĵ(j) + 2ivZ Ĵ(j) = 0, j = 1, 2.
The solutions which decay as Z→ ∞ and ensure the continuity of the tangential
velocity are

vZ Ĵ(2)(x , y,Z )= Û (x , y)e−(1−i)Z and vZ Ĵ(1)(x , y,Z )= −V̂ (x , y)e−(1−i)Z ,
(3.10)

where we have introduced

Û (x , y)= vx f̂(x , y, 0)− ûs(x , y, 0) and V̂ (x , y)= vyf̂(x , y, 0)− v̂s(x , y, 0).
(3.11)

Note that by equation (3.4) the viscous stress associated with the divergence-
free flow, dominated by terms of the form mvzu1 ∼ md−1v2ZZJ(2), is O(d) and hence
negligible to leading order. This confirms the validity of imposing zero tangential
stress at the boundary in the case of a dynamic boundary.

4. Mean flow

We now turn to the determination of the Lagrangian mean flow ūL induced
by the acoustic waves. The Stokes drift contribution to ūL can be computed
straightforwardly from the wave fields found in §3. The Eulerian flow ūE,
on the other hand, is determined by solving the time-averaged Navier–Stokes
equations (2.1) and (2.2) to order O(a2). We emphasize that the Eulerian mean
flow depends in an essential manner on the presence of a viscous dissipation
of the acoustic waves: for an inviscid fluid, the wave Reynolds stresses are
exactly balanced by a pressure gradient and there is no mean flow forcing in
the interior of the fluid (e.g. Lighthill 1978b). When the viscous effects are small
(in the sense that dk # 1), this balance holds approximately and dominates the
averaged momentum equation. This equation is therefore not well-suited for the
computation of the mean flow forcing, which is several orders of magnitude
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smaller than the Reynolds stress and pressure gradient. Instead, we follow Eckart
(1948) and Westervelt (1953) and use the averaged vorticity equation. Because
the acoustic waves are essentially irrotational in the fluid interior, this equation
takes a very simple form, one that isolates the mean flow forcing and makes
explicit that the mean flow response depends on the ratio mb/m and not on m and
mb separately.
Since the acoustic waves have vorticity in the boundary layers, the mean flow

generation there is controlled by a different balance than in the interior. An
expression for the mean flow in the boundary layer is derived below; its limit
away from the boundary layer provides the boundary condition that is needed
for the interior in the form of a slip velocity.

(a) Interior

We start by considering the mean flow equations away from the boundaries.
Averaging equation (2.2) and using the important property vt(·)= 0 leads to
V · (r0ū2 + r1u1)= 0. Taking the divergence of equation (2.10) and averaging
then gives

V · ūL = 0 (4.1)

as the last term can be shown to vanish using vt(·)= 0. On the other hand,
it follows from the definition of the Stokes drift and the irrotational nature
of u1 that

V · ūS = vi(x1jvju1i)= vi(x1jviu1j)= x1jv
2
iiu1j + vix1jviu1j

= x1 · V2u1 + vix1jvt(vix1j)= c−2x1 · v2ttu1 +O(d2),
using Einstein’s notation, equation (3.2) and vt(·)= 0. Integrating by parts
leads to

V · ūS =O(d2), and hence to V · ūE =O(d2). (4.2)

As we are interested only in the mean flow to leading-order in d, we can now
focus on the Eulerian mean vorticity V × ūE: its knowledge in the fluid interior,
together with equation (4.2) and boundary conditions determine ūE entirely.
We derive an equation for the Eulerian mean vorticity by first taking the curl

of equation (2.1) to obtain

vtz + u · Vz − z · Vu + zV · u = m

r
V2z − m

r2
Vr × V2u − m′

r2
Vr × V(V · u), (4.3)

where z = V × u is the vorticity. We then introduce the expansions (2.4) and (2.5)
and average. Since the O(a) flow is irrotational in the interior, i.e. z1 = V × u1 =
V2j1 = 0 there, the result is

0= m

r0
V2V × ūE − m

r20
Vr1 × V2u1 − m′

r20
Vr1 × V(V · u1).

This can be further simplified into

V2V × ūE = n + n′

r20n
V × vtr1Vr1, (4.4)
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using again that V × u1 = 0. This is the form obtained by Eckart (1948) and
Westervelt (1953). A convenient alternative to equation (4.4) is obtained using
that u1 satisfies a wave equation up to O(d2) terms and reads

V2V × ūE = −n + n′

n

u2

r0c2
V × r1u1 +O(d2). (4.5)

This form, in which the mean-flow forcing is directly related to the acoustic energy
flux c2r1u1, makes clear that ūE depends on the viscosities only through their
ratio n′/n (or equivalently mb/m).
In what follows, we use equations (4.2) and (4.5) to compute the Eulerian

mean flow ūE generated by LSAWs. We expect this formulation to be better
conditioned than the solution of the averaged momentum equation: in the latter,
the averaged wave stresses are balanced at O(1) by pressure gradients while much
smaller, O(d2) terms involving viscous effects determine the Eulerian mean flow.
The boundary conditions for equation (4.5) are found next by considering the
boundary layers.

