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We present an extension to anisotropic flows of the recently developed Helmholtz and
wave–vortex decomposition method for one-dimensional spectra measured along ship
or aircraft tracks in Bühler et al. (J. Fluid Mech., vol. 756, 2014, pp. 1007–1026).
Here, anisotropy refers to the statistical properties of the underlying flow field, which
in the original method was assumed to be homogeneous and isotropic in the horizontal
plane. Now, the flow is allowed to have a simple kind of horizontal anisotropy that
is chosen in a self-consistent manner and can be deduced from the one-dimensional
power spectra of the horizontal velocity fields and their cross-correlation. The key
result is that an exact and robust Helmholtz decomposition of the horizontal kinetic
energy spectrum can be achieved in this anisotropic flow setting, which then also
allows the subsequent wave–vortex decomposition step. The anisotropic method is as
easy to use as its isotropic counterpart and it robustly converges back to it if the
observed anisotropy tends to zero. As a by-product of our analysis we also found a
simple test for statistical correlation between rotational and divergent flow components.
The new method is developed theoretically and tested with encouraging results on
challenging synthetic data as well as on ocean data from the Gulf Stream.
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1. Introduction
High-resolution observational datasets in atmosphere and ocean fluid dynamics are

usually very restricted in their spatial coverage; they are often confined to either an
essentially one-dimensional horizontal ship or aircraft track, or to a narrow sweep of
a remote-sensing instrument. Methods that can extract the maximum of information
from such one-dimensional measurements are therefore crucial, especially as recent
progress in measurement and modelling techniques provides a growing window into
the ‘submesoscale’ wave–vortex jigsaw puzzle that is typical for three-dimensional
stratified rotating fluids (e.g. McIntyre 2008).

In this connection, a new wave–vortex decomposition method for one-dimensional
power spectra obtained from horizontal ship and aircraft-track data was recently
developed in Bühler, Callies & Ferrari (2014), hereafter BCF14, and Callies, Ferrari
& Bühler (2014). The first step of the new method takes as input the power
spectra of the horizontal velocity field measured along the track and performs an
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FIGURE 1. Illustration of the wave–vortex decomposition method from BCF14. (a)
Observed horizontal velocity and buoyancy spectra at 200 m depth in the eastern
subtropical North Pacific. (b) Helmholtz decomposition of the kinetic energy into rotational
and divergent components K and K� . (c) Observed total energy spectrum E versus
diagnosed wave energy spectrum EW , showing clearly that the flow is dominated by waves
at scales below 100 km. This is not obvious from the raw data on the left.

exact Helmholtz decomposition of these spectra into their rotational and divergent
components. Here we follow standard usage, whereby the rotational component is
horizontally non-divergent and described by a stream function  whilst the divergent
component is horizontally irrotational and described by a flow potential �. The
relative magnitude of these spectral components already allows some deductions
about the flow characteristics at various scales to be made, but rather more can be
said. Indeed, in a second step an energy equipartition result from linear wave theory
is utilized to estimate the wave energy spectrum of hydrostatic inertia–gravity waves
solely based on the divergent part of the horizontal kinetic energy spectrum computed
in the first step. This predicts the wave energy spectrum entirely from the observed
horizontal velocity field along one-dimensional measurement tracks.

If buoyancy is also measured, then the total observed flow energy is available, and
hence the difference between the observed total energy and the predicted wave energy
provides an estimate of the energy contained in the vortical, quasi-geostrophic part of
the horizontal motion. Comparison of the wave and the vortex energy levels then gives
a useful tool with which to judge the physical nature of the measured flow field. The
workings of the BCF14 method are illustrated in figure 1.

The original method was developed for hydrostatic flows but its extension to
non-hydrostatic flows is straightforward and allows application of the new method to
high-resolution data in which the vertical velocity is measured as well (e.g. Zhang
et al. 2015; Callies, Bühler & Ferrari 2016). Overall, the new method is very easy to
use and quite broadly applicable in the field (e.g. Balwada, LaCasce & Speer 2016;
Bierdel et al. 2016; Rocha et al. 2016). We note in passing that the method could
also be useful for a simple and computationally cheap local analysis of data from
high-resolution numerical simulations.

Of course, the BCF14 method relies on a set of simplifying assumptions about the
statistical flow structure and about the measurements themselves, which are assumed
to occur at a fixed altitude and time. Specifically, for the Helmholtz decomposition
step it is assumed that the flow is statistically homogeneous and isotropic in the
horizontal plane and that the stream function and the potential are uncorrelated (the
precise condition is (3.2) below). For the subsequent wave–vortex decomposition step
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it is furthermore assumed that the flow is stationary in time and also homogeneous
in the vertical direction, which allows the linear wave field to be treated as a
superposition of uncorrelated plane waves. Removing any of these assumptions would
make the method more widely applicable and would allow to extract more information
from the available datasets.

The present paper proposes an extension of this method that retains horizontal
homogeneity, but allows for horizontal anisotropy. This is of obvious relevance to
real atmosphere and ocean flows, where both the vortical flow and the wave field
may exhibit pronounced anisotropies, especially at larger scales. For example, the
vortical flow might exhibit strong directional currents such as the Gulf Stream, and
the local internal wave field might be predominantly directed away from localized
source regions such as prominent topography features exemplified by the Hawaiian
ridge (e.g. Merrifield, Holloway & Johnston 2001). Anisotropy is easily detected in
data, though it is often ignored. For example, if (u, v) are the horizontal velocity
components such that u is the longitudinal velocity aligned with the measurement
track and v is the transverse velocity at right angles to it, then isotropy implies that

E[u2 � v2] = 0 and E[uv] = 0 (1.1a,b)

both hold. Here E denotes taking the expected value over the distribution of the
velocity field, and a non-zero observed value in either of these two expectations
would be sufficient to indicate the occurrence of anisotropy (e.g. Stewart et al. 2015).

However, it is important to note at the outset that any attempt to allow for
anisotropic flow features in the analysis of one-dimensional power spectra must
necessarily restrict to some constrained form of anisotropy, and cannot possibly
treat the general case. This is for the following reason: the fundamental objects that
describe the statistical flow structure are the horizontal two-point correlation functions
for the underlying stream function and velocity potential. For example,

C (x, y) =E[ (x0, y0) (x0 + x, y0 + y)] (1.2)

is the two-point correlation function for the stream function  and its horizontal
Fourier transform Ĉ (k, l) is the corresponding power spectrum (detailed definitions
are given in the next section). Here C does not depend on (x0, y0) by the assumption
of homogeneity and if the measurement track is aligned with x then only the
one-dimensional trace along y = 0 of these functions is available.

In the isotropic case C depends only on a single variable, which is the distance
r = p

x2 + y2 between the two points. Such a function of a single variable can
in principle be deduced from suitable observations of one-dimensional correlation
functions along the track y = 0. On the other hand, in the general anisotropic case C 

depends on the two variables (x, y) and a general function of two variables cannot
be deduced from one-dimensional measurements taken in a single direction. In other
words, further restrictions must now be made on the possible form of the correlation
functions. This is a common problem when fitting multi-dimensional power spectra
to lower-dimensional data, and some form of tractable parametric anisotropy based
on physical intuition is usually prescribed (e.g. Wortham, Callies & Scharffenberg
2014; Wortham & Wunsch 2014).

We are not aware of a systematic or optimal approach to this problem, so we
followed our intuition to look for a simple and mathematically consistent form of
anisotropy that is relevant to the physical situation at hand. Specifically, we took our
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cue from the relationships between the correlation functions of the horizontal velocity
components (u, v) and of the stream function  and potential �. As u = � y + �x it
follows that

Cu(x, y) = � @2

@y2
C (x, y) � @2

@x2
C�(x, y). (1.3)

This equation illustrates the well-known fact that Cu is anisotropic even if C 

and C� are isotropic. Based on this natural form of anisotropy arising for the
velocity components, we allow for anisotropy in either  or � (but not both
simultaneously) that arises from a second-order directional derivative applied to
an isotropic function (e.g. (2.11) below). Both the underlying isotropic function and
the orientation of the directional derivative can then be systematically determined
from the one-dimensional data. To facilitate this we require an additional observed
field compared to the isotropic case, namely the one-dimensional cross-correlation
Cuv(x) along a measurement track y = 0, which is readily obtained from the raw
(u, v)-data and would be identically zero in the isotropic case.

Overall, our method will be seen to have the following properties. We assume that
 and � are uncorrelated, which implies that Cuv(x) is an even function, or that the
corresponding one-dimensional spectrum Ĉuv(k) is real. We also assume that Ĉuv(k) is
sign-definite for all k. The derived anisotropic components of the decomposed power
spectra as a function of wavenumber k > 0 then turn out to be a priori bounded in
magnitude by E[u2 � v2]/k, which guarantees that our anisotropic method converges
to the isotropic method in the relevant limit; it also indicates that the anisotropic
components are strongest at larger scales. For the complete Helmholtz decomposition
we can choose to allow anisotropy in either the stream function  or in the potential
�, but this choice does not matter for the subsequent wave–vortex decomposition
step. This is because that step only uses the divergent horizontal kinetic energy
spectrum, which turns out to be the same in both cases. Moreover, for the purpose of
decomposing the kinetic energy spectrum we can also allow anisotropy in both  and
� simultaneously, again without changing the result of the wave–vortex decomposition.
This adds a level of robustness to the predictions of our method.

The method itself is easy to use and requires no significant extra computations
compared to the isotropic version. There is, however, one isolated case we cannot treat,
which is

E[u2 � v2] 6= 0, but E[uv] = 0. (1.4)

In our model this corresponds to an identically zero cross-correlation spectrum Ĉuv and
then our method reduces to the old isotropic method, despite the anisotropy implied
by the first part of (1.4). Apart from this isolated Achilles heel case, we have found
our method easy to use and yielding very good results both for challenging synthetic
test data as well as real ocean data from the Gulf Stream region.

The plan of the paper is as follows. Our anisotropic flow models are introduced
in § 2 and the anisotropic Helmholtz decomposition is formulated in § 3. The
corresponding wave–vortex decomposition step is provided in § 4 and applications to
synthetic and real ocean data are presented in § 5. Concluding remarks are offered in
§ 6.

2. Anisotropic modelling of one-dimensional data
We introduce the velocity spectra of a two-dimensional horizontal flow with

homogeneous statistics and propose a class of anisotropic flow models that are
simple, mathematically self-consistent and can be determined solely from horizontal
velocity data taken along one-dimensional measurement tracks.
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2.1. Velocity correlations and power spectra
The spatial velocity correlation functions are

Cu(x, y) =E[u(x0, y0)u(x0 + x, y0 + y)],
Cv(x, y) =E[v(x0, y0)v(x0 + x, y0 + y)],
Cuv(x, y) =E[u(x0, y0)v(x0 + x, y0 + y)].