(b)Boundary layers

Near the boundaries, the full O(a) velocity field of the form (3.9) needs to
be taken into account. In the case of a solid boundary at z = 0, the averaged
x- and y-momentum equations should be solved to obtain the mean tangential
velocity in the boundary layer and, by taking its limit as the boundary-layer
coordinate Z→ ∞, the slip velocity that serves as boundary condition for the
interior equation (4.5). Let us consider the x-momentum equation, which reads

r0V · (u1u1)= −vx p̄2 + mv2zz ū
E +O(d),

when only the dominant viscous term is retained. Now, the contribution to the
left-hand side of this equation that is associated with the potential part of u1 is
balanced by the pressure gradient up to O(d2) (as it is in the interior). Subtracting
this part leads to

nv2zz ū
E = V · (u1u1)− V · (vxf1Vf1)+O(d). (4.6)

The boundary condition for this equation is obtained by averaging the no-slip
condition on the (possibly moving) boundary and is

ūL = ūE + x1 · Vu1 = 0 at z = 0. (4.7)

It is, therefore, convenient to solve, rather than equation (4.6), the equivalent
equation for the Lagrangian mean flow, namely

nv2zz ū
L = V · (u1u1)− V · (vxf1Vf1)+ nv2zz(x1 · Vu1)+O(d). (4.8)
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This computation, taking advantage of the boundary-layer scaling (3.7), is carried
out in appendix A. The result is

u

2
ūL = 1

4

[

3(1+ i)Û dÛ
∗

dx
+ (1+ 2i)V̂ dÛ

∗

dy
+ (2+ i)U dV̂

∗

dy

]

(e−2Z − 1)

+ i
2

[(
3v2xx f̂ + v2yyf̂ − v2zz f̂

)
Û ∗ + 2v2xyf̂V ∗

]
(e−(1+i)Z − 1)+ c.c., (4.9)

where all the functions of z are evaluated at z = 0. Note that ūL is O(1)
throughout the boundary layer, in contrast with ūE and ūS which have
(cancelling) O(d−1) contributions. Taking the limit Z→ ∞ in equation (4.9) gives
the slip velocity for the interior solution,

u

2
ūLslip = −1

4

[

3(1+ i)Û dÛ
∗

dx
+ (1+ 2i)V̂ dÛ

∗

dy
+ (2+ i)U dV̂

∗

dy

]

− i
2

[(
3v2xx f̂ + v2yyf̂ − v2zz f̂

)
Û ∗ + 2v2xyf̂V ∗

]
+ c.c., (4.10)

The slip velocity in the y-direction v̄Lslip is given by an analogous expression with
(x , y) and (U ,V ) interchanged. The normal component of the Lagrangian-mean
velocity vanishes to leading order in the boundary layer. Thus, the boundary
conditions for the interior flow on a boundary z = 0 reads

ūL = (ūLslip, v̄Lslip, 0) at z = 0. (4.11)

(c)Complete solution

Let us summarize how the Eulerian and Lagrangian mean flows can be
computed. Once the wave potential f̂ has been obtained, in general by solving for
the coupled linear motion of the fluid and underlying solid, the Stokes drift away
from the boundary layers can be directly evaluated from its definition (2.8). The
Eulerian mean flow is computed by solving equations (4.2) and (4.5), with the
boundary condition implied by equation (4.11) and similar on other boundaries.
The Lagrangian mean flow is then computed as the sum of the Eulerian mean
flow and Stokes drift.
It is convenient to decompose the Eulerian mean flow according to

ūE = ūEi + ūEb . (4.12)

Here ūEi is the interior-driven part, which satisfies equation (4.2) and (4.5) and
no-slip boundary conditions, and ūEb is the boundary-driven part, which satisfies
equation (4.2) and the homogeneous version of equation (4.5), namely

V2V × ūEb = 0, (4.13)

with boundary conditions of the form

ūEb = (ūLslip, v̄Lslip, 0)− ūS at z = 0 (4.14)
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so that equation (4.11) is satisfied. Note that ūEb is driven by a combination of
boundary-layer and Stokes-drift effects, and that it is not necessarily tangential
to the boundary.
We can use the results of the previous sections to estimate the order of

magnitude of the various contributions to the Lagrangian mean flow. Taking
a ∼ r1/r0 ∼ u1/c gives the estimates