9
=

; (2.1)

We omitted in these formulas the time t and depth z, as they are considered fixed
during the measurement. The homogeneity of the flow implies that the spatial
correlations depend on the relative displacement (x, y) but not on the specific location
(x0, y0). We also assume that E[u] = E[v] = 0 throughout. By definition Cu and Cv

are even functions of (x, y), but Cuv need not be.
The power spectra are the Fourier transforms of the correlation functions:

{Ĉu(k, l), Ĉv(k, l), Ĉuv(k, l)} =
ZZ

e�i(kx+ly){Cu, Cv, Cuv} dx dy. (2.2)

Both Ĉu and Ĉv are real and non-negative, but Ĉuv can be complex and only satisfies
the weaker constraint |Ĉuv|2 6 ĈuĈv (e.g. Yaglom (2004, §3.15)).

We align x with the measurement track and hence u is the along-track, longitudinal
component and v is the across-track, transverse component of the velocity field.
The correlation functions (2.1) are hence only observed on the line y = 0 and the
corresponding one-dimensional power spectra are

Ĉu(k) =
Z

e�ikxCu(x, 0) dx = 1
2p

Z 1

�1
Ĉu(k, l) dl, (2.3)

for example. In a nutshell, the task is to reconstruct two-dimensional spectra such as
Ĉu(k, l) from one-dimensional spectra such as Ĉu(k) for a suitable class of anisotropic
flow models.

2.2. Anisotropic flow models
We introduce the new model first in the case where the horizontal flow is non-
divergent; the general case is treated in § 3.1 below. We introduce a stream function
 (x, y) via

ux + vy = 0 ) u = � y and v = x. (2.4a,b)

The power spectra are then given by (see appendix A)

Ĉu
 (k, l) = l2Ĉ (k, l), Ĉv

 (k, l) = k2Ĉ (k, l), Ĉuv
 (k, l) = �klĈ (k, l). (2.5a�c)

In BCF14, statistical isotropy was assumed for  , which meant

C (x, y) = F(r), r =p
x2 + y2. (2.6a,b)

Consequently its two-dimensional power spectrum was also isotropic in spectral space:

Ĉ (k, l) = F̂(kh), kh =
p

k2 + l2, F̂ > 0. (2.7)
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To obtain an anisotropic model we need to go beyond (2.7). We take as motivation
(1.3) or (2.5), which are anisotropic even if Ĉ = F̂(kh). Hence we are led to consider
an anisotropic component of Ĉ that consists of a suitable quadratic form in (k, l)
multiplying an isotropic component. Specifically, we consider

Ĉ (k, l) = F̂(kh) + (k, l)
✓

a c
c b

◆✓
k
l

◆
Ĥ(kh), (2.8)

where F̂ and Ĥ are real and non-negative and the coefficient matrix is positive semi-
definite (i.e. ak2 + bl2 + 2ckl > 0), with distinct non-negative eigenvalues (the case of
equal eigenvalues is trivially isotropic). It turns out that the form (2.8) can be greatly
simplified without loss of generality by exploiting two obvious symmetries. First, we
can move a positive isotropic component from the second term to the first term. This
uses

(k, l)
✓

a c
c b

◆✓
k
l

◆
Ĥ(kh) = d k2

hĤ(kh) + (k, l)
✓

a � d c
c b � d

◆✓
k
l

◆
Ĥ(kh) (2.9)

and works provided the parameter d > 0 is small enough that the changed coefficient
matrix remains non-negative. We assume the maximal value of d has been used such
that the smaller of the two eigenvalues of the coefficient matrix is now zero. Second,
we can then divide the remaining coefficient matrix by a positive constant provided we
simultaneously multiply Ĥ by the same constant. This means the remaining non-zero
eigenvalue of the coefficient matrix can be scaled to unity. Taken together, we finally
obtain a coefficient matrix with a = cos2 ✓ , b = sin2 ✓ , and c = cos ✓ sin ✓ and hence

Ĉ (k, l) = F̂(kh) + (k cos ✓ + l sin ✓)2Ĥ(kh), 0 6 ✓ < p. (2.10)

Any instance of (2.8) can be rewritten as (2.10) by redefining F̂ and Ĥ as described.
The angle parameter ✓ has a simple physical interpretation in terms of the unit vector
s = (cos ✓ , sin ✓): at each wavenumber magnitude kh the power spectrum takes the
maximal value F̂(kh) + k2

hĤ(kh) if the wavenumber vector is parallel to s and the
minimal value F̂(kh) if the wavenumber vector is perpendicular to s. In other words,
the stream function spectrum is amplified in the direction of ±s. Only the direction of
s matters, but not its orientation, so we can restrict the angle to the first and second
quadrant as indicated.

The spectrum in (2.10) takes a simple form in real space too:

C (x, y) = F(r) � d2

ds2
H(r), (2.11)

where d/ds is the directional derivative along s. This makes obvious the connection to
the directional derivatives along the xy-axes in (1.3) and (2.5), which motivated our
approach. It is equally simple to consider a purely divergent, irrotational horizontal
flow described by a potential � via

vx � uy = 0 ) u = �x and v = �y, (2.12a,b)

which gives rise to two-dimensional spectra of the form

Ĉu
�(k, l) = k2Ĉ�(k, l), Ĉv

�(k, l) = l2Ĉ�(k, l), Ĉuv
� (k, l) = +klĈ�(k, l). (2.13a�c)
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x

y

FIGURE 2. Sketch of anisotropic flow kinematics. On the right is a Fourier component of
the stream function with wavenumber vector k(✓) and angle ✓ in the first quadrant. The
transversal flow indicated by the purple arrows is perpendicular to k(✓). On the left is a
Fourier component of the potential with wavenumber vector k(� ) and � = ✓ + p/2. The
corresponding longitudinal flow indicated by the green arrows is parallel to k(� ). Note
that the flow fields are congruent and that uv < 0 and v2 > u2.