ūS ∼ ca2, ūEi ∼ (!k)2ca2 and ūEb ∼ ca2 (4.15)

for the Stokes drift (2.8), Eulerian mean flow in equation (4.5), and boundary-
driven flow in equations (4.13) and (4.14). Here ! is an ‘outer scale’, that is,
the scale over which quadratic correlations such as r1u1 vary; it is fixed by
the size of the wave source (e.g. the decay scale of LSAWs) or the smallest
dimension of the fluid domain, whichever is the smallest. If ! is substantially larger
than the wavelength, the interior-driven Eulerian mean flow dominates the other
contributions to the Lagrangian mean flow, and can be used as a proxy for the
Lagrangian mean flow; if ! is just a few wavelengths, however, the interior-driven,
boundary-driven and Stokes contributions should all be computed to estimate
the Lagrangian mean flow accurately. Both situations are likely to arise in LSAW
devices: in the experiments of Frommelt et al. (2008a), for instance, ! is much
larger than the wavelengths, while the channel device of Tan et al. (2009) is only
a few wavelengths wide.

5. Fluid–solid coupling

We now examine the specifics of the generation of mean flows by LSAWs by
considering the full coupling between the fluid and the underlying solid in a
particular configuration. This configuration is motivated by the experimental
work but taken as two-dimensional for simplicity: an isotropic linear elastic solid
occupies the lower half plane y < 0, and a compressible fluid occupies the first
quadrant x > 0, y > 0. Surface acoustic waves in the solid are generated at some
x→ −∞ and are scattered and refracted at the solid–fluid interface, leading to
the propagation of sound waves in the fluid which, in turn, generate a mean flow.
See figure 1 for a schematic.

(a) Solid

The solid is modelled as a dissipationless, isotropic, linear elastic solid. We
write its governing equations using the velocity field instead of the more usual
displacement field so as to make a complete parallel with the treatment of the
fluid. Decomposing the velocity field in the solid as

us = Vfs + V⊥js, (5.1)

where V⊥ = (−vy , vx), the potential and streamfunction satisfy the wave equations

v2ttf
s = a2V2fs and v2ttj

s = b2V2js, (5.2)
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fluid

solid

x

y

Figure 1. Configuration of the interacting fluid and solid considered in §§5 and 6. The surface
acoustic waves in the solid are forced at the location indicated by the arrow.

where a and b are the longitudinal and transverse wave speeds of the solid. These
are given in terms of the Lamé parameters ls and ms and density rs of the solid
by a =

√
(ls + 2ms)/rs and b= √

ms/rs. Here and in what follows, variables with
the superscript s characterize the solid, while those with no superscripts continue
to characterize the fluid.
We emphasize the difference between the spatial coordinates used to describe

the motion in the fluid and in the solid: equations (2.1) and (2.2) for the fluid
are written in Eulerian representation, with x representing fixed positions in
space; in contrast, equations (5.2) are written in Lagrangian representation, with
x labelling particles by means of their position in the undeformed solid. The
distinction is crucial for the boundary conditions matching the motion in the
fluid to that in the solid.

(b)Boundary conditions

The wall bounding the liquid to the left is assumed rigid and fixed. Thus, we
impose the condition

u = 0 for x = 0, y > 0 (5.3)

on the fluid velocity. At the interface between the solid and air (treated as
vacuum), the tangential and normal components of the stress tensor, which satisfy

vtT s = ms(vyus + vxv
s) and vtN s = ls(vxus + vyv

s)+ 2msvyvs, (5.4)

vanish: T s =N s = 0 for x > 0, y = 0.
To write down the boundary conditions at the fluid–solid interface, we use

the fluid displacements x(x , t) whose exact definition, vtx + u · Vx = u, can be
approximated by the linearization vtx1 = u1 already used in §3. The continuity of
the velocity field between fluid and solid is then written as

u(x ′, t)= us(x , t) for x > 0, y = 0, (5.5)
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where x ′ is related to x according to x ′ = x + x(x ′, t) and x(x ′, t) can be
approximated by x1(x , t). Similarly, the continuity of the tangential and normal
stresses read

T (x ′, t)=T s(x , t) and N (x ′, t)=N s(x , t) for x > 0, y = 0, (5.6)

with T s and N s given in equation (5.4), and

T = m(vyu + vxv) and N = −p + (m + m′)vyv + (m′ − m)vxu. (5.7)

As anticipated, the boundary-layer solution shows that equation (5.7) can be
approximated as T =O(d) and N = −p +O(d) so that the fluid is treated as
inviscid in its interaction with the solid. Note that expanding equation (5.5)
in powers of a and averaging gives at O(a2) the condition (4.7) of vanishing
Lagrangian mean velocity at the boundary. There is obviously no mean velocity
in the solid.

6. Results

We present results for the wave fields and mean flows obtained in the configuration
sketched in figure 1. The parameters, chosen in rough agreement with those
of the experiments and numerical simulations of Frommelt et al. (2008b) and
Köster (2007), are listed in table 1. The liquid is water at room temperature.
The value used for its bulk viscosity differs from the value used in the
references just mentioned and has been taken from recent experimental work
by Dukhin & Goetz (2009).
Since the solid used in experiments is not isotropic and characterized by more

than two elastic moduli, we have chosen the value of the Lamé parameters to
obtain a LSAW phase speed that is close to the observed speed. Specifically, we
have taken ls = ms = 100Nm−3 corresponding to the longitudinal and transverse
wave speeds reported in table 1. The dispersion relation of LSAWs can be
written as

(
2− q

2

b2

)2
− 4

√
1− q

2

a2

√
1− q

2

b2
− i rq

4

rsb4

√
1− q2/a2
q2/c2 − 1 = 0, (6.1)

where q = u/k is the (complex) phase speed (e.g. Tew 1992; Craster 1996). For
the parameters in table 1 it has the solution q = 4.27 − 5.4 · 10−2 i, corresponding
to a wavenumber

kLSAW = 2.2× 105 + 2.8× 103 im−1 (6.2)

and hence to LSAW wavelength and decay scale of about 29mm and 720mm,
respectively. The speed of the LSAW is, therefore, cLSAW = u/k = 4.3 · 103 m s−1.

(a)Wave fields

To obtain the wave fields that result from the scattering of incident LSAWs, we
solve the relevant system of three coupled Helmholtz equations (two in the solid,
one in fluid) numerically. The simple geometry makes it possible to relate the
velocities and stresses on the interface y = 0 to the potentials f̂(x , 0), f̂s(x , 0)
and ĵs(x , 0) on this interface. These relationships involve pseudodifferential
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Figure 2. Wave field in the solid and fluid: the real part of the vertical velocity, Re v̂, is displayed
in a small domain around (x , y)= (0, 0). Distances are in millimetre. (Online version in colour.)

Table 1. Parameters used for the numerical application.

fluid (water)
density r 103 kgm−3

sound speed c 1.5× 103 m s−1
shear viscosity m 10−3 kgm−1 s−1

bulk viscosity mb 2.5× 10−3 kgm−1 s−1

solid
density rs 4.65× 103 kgm−3

longitudinal wave speed a 8× 103 m s−1
transverse wave speed b 4.64× 103 m s−1

forcing
angular frequency u 9.425× 108 s−1

operators that are best expressed using Fourier transforms in the x-direction.
Using these, the problem can be reduced to one-dimensional pseudodifferential
equations for f̂(x , 0), f̂s(x , 0) and ĵs(x , 0) which we solve using a pseudospectral
discretization (e.g. Trefethen 2000). Details about the numerical procedure are
given in appendix B.
We show in figure 2 the wave field in both the solid and the fluid. The figure

displays only a small portion of the computational domain: the full computational
domain is 5mm long in the x-direction, with the forcing located around x =
−1.25mm (since we solve a one-dimensional problem, a grid in the y-direction
is only needed for visualization). The scattering appears relatively simple and
dominated by the LSAWs, although other types of modes are no doubt excited
(see Craster 1996 for an analogous problem). The exponential decay of the LSAWs
as x increases from zero is clearly visible, but the viscous damping of the acoustic
waves is not because the damping length is much larger than the domain plotted.
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Figure 3. Wave amplitude in the fluid. (a) The potential |f̂| is shown for (x , y) ∈ [0, 1] × [0, 1]mm.
(b) Normal velocity of the interface (in millimetre per second) as a function of distance x (in
millimetre); the numerical result (solid line) is compared with the form predicted for a pure LSAW
(dashed line). (Online version in colour.)