The anisotropy model (2.10) can then be developed with � instead of  , i.e.

Ĉ�(k, l) = Ĝ(kh) + (k cos � + l sin � )2Î(kh), 0 6 � < p (2.14)

for some non-negative functions Ĝ(kh) and Î(kh) and angle parameter � , say. Notably,
now the power spectra of both � and of the horizontal velocity vector u = r� are
increased in the direction of s(� ) = (cos � , sin � ). The anisotropic flow kinematics for
both  and � are illustrated in figure 2. As noted before, the stream function power
spectrum is amplified in the direction of s(✓), which by the transverse, skew-gradient
nature of (2.4) implies that the horizontal velocity field is amplified in the direction
perpendicular to s. For example, if ✓ is in the first quadrant then the amplified velocity
direction will be in the second quadrant, and therefore E[uv] < 0. Conversely, if the
power spectra of � are increased in the direction of s(� ) = (cos � , sin � ) then u =
r� is amplified in the same direction; in the depicted situation � = ✓ + p/2 and the
amplified velocity fields have the same direction.

In the sequel we will analyse the general case that features both  and � and
formulate an anisotropic decomposition method for it. The principal advantage of our
model is its simplicity and apparent self-consistent structure. Of course, the restriction
to a single angle parameter ✓ or � for all kh does not allow for the possibility that
different anisotropy directions might be relevant at different length scales. This is
certainly a restriction of practical importance. For example, oceanic jets tend to be
highly anisotropic at large scales, but smaller submesoscale eddies tend to be fairly
isotropic. Similarly, oceanic internal tides are expected to be anisotropic, but the
background spectrum of internal waves described by the Garrett–Munk spectrum (e.g.
Munk 1981) is not. Presumably, in such a situation one could consider a superposition
of models of the type (2.10) with different angles attached to different wavenumber
regimes, but this is work for further research. However, we note that our tests with
synthetic spectra in § 5.2 below include challenging cases that do not conform to the
model assumptions, yet the method performs remarkably well.
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3. Anisotropic Helmholtz decomposition
As was shown in BCF14, under the assumptions of isotropy and uncorrelated  and

�, the one-dimensional power spectra can be uniquely decomposed into rotational and
divergent parts by a suitable Helmholtz decomposition. The task here is to extend this
result to our anisotropic models.

3.1. The Helmholtz decomposition
We consider the general case

u = � y + �x and v = x + �y. (3.1a,b)

With doubly periodic boundary conditions  and � are uniquely related to u and v
(apart from meaningless constants), thus the Helmholtz decomposition can be found
uniquely when the full velocity field (u, v) as a function of (x, y) is accessible. Of
course, this result is not enough to allow such a decomposition when only ship-track
data along the line y = 0 are available. Additional assumptions are needed to make
progress.

First off, we require that  (x, y) and �(x, y) are statistically uncorrelated such that

E[ (x0, y0)�(x0 + x, y0 + y)] = 0 (3.2)
for all (x, y). This is not a trivial requirement and its validity depends on the physical
situation at hand, as discussed in BCF14. If (3.2) holds then the two-dimensional
velocity spectra can be decomposed into a superposition of rotational and divergent
parts via

Ĉu(k, l) = Ĉu
 (k, l) + Ĉu

�(k, l) = +l2Ĉ (k, l) + k2Ĉ�(k, l),

Ĉv(k, l) = Ĉv
 (k, l) + Ĉv

�(k, l) = +k2Ĉ (k, l) + l2Ĉ�(k, l),

Ĉuv(k, l) = Ĉuv
 (k, l) + Ĉuv

� (k, l) = �klĈ (k, l) + klĈ�(k, l).

9
>=

>;
(3.3)

Note that Ĉuv is manifestly real in this expression, or equivalently that Cuv is an even
function of (x, y). Hence the occurrence of an imaginary part of Ĉuv strictly implies
a correlation between  and �, because (3.2) is the only assumption we have made
so far. This yields a useful observational test of (3.2):

E[ (x0, y0)�(x0 + x, y0 + y)] = 0 ) Cuv(x) = Cuv(�x) or Ĉuv(k) 2 R. (3.4a,b)

This is unlikely to be a new result but we have not seen it pointed out elsewhere.
Now, integrating (3.3) over the wavenumber l (cf. (2.3)) yields

Ĉu(k) = Ĉu
 (k) + Ĉu

�(k),

Ĉv(k) = Ĉv
 (k) + Ĉv

�(k),

Ĉuv(k) = Ĉuv
 (k) + Ĉuv

� (k).

9
>=

>;
(3.5)

The spectra on the left-hand side of (3.5) are observed and the spectra on the
right-hand side are the sought-after Helmholtz decomposition. In BCF14, horizontal
isotropy was assumed and hence only the first two lines in (3.5) had to be considered
because under isotropy Ĉuv(k) is identically zero (this follows trivially from the
even l-integration of the odd integrand in the third row of (3.3)). Here we relax the
isotropic assumption and develop a similar decomposition model that uses one extra
quantity derived from the observations: the cross-correlation Ĉuv(k).
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3.2. Constraints on anisotropic one-dimensional spectra
We examine first the rotational component based on  by assuming the spectrum
C (x, y) has the form (2.10) with some F̂(kh), Ĥ(kh) and ✓ . Performing the
l-integration, noting that odd terms in l vanish, and using cos 2✓ = cos2 ✓ � sin2 ✓
leads to

Ĉu
 (k) = 1

2p

Z 1

�1
l2[F̂(kh) + (k2 cos 2✓ + k2

h sin2 ✓)Ĥ(kh)] dl, (3.6)