As discussed above, the solution satisfies the continuity of the normal velocity
between the fluid and solid, but not the continuity of the tangential velocity.
The thickness of the boundary layer that forms to ensure the continuity of
the tangential velocity is computed from equation (3.4) and found to be
d = 46 nm. With a wavenumber in the fluid given by k = u/c = 6.3× 105 m−1,
the dimensionless parameter estimating both the validity of the boundary-
layer approach and the importance of interior dissipation is dk = 3× 10−2. We
emphasize that the use of the analytic form of the solution in the boundary layer
avoids the need for the exceedingly high resolution that would be needed for a
fully resolved numerical computation.
Figure 3 displays the amplitude |f̂| of the acoustic wave field in the fluid

and provides a more detailed picture of the wave beam that is generated by
the LSAW. The beam emanates from the corner (x , y)= (0, 0), at an angle q
from the horizontal that can be computed from Snell’s Law cos q = c/cLSAW
as q ≈ 70◦. The figure shows a rather complicated interference pattern in the
beam which results from the reflection on the rigid wall at x = 0. In spite of
the scattering in the solid and of the reflection in the liquid, the form of the
waves on the interface y = 0 is simple and well-described by a pure LSAW. To
illustrate this, we compare in figure 3 the normal velocity Rev̂(x , 0)=Rev̂s(x , 0)
with that predicted for a LSAW with complex wavenumber (6.2). The amplitude
and phase of the LSAW have been fitted to match the numerical result. The
agreement is excellent. Since the problem is linear, the amplitude of the interface
displacements, of the order of 0.1 nm, is directly proportional to the strength of
the forcing which we have chosen somewhat arbitrarily. We comment below on
the magnitude of these displacements in connection with the amplitude of the
mean flow generation.
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Figure 4. (a) Streamfunction j̄Ei of the interior-driven Eulerian mean flow. Contour labels have
units mm2 s−1. (b) Streamfunction j̄S + j̄Eb combining the Stokes drift and boundary-driven
Eulerian mean flow. Contour labels have units 10−3 mm2 s−1.

(b)Mean flows

We now consider the mean flows forced by the acoustic waves in the fluid. Since
they are approximately non-divergent, the Stokes drift and Eulerian mean flows
can be written in terms of streamfunctions j̄S, j̄Ei and j̄Eb , with

ūS = V⊥j̄S, ūEi = V⊥j̄Ei and ūEb = V⊥j̄Eb ,

where V⊥ = (−vy , vx). The equations satisfied by jS, j̄Ei and j̄Eb are readily
obtained from equations (2.8), (4.5), (4.13) and (4.14). We have solved these
equations using a finite-difference discretization of the bi-Laplacian that needs
to be inverted to find j̄Ei and j̄Eb . The results depend strongly on the extent
of the fluid domain in the y-direction. With the realistic values of the shear
and bulk viscosities that we employ, the amplitude of the wave beam decreases
over distances that are large compared with the typical size of experimental
devices (the decay scale is estimated from equation (3.5) as g−1 ≈ 2mm). As
a result, treating the fluid domain as infinite in the y-direction would lead to an
unrealistically strong Eulerian mean flow. We have therefore chosen to consider
a bounded domain of size 1mm in the y-direction. As we use the wave field
computed in a semi-infinite domain, we neglect the reflected beam that appears
on the upper boundary and whose amplitude is about 1/2 that of the main wave
beam. The structure of the mean flow and its magnitude are not expected to
be modified in an essential way by the reflected beam. In the x-direction, we
continue to consider the domain as semi-infinite: the numerical computation
requires to take a finite size, here 2.5mm, but this has only little impact on
the results.
Figure 4a shows the streamfunction j̄Ei of the interior-driven Eulerian flow.

The structure is similar to that observed in experiments and previous numerical
models: a strong clockwise vortex is established to the right of the acoustic wave
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Figure 5. (a) Streamfunction j̄Ei of the interior-driven Eulerian mean flow in a domain with a
boundary at y = 0.1mm. (b) Streamfunction j̄S + j̄Eb combining the Stokes drift and boundary-
driven Eulerian mean flow. Contour labels have units 10−3 mm2 s−1.

beam (figure 4b), with a much weaker counterclockwise circulation to the left
(figure 4a). The qualitative features of this structure are relatively insensitive
to the size of the domain, but the strength of the circulation is not. Here, the
mean velocities obtained are of the order of 10mms−1. These velocities are large
when compared with those reported in Köster (2007), even though the vertical
displacement of the boundary that we have assumed is a factor 10 smaller than
the displacements assumed in this paper for a similar set-up. It is not clear
what the reason for the differences may be, although it may be related to the
lack of a treatment of the boundary layers in Köster (2007). We note that our
numerical results are consistent with the scaling (4.15): using our earlier estimate
ca ≈ 2× 10−3 mm s−1 and !k ∼ 3× 102 for ! = 1mm gives ūE ∼ 20mms−1. Direct
comparison with the velocities reported in experiments is delicate because the
vertical displacements of the boundary are difficult to measure. It should also be
borne in mind that lateral confinement, ignored in our two-dimensional set-up, is
important for the amplitude of the mean velocity field, since it reduces !.
Since !k is large, the interior-driven mean flow dominates the Stokes drift and