Ĉv
 (k) = 1

2p

Z 1

�1
k2[F̂(kh) + (k2 cos 2✓ + k2

h sin2 ✓)Ĥ(kh)] dl, (3.7)

Ĉuv
 (k) = � 1

2p

Z 1

�1
kl[(2kl cos ✓ sin ✓)Ĥ(kh)] dl. (3.8)

These even integrals are equal to twice their values if l > 0 only. Hence, changing
integration variable from l > 0 to kh > |k| and using l dl = kh dkh at constant k, we
obtain

Ĉu
 (k) = 1

p

Z 1

|k|
kh

q
k2

h � k2[F̂(kh) + (k2 cos 2✓ + k2
h sin2 ✓)Ĥ(kh)] dkh, (3.9)

Ĉv
 (k) = 1

p

Z 1

|k|

khk2

p
k2

h � k2
[F̂(kh) + (k2 cos 2✓ + k2

h sin2 ✓)Ĥ(kh)] dkh, (3.10)

Ĉuv
 (k) = �sin 2✓

p

Z 1

|k|
khk2

q
k2

h � k2Ĥ(kh) dkh. (3.11)

The last step uses sin 2✓ = 2 cos ✓ sin ✓ and confirms the heuristic link between ✓ and
the sign of E[uv] noted at the end of § 2.2. Moreover, this makes clear that this link
exists at every wavenumber.

By inspection and using Leibniz’s rule for differentiating integrals we obtain

�k
d
dk

Ĉu
 (k) = Ĉv

 (k) + 2 cot 2✓ Ĉuv
 (k). (3.12)

Compared to the constraint derived for the isotropic model there is now a new term
2 cot 2✓ Ĉuv

� (k). This term is straightforward to use numerically except when sin 2✓
vanishes, which occurs if ✓ = 0 or ✓ = p/2. In these cases the new term has a non-
trivial limiting behaviour, because Ĉuv

 then vanishes as well, but this cannot easily be
captured numerically. This is the Achilles heel case mentioned in (1.4).

Mutatis mutandis, for the divergent component depending on � the counterparts of
the above results can be derived in a similar fashion, so we skip the derivations and
just list the results. We obtain

Ĉu
�(k) = 1

p

Z 1

|k|

khk2

p
k2

h � k2
[Ĝ(kh) + (k2 cos 2� + k2

h sin2 � )Î(kh)] dkh, (3.13)

Ĉv
�(k) = 1

p

Z 1

|k|
kh

q
k2

h � k2[Ĝ(kh) + (k2 cos 2� + k2
h sin2 � )Î(kh)] dkh, (3.14)

Ĉuv
� (k) = +sin 2�

p

Z 1

|k|
khk2

q
k2

h � k2Î(kh) dkh, (3.15)
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and this counterpart to (3.12):

�k
d
dk

Ĉv
�(k) = Ĉu

�(k) � 2 cot 2� Ĉuv
� (k). (3.16)

Note the different sign in the final term compared to (3.12). We note in passing that
in BCF14 the functions Ĉu

 and Ĉv
� were denoted by D and D� , respectively. The

present notation is clearer and makes obvious the physical meaning of these functions.

3.3. Model choice and decomposition method
At this juncture the most natural step would be to allow anisotropy of the described
form in both  and � and then determine the relevant spectral functions from the
observed data. However, a simple counting argument shows that this not possible in
general. This is because observing the three one-dimensional spectra (Ĉu, Ĉv, Ĉuv) is
not enough to determine the four underlying spectral functions (F̂, Ĝ, Ĥ, Î) that appear
in (2.10) and (2.14). If a decomposition of both Ĉu and Ĉv is required then we need
to proceed with a more modest modelling step that allows anisotropy in either  or
� but not in both simultaneously. In other words, we attribute the anisotropy at the
outset to either  or �. This is a significant restriction, no doubt, although physical
circumstances can be envisaged where anisotropy is indeed dominant in only one of
the two fields. For example, if a dominant balanced flow is anisotropic but the waves
are not then � could be modelled isotropically to good approximation.

However, it will turn out that the decomposition of the kinetic energy spectrum K =
(Ĉu + Ĉv)/2 will be indifferent to the choice of anisotropy attribution. In other words,
whereas the individual decomposition of Ĉu and Ĉv depends on that attribution choice,
their sum is indifferent to it. Indeed, there is a whole family of jointly anisotropic flow
models in both  and � that yield the identical decomposition of K. This important
fact, which has significant implications for the wave–vortex decomposition, will be
discussed in § 3.4.

Leaving aside the determination of the scalar angle parameters ✓ and � for the
moment, we now identify two alternative models suitable for a full decomposition of
both Ĉu and Ĉv:

Model 1. (Anisotropic stream function model) The power spectrum of  has the
anisotropic form (2.10), but for � we set Î(kh) ⌘ 0 in (2.14). This implies Ĉuv

 (k) =
Ĉuv(k) and � is irrelevant.

Model 2. (Anisotropic potential model) Here the power spectrum � has the
anisotropic form (2.14), but we set Ĥ(kh) ⌘ 0 in (2.10). This implies Ĉuv

� (k) = Ĉuv(k)
and ✓ is irrelevant.

Combining (3.5) with either (3.12) or (3.16) the corresponding decomposition
equations are either

Model 1:

8
><

>:

�k
d
dk

Ĉu
 (k) + Ĉv

�(k) = Ĉv(k) + 2 cot 2✓ Ĉuv(k),

Ĉu
 (k) � k

d
dk

Ĉv
�(k) = Ĉu(k),

(3.17)

or

Model 2:

8
>><

>>:

�k
d
dk

Ĉu
 (k) + Ĉv

�(k) = Ĉv(k),

Ĉu
 (k) � k

d
dk

Ĉv
�(k) = Ĉu(k) � 2 cot 2� Ĉuv(k).