the boundary-driven flow. This is confirmed by figure 4b which shows the sum
j̄S + j̄Eb . The largest velocities are reached near the boundary y = 0 and are of the
order of 10mms−1, much smaller than the interior-driven velocities, as expected.
The complete Lagrangian circulation is therefore very well approximated by the
Eulerian circulation in figure 4a.
We emphasize that this is not a general feature of acoustic streaming in LSAW

devices but one that depends on the geometry of the device: here, both the
domain and the region of wave forcing provided by the LSAW are large compared
with the acoustic wavelength, so that !k / 1. If the domain is smaller, then the
three contributions to Lagrangian mean flow can matter. We illustrate this by
considering a domain of 0.1mm in the y-direction instead of the 1mm used so
far. The size of the domain is now comparable to that used in the experiments
of Tan et al. (2009). We continue to use the unbounded form of the acoustic
waves in spite of the strong reflections; the results should therefore be treated
as illustrative rather than as proper predictions of the mean flows in the narrow
domain. Figure 5 shows the streamfunctions j̄Ei and j̄S + j̄Eb . The interior-driven
velocities reduced by a factor of the order of 103 when compared with those in the
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larger domain, and although they still dominate the interior-driven contributions,
it is only be a factor of 10 or so. As a result, the Lagrangian mean flow is not
accurately approximated by the interior-driven Eulerian flow only, in particular
near the boundaries. This effect will be reinforced in domains that are smaller
still, or that are confined in two or three directions.

7. Discussion

This paper is motivated by a series of recent experiments which have
demonstrated the potential of streaming by LSAWs to generate mixing flows
in microfluidic devices. It discusses the computation of the Lagrangian mean
flow, which controls the trajectories of fluid particles, for general wave-forcing
protocols. The problem is formulated using the averaged vorticity equation,
following Eckart (1948) and Westervelt (1953). This formulation extracts the
balance between wave dissipation and mean flow dissipation that is at the core
of the streaming process by eliminating large, cancelling terms in the averaged
momentum equation. Because of this, it appears preferable for numerical
computations to the direct use of the momentum equation.
The formulation takes advantage of the weakness of the wave dissipation

for realistic parameter values and employs a boundary-layer approach. In the
interior of the fluid, the waves are irrotational and can be computed numerically
by solving for a scalar potential. The waves have a significant vortical part
only in thin boundary layers. Analytical expressions for the solution there are
readily obtained in terms of the scalar potential, making it unnecessary to
resolve the small-scale motion near the boundaries explicitly. The vortical part
of the waves in the boundary layer contributes to the mean flow generation in
the form of an effective slip velocity that serves as boundary condition for the
interior mean flow. We derive an expression for this slip velocity which takes into
account the oscillatory motion of the boundary that forces the acoustic waves in
the fluid.
The Lagrangian mean flow is the sum of the Stokes drift and of the Eulerian

mean flow. The latter is naturally separated into two contributions: an interior-
driven one, and a boundary-driven one which is associated with a combination of
the slip velocity and Stokes drift at the boundary. We emphasize that the Stokes
drift and boundary-driven Eulerian flows can be as large as the interior-driven
Eulerian flow in LSAW devices if the size of the devices is comparable to the
acoustic wavelength.
Even when much smaller than the interior-driven flow, the boundary-driven

flow can be important for a micromixer. As discussed by several authors, the
no-slip boundary condition of viscous flows makes such flows inefficient mixers
compared with slip flows because the scalar is trapped in sizable boundary
layers near the walls (Lebedev & Turitsyn 2004; Salman & Haynes 2007).
However, flows driven by acoustic streaming can be expected to behave essentially
as slip flows as far as mixing is concerned, because the boundary streaming
results in a finite slip velocity immediately outside an exceedingly thin boundary
layer. This is a potentially valuable property of LSAW mixers which deserves
future investigation.
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In this paper, we have followed most earlier work on streaming by LSAWs in
treating the nonlinearity parameter a as small. However, in experiments such as
those of Tan et al. (2009) and in our computations, mean velocities of the order of
several millimetres per second are reached, corresponding to Reynolds numbers
of order one. It would therefore be useful to assess the importance of the inertial
terms on the mean flow. This is possible using an expansion based on a large
Strouhal number u!/ū ∼ (k!a)−1 instead of small a. The developments in this
case can be expected to be very similar to those presented in this paper, with
the important difference that the inertial terms are retained in the mean flow
equations (e.g. Riley 2001). When inertial effects are important, the mean flows
can become unstable and unsteady, leading to improved mixing performances.
Another possible extension of our results concerns streaming in very thin