(3.18)
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The spectra on the right-hand side are observed so this is a set of ordinary differential
equations (ODEs) for Ĉu

 (k) and Ĉv
�(k), which can be solved backwards from k =+1

to k = 0 after using the decay boundary conditions

Ĉv
�(+1) = Ĉu

 (+1) = 0. (3.19)

As noted in BCF14, these ODE systems diagonalize in the variables Ĉu
 ± Ĉv

� , which
allows their explicit solution. For the first model the solution for k > 0 is

Ĉu
 (k) =

Z 1

k

1
2k̄

"
Ĉu(k̄)

k2 � k̄2

k̄k
+ [Ĉv(k̄) + 2 cot 2✓Ĉuv(k̄)]k2 + k̄2

k̄k

#
dk̄, (3.20)

Ĉv
�(k) =

Z 1

k

1
2k̄

"
Ĉu(k̄)

k2 + k̄2

k̄k
+ [Ĉv(k̄) + 2 cot 2✓Ĉuv(k̄)]k2 � k̄2

k̄k

#
dk̄. (3.21)

These extend the equations (2.30)–(2.31) of BCF14, where (D , D�, s) correspond to
(Ĉu

 , Ĉv
�, ln k) here. For the second model we find

Ĉu
 (k) =

Z 1

k

1
2k̄

"
[Ĉu(k̄) � 2 cot 2� Ĉuv(k̄)]k2 � k̄2

k̄k
+ Ĉv(k̄)

k2 + k̄2

k̄k

#
dk̄, (3.22)

Ĉv
�(k) =

Z 1

k

1
2k̄

"
[Ĉu(k̄) � 2 cot 2� Ĉuv(k̄)]k2 + k̄2

k̄k
+ Ĉv(k̄)

k2 � k̄2

k̄k

#
dk̄. (3.23)

With (Ĉu
 , Ĉv

�) in hand the other decomposition members then follow as

Ĉu
�(k) = Ĉu(k) � Ĉu

 (k) and Ĉv
 (k) = Ĉv(k) � Ĉv

�(k). (3.24a,b)

It remains to determine the relevant angle parameter, which is in fact straightforward
from the bulk statistics of the data. For example, in order to find ✓ in the first model
we integrate both equations in (3.17) over k and then subtract them. This yields

cot 2✓ = Eu2 �Ev2

2Euv
and sgn(sin 2✓) = �sgn(Euv). (3.25a,b)

The latter is the sign relation established earlier. This concludes the unique
determination of ✓ 2 [0, p), which the first part of (3.25) only determines up to
a difference of p/2. Notice that in order to compute ✓ we do not need the spectral
functions, since we can calculate the statistics Eu2 � Ev2 and Euv directly from the
velocity observations. Similarly, for � in the second model we obtain

cot 2� = Eu2 �Ev2

2Euv
and sgn(sin 2� ) = +sgn(Euv), (3.26a,b)

which differs from (3.25) only in the sign condition. Therefore, for the same data ✓
and � differ by p/2, i.e. the corresponding directions are perpendicular as illustrated
in figure 2. This does not depend on the nature of the data but is a feature of
our method. Overall � and ✓ point into the first and second principal directions of
the random velocity field in uv-space, respectively. In particular, we can use the
substitution

2 cot 2✓ = 2 cot 2� = Eu2 �Ev2

Euv
(3.27)

in the solution formulas derived above. This works except in the Achilles heel case
Euv = 0 but Eu2 6=Ev2.
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3.4. Kinetic energy spectrum decomposition
The Helmholtz decomposition of the horizontal kinetic energy spectrum

K = 1
2(Ĉ

u + Ĉv) = K + K� (3.28)

naturally involves

2K (k) = Ĉu
 (k) + Ĉv

 (k) and 2K�(k) = Ĉu
�(k) + Ĉv

�(k). (3.29a,b)

Substituting from the exact solution (3.20)–(3.26) and using k > 0 leads to

2K (k) = Ĉv(k) + 1
k

Z 1

k

✓
Ĉv(k̄) � Ĉu(k̄) + Eu2 �Ev2

Euv
Ĉuv(k̄)

◆
dk̄, (3.30)

2K�(k) = Ĉu(k) � 1
k

Z 1

k

✓
Ĉv(k̄) � Ĉu(k̄) + Eu2 �Ev2

Euv
Ĉuv(k̄)

◆
dk̄. (3.31)

Without the new anisotropic term in Ĉuv these expressions were first displayed in
Lindborg (2015) as a trivial but useful consequence of the Helmholtz decomposition
method in BCF14. Surprisingly, these formulas are valid for both models, i.e. any set
of input spectra (Ĉu, Ĉv, Ĉuv) leads to predictions for (K , K�) that are identical for
both anisotropic models. Crucially, as discussed in the next section, the only ingredient
from the Helmholtz decomposition that enters into the wave–vortex decomposition
is K� , which by (3.31) is the same for both anisotropic models. So even a ‘wrong’
anisotropic model choice for the Helmholtz decomposition would not affect the
subsequent wave–vortex decomposition.

This surprising result warrants some more analysis: why does the model choice not
matter for the energy decomposition? First, rewriting K as

2K (k) = Ĉu
 (k) + Ĉv

 (k) = Ĉu
 (k) � Ĉv

�(k) + Ĉv(k) (3.32)

shows that K depends only on the difference Ĉu
 � Ĉv

� of the spectra appearing in the
ODE systems (3.17) or (3.18). Second, this difference satisfies the respective ODEs

�
✓

k
d
dk

+ 1
◆

(Ĉu
 (k) � Ĉv

�(k)) =
(

Ĉv(k) � Ĉu(k) + 2 cot 2✓ Ĉuv(k) M1
Ĉv(k) � Ĉu(k) + 2 cot 2� Ĉuv(k) M2

(3.33)

in the two models. This makes obvious that K is indifferent to the model choice if
cot 2� = cot 2✓ , which is of course the case here.

This derivation highlights a relevant symmetry of the ODE systems (3.17) and
(3.18): the kinetic energy decomposition is indifferent to any function that is added
to both equations on the right-hand side, because this leaves the difference equation
unchanged. This allows for a virtual third model to be conceived in which both  
and � are allowed to be anisotropic, but it is required that the anisotropy direction
is the same in both fields such that (3.27) holds:

Model 3:

8
>><

>>:

�k
d
dk

Ĉu
 (k) + Ĉv

�(k) = Ĉv(k) + Eu2 �Ev2

Euv
Ĉuv
 (k),

Ĉu
 (k) � k

d
dk

Ĉv
�(k) = Ĉu(k) � Eu2 �Ev2

Euv
Ĉuv
� (k).

(3.34)

7%%"A��((( 20�1#�36� !#6�2!#��%�#�A �7%%"A���3!� !#6��� ������5� ���� 	�
,!( �!03�3�5#!��7%%"A��((( 20�1#�36� !#6�2!#� ���(�/!#:�. �D�#A�%)��! ��	�"#������0%����	
�����AC1��2%�%!�%7���0�1#�36���!#��%�#�A�!5�CA���0D0��01���0%



Anisotropic Helmholtz and wave–vortex decomposition of one-dimensional spectra 373

For example, this would be a physically appealing model in a situation with strong
anisotropic inertia–gravity waves, which affects both  and �. Of course, such a
model would have non-zero Ĉuv

 as well as Ĉuv
� and by the standard counting argument

it could not be solved for all the decomposed fields. However, it could be solved for
the kinetic energy decomposition because the relevant difference equation

�
✓

k
d
dk

+ 1
◆

(Ĉu
 (k) � Ĉv

�(k)) = Ĉv(k) � Ĉu(k) + Eu2 �Ev2

Euv
Ĉuv(k) (3.35)

would only contain the observed Ĉuv = Ĉuv
 + Ĉuv

� . This would again yield the same
answer for K as the two other models, i.e. (3.35) holds for all three models. The fact
that the all-important Helmholtz decomposition of the kinetic energy is indifferent to
the model choice lends some robustness to our results.

4. Wave–vortex decomposition
In BCF14 a two-step procedure for horizontally isotropic spectra was developed in

which the first step was a Helmholtz decomposition of the horizontal velocity spectra
and the second step utilized results from linear inertia–gravity wave theory to estimate
the wave energy spectrum solely from the observed velocity fields. The second step
relied on the additional assumptions of stationarity in time and vertical homogeneity,
which allowed modelling the wave field as an uncorrelated superposition of plane
waves. The present paper is focused on extending the Helmholtz decomposition of
the first step to anisotropic spectra, but here we point out that the second step of
estimating the wave energy spectrum goes through under the same assumptions as in
the isotropic case studied in BCF14.

4.1. Inertia–gravity wave energy spectrum
The key of the argument in BCF14 is to exploit an energy equipartition property valid
for an uncorrelated superposition of three-dimensional plane inertia–gravity waves if
the Coriolis parameter f and the buoyancy frequency N are constant. Assume first
that the flow field is entirely due to linear inertia–gravity waves. The wave energy
spectrum is generally defined as

EW = 1
2(Ĉ

b
W + Ĉu

W + Ĉv
W + Ĉw

W), (4.1)

where Ĉb
W is the power spectrum of b/N if b is the buoyancy disturbance such that

bt = �N2w and the remaining terms are the spectra of three-dimensional velocity
components (u, v, w), respectively. The subscript W indicates that these spectra
pertain to the wave field only. For one-dimensional spectra we can use (3.29) to put
(4.1) into the form

EW(k) = 1
2(Ĉ

b
W(k) + 2K 

W(k) + 2K�
W(k) + Ĉw

W(k)). (4.2)

Now, in § A.2 of BCF14 it was shown that for uncorrelated plane waves the following
energy equipartition holds:

Ĉb
W(k) + 2K 

W(k) = 2K�
W(k) + Ĉw

W(k). (4.3)
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The derivation of (4.3) uses the full three-dimensional structure and dispersion relation
of inertia–gravity waves and does not assume horizontal isotropy. Hence (4.3) is in
fact valid for anisotropic spectra as well, including spectra of the form assumed in this
paper. Moreover, the argument in favour of uncorrelated  and � for internal waves
that is given in A.1 of BCF14 also carries over, because the key part of that argument
was that there be no preferred orientation of the horizontal wave propagation. This
covers our anisotropic case, because although the vector s singles out a preferential
direction, just as many waves are travelling in the direction +s as in �s, so there is
no preferred orientation. Combining (4.3) and (4.2) yields the key result

EW(k) = 2K�
W(k) + Ĉw

W(k). (4.4)

For hydrostatic waves the second term is negligible, which is often appropriate for
low-resolution measurements.