domains. This is motivated by experiments in which LSAWs generate mean
flows in drops that are confined between two plates separated by a narrow
gap (Guttenberg et al. 2004; Frommelt et al. 2008a). The standard Hele–
Shaw approximation (e.g. Batchelor 1967) can then be used to compute the
interior-driven flow.
Also of interest would be the development of a ray-tracing approximation to

the solution similar to that of Frommelt et al. (2008b). The scale separation
required for such an approach is valid in the bulk of the fluid, but special attention
needs to be paid to possible diffraction effects as occur, in particular, at the
corner (x , y)= (0, 0) of our model. The ray-tracing approach should also take into
account the constraint of irrotationality of the acoustic waves in the fluid interior.
Finally, we note that the extreme thinness of the boundary layer (a few tens

of nanometres) suggests that some non-negligible slip can occur at the fluid–solid
interface. It would be interesting to analyse the possible consequences of such a
slip by replacing the no-slip boundary condition used in this paper by a more
sophisticated model such as the Navier boundary condition (e.g. Tabeling 2006).

J.V. acknowledges the support of a Leverhulme Research Fellowship and the hospitality of
the Courant Institute where part of this research was carried out. He thanks J. Cosgrove for
stimulating discussions. O.B. gratefully acknowledges financial support under grant DMS-0604519
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Appendix A. Mean flow in the boundary layers

In this appendix, we solve the averaged momentum equation (4.8) in the boundary
layer near z = 0. We start by writing equation (3.7) as u1(z)= uf(z)+ uj(Z ),
where uf = (uf, vf,wf)= Vf1 is irrotational and uj = (uj, vj, dwj)= dV × J1
is divergence free, and where we have omitted the dependence on (x , y, t) for
simplicity. The corresponding displacement fields are written as xf = (xf, hf, zf)
and xj = (xj, hj, dzj). At this point, we treat all these fields as known exactly: it
is only in the later stages of the derivation that their approximations up to O(d)
errors will be used. We will, however, use from the outset the approximations

v2ZZu
j = 2

u
vtuj +O(d2) and v2ZZv

j = 2
u

vtv
j +O(d2), (A 1)

which follow from equations (3.3), (3.4) and (3.8).
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We now obtain the derivative v2zz(x1 · Vu1) that appears on the right-hand side
of equation (4.8). This contains three terms, computed as

v2zz(x1vxu1)= d−2
(

− 2
u
ufvxuj + 2

u
ujvxuf + 2vZxjv2xZuj

)

+O(d−1), (A 2)

v2zz(h1vyu1)= d−2
(

− 2
u

vfvyuj + 2
u

vjvyuf + 2vZhjv2yZuj

)

+O(d−1) (A 3)

and

v2zz(z1vzu1)= d−3
(

− 2
u
wfvZuj

)

+ d−2
(

− 4
u
ujvzwf − 4

u
ujvZwj − 2

u
wjvZuj + v2ZZzjvZuj

)

+O(d−1). (A 4)

The computation is straightforward, if tedious: it uses extensively integration by
parts in time to eliminate the displacements in favour of the velocities, as well
as equation (A 1) and its analogue for xj and hj to eliminate second derivatives
in Z . Note that the O(d−3) term in equation (A 4) implies that the leading-order
approximations to wf and uf are insufficient to estimate equation (A 4) with the
same O(d−2) accuracy as equations (A 2) and (A 3). However, as shown below,
this term is cancelled in the right-hand side of equation (4.8) by an equal and
opposite contribution to V · (u1u1).
The other terms on the right-hand side of equation (4.8) are next obtained in

the form

V · (u1u1)− V · (ufuf)

= 2ujvxuf + 2ufvxuj + 2ujvxuj

+ vjvyuf + ufvyvj + vfvyuj + ujvyvf + vjvyuj + ujvyvj

+ d−1wfvZuj + ujvzwf + ufvZwj + wjvZuj + ujvZwj +O(d). (A 5)

Rewriting equation (4.8) as

u

2
v2ZZ ū

L = V · (u1u1)− V · (ufuf)+ d2u

2
v2zz(x1 · Vu1) (A 6)

using equations (3.4) and (3.8), and introducing the results (A 2)–(A 5) now leads
to an explicit equation for the Lagrangian mean velocity ūL. Since this equation
applies to the boundary layer, the z-dependent terms of equation (A 2)–(A 5) are
evaluated at z = 0. After a number of simplifications, some involving the condition
V · uj = 0, this equation can be written as

u

2
v2ZZ ū

L = 3ujvxuf + 3ujvxuj + uj(vyvf + 2vyvj)+ vj(2vyuf + vyuj)

−ujvzwf + u(vZxjv2xZuj + vZhjv2yZuj + v2ZZzjvZuj/2)+O(d). (A 7)
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As anticipated, the largest terms in equations (A 4) and (A 5) have cancelled out,
and knowledge of the leading-order approximation to the wave fields is sufficient
to obtain ūL with negligible, O(d) errors.
The right-hand side of equation (A 7) is made explicit by introducing the

harmonic form of the wave solution. Specifically, we introduce uf = Vf̂1e−iut +
c.c., and (uj, vj)= (−vZ Ĵ(2), vZ Ĵ(1))e−iut + c.c., with the right-hand side given in
equation (3.10), into equation (A 7). Only one term involves the vertical velocity
wj (or rather the vertical displacement zj). This is expressed in terms of uj and
vj using the incompressibility condition vZwj = −(vxuj + vyv

j). The result is

u

2
v2ZZ ū

L =
[

3(1+ i)Û dÛ
∗

dx
+ (1+ 2i)V̂ dÛ

∗

dy
+ (2+ i)U dV̂

∗

dy

]

e−2Z

−
[(
3v2xx f̂ + v2yyf̂ − v2zz f̂

)
Û ∗ + 2v2xyf̂V ∗

]
e−(1+i)Z + c.c. (A 8)

Integrating this equation twice with respect to Z , imposing ūL = 0 at Z = 0
and boundedness as Z→ ∞ finally leads to equation (4.9). We have verified
equation (4.9) in the classical problems of a plane wave and a standing wave
above a flat wall (e.g. Lighthill 1978a).

Appendix B. Numerical method

To find the flow in the fluid interior, we need to solve equation (3.6) for the
potential, together with the time-harmonic version of equation (5.2), namely

V2f̂s = −u2

a2
f̂s and V2ĵs = −u2

b2
ĵs for y < 0. (B 1)

The boundary conditions are obtained from those in §5b. In particular, the stress
tensor is given by −p̂= −iur0f̂,

T̂ s = im
s

u
(2v2xyf̂

s + v2xx ĵ
s − v2yyĵ

s) and N̂ s = − il
su

a2
f̂s + 2im

s

u
(v2yyf̂

s + v2xyĵ
s).

In numerical computations, we generate incident waves by imposing a non-
zero T̂ s on the boundary of the solid in a small interval around some x# −1.
We also handle the normal component of the boundary condition (5.3) by solving
for the fluid in the whole upper half plane y > 0 and imposing the symmetry
f̂(−x , y)= f̂(x , y).
The boundary-value problem determining the wave fields can be reduced

to a one-dimensional problem using Fourier transforms to solve the interior
equations (3.6) and (B 1) explicitly. Thus, we write

f̂s(x , y)=
∫

f̌s(k)eikx+may dk with f̌s(k)= 1
2p

∫
f̂s(x , 0)e−ikx dx , (B 2)

ĵs(x , y)=
∫

ǰs(k)eikx+mby dk with ǰs(k)= 1
2p

∫
ĵs(x , 0)e−ikx dx (B 3)

and f̂(x , y)=
∫

f̌(k)ei(kx+my) dk with f̌(k)= 1
2p

∫
f̂(x , 0)e−ikx dx . (B 4)
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Here, ma =
√
k2 − u2/a2, mb =

√
k2 − u2/b2 and m =

√
u2/[c2 − iu(n + n′)] − k2,

with a choice of branches which ensures that, for k ∈ R, decay or radiation
boundary conditions are satisfied in the solid as y→ −∞ and in the fluid as
y→ ∞. Note that we have defined ma and mb differently from m: this is because
our main interest is for LSAWs which are evanescent in the solid and propagating
in the liquid and thus, with our definitions, are characterized by ma , mb and
m with much larger real parts than imaginary parts for the scales k that are
primarily excited.
With the definitions (B 2) it is straightforward to write down all fields in terms

of f̌s, ǰs and f̌, and hence in terms of (pseudodifferential transforms of) f̂s(x , 0),
ĵs(x , 0) and f̂(x , 0). Expressing the boundary conditions in this manner reduces
the boundary-value problem to a set of one-dimensional pseudodifferential
equations for f̂s(x , 0), ĵs(x , 0) and f̂(x , 0). In principle, these equations could
be solved analytically, using the Wiener–Hopf technique (Craster 1996). Here
we solve them numerically, using a straightforward pseudospectral collocation
method (Trefethen 2000). The infinite domain in x is replaced by a large periodic
domain, and the three unknown fields f̂s(x , 0), ĵs(x , 0) and f̂(x , 0) are discretized
on a regular grid. The pseudodifferential operators are then approximated by
matrices which are computed using fast Fourier transforms.
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