4.2. Waves and geostrophic flow
The previous section assumed that the flow consisted entirely of linear inertia–gravity
waves, but it is straightforward to extend this scenario to an uncorrelated superposition
of such waves together with a linear vortical flow in geostrophic and hydrostatic
balance. This is the kind of vortical flow associated with quasi-geostrophic dynamics.
The key observation here is that such a linear flow is horizontally non-divergent (i.e.
there is no potential � associated with the linear balanced flow at leading order) and
also has no vertical velocity. This means we can assume that

Ĉ� = Ĉ�
W and Ĉw = Ĉw

W . (4.5a,b)

Hence K�(k) = K�
W(k) holds, which allows rewriting (4.4) in the final form

EW(k) = 2K�(k) + Ĉw(k). (4.6)

The first term is computed from the Helmholtz decomposition as in (3.31) and the
second term is directly observed (or ignored for hydrostatic waves). As discussed
in BCF14, this provides an estimate of wave energy based solely on velocity
measurements. If the total energy is measured as well, as would be the case if the
buoyancy spectrum Ĉb is observed, then (4.6) can be used to decompose the observed
flow energy into wave and vortex components. Notably, horizontal anisotropy of the
data enters this process only indirectly, namely by affecting the outcome of the
Helmholtz decomposition that is required to compute K�(k). As noted before, K�(k)
is indifferent to the model choice, which hence does not affect the predicted wave
energy either. But allowing for anisotropy in the first place does matter, as was made
obvious by the anisotropic corrections in (3.31) and (4.7).

Finally, we note that because Euv and Ĉuv have the same sign by assumption, we
can read off the sign of the anisotropic contribution to K and K� from (3.30) and
(3.31). Specifically, if Eu2 > Ev2 then the anisotropic K is larger than its isotropic
counterpart at all wavenumbers k, whilst the opposite is true for K� , i.e.

K (k) � K 
iso(k) /E[u2 � v2] and K�(k) � K�

iso(k) /E[v2 � u2]. (4.7a,b)

These relations are useful checks on the numerical results but we have not been able
to establish a clear physical interpretation of them.
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5. Application to data

Our point of departure are the observed one-dimensional spectra (Ĉu, Ĉv, Ĉuv).
Of course, the accurate estimation of these spectra from noisy sets of discrete
observations along real flight or ship tracks may itself be a non-trivial task, but we
will not consider this problem in this paper. For the ocean observation reported in
§ 5.3 below, we simply adopted the methodology introduced in Callies & Ferrari
(2013) and Callies et al. (2015), to which we refer the readers for details. The main
task here is how to establish the admissibility of our spectral models and to select
the optimal choice of model.

5.1. Model selection and stability
Our spectral models are characterized by the no-correlation condition (3.2) and the
specific anisotropy defined in (2.10) or (2.14). As noted below (3.3), if  and �

are uncorrelated then Ĉuv(k) is a real-valued function, or equivalently Cuv(x) is an
even function of x. This itself is an interesting result, namely that the fingerprint of
correlated  and � is an imaginary part of Ĉuv. The upshot is that for our models
to be admissible in a practical situation it is necessary that the imaginary part of the
observed Ĉuv be negligible.

Moreover, the spectral anisotropy assumed in (2.10) or (2.14) implies that the one-
dimensional Ĉuv(k) in (3.11) or (3.15) is not just real but also sign-definite for all k.
This is hence another test that real data must pass to good approximation, i.e. there
should be no sign changes in the cross-spectrum. Finally, the angle parameters ✓ or
� must be estimated from (3.25) or (3.26), which is straightforward except in the
aforementioned Achilles heel case in which Eu2 6=Ev2, but Euv is zero. In this case
cot 2✓ or cot 2� would be infinite, which leads to indeterminate forms in the model
equations (3.17) or (3.18). Hence in this case it is not possible to admit either of our
anisotropic models, even though the data are clearly anisotropic by virtue of Eu2 6=
Ev2.

Overall, we followed this procedure for model selection.
(i) Calculate Eu2 �Ev2 and Euv. If both are zero select the isotropic model.

(ii) Otherwise, if Euv 6= 0 check that the imaginary part of Ĉuv(k) is negligible and
that the real part of Ĉuv(k) is sign-definite. If both are true select one of the
anisotropic models, compute the corresponding angle parameter, and proceed with
the decomposition. If either fails, warn the user that neither model is admissible.

(iii) Otherwise, if Euv = 0 and Eu2 � Ev2 6= 0, select the isotropic model for
decomposition, but warn the user that the data are actually anisotropic. (This is
the Achilles heel case.)

If the anisotropic models are admissible then one can try them and establish which
one gives a better result. There might be physical reasons to favour the anisotropic
stream function model (e.g. dominance of vortices) or the anisotropic potential
model (e.g. dominance of inertia–gravity waves), but there are also mathematical
considerations. For example, using the wrong model can lead to non-physical
decomposition results such as negative or divergent velocity spectra in (3.20)–(3.24).
Again, for the purpose of decomposing the kinetic energy spectrum in (3.30) and
(3.31) the model choice does not matter.

Finally, in real datasets the observed spectra will be subject to noise and hence the
stability of our method under noisy observations is an issue. An important practical
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consideration in this context is what happens if the underlying process is isotropic,
say, but both of the empirical statistics Eu2 � Ev2 and Euv are non-zero due to
observational noise and sampling errors. Then a natural question is whether selecting
an anisotropic model for data that are ‘almost isotropic’ will result in an anisotropic
decomposition close to the isotropic one or not. This is a question of stability for
the decomposition method: do small changes in the data lead to small changes in
the decomposition or not? Notice that when Euv and Eu2 � v2 are close to zero,
the angle parameters ✓ or � will be unstable. Thus one might doubt whether the
resulting anisotropic decomposition will converge to the isotropic one. The following
result, however, guarantees this convergence.

We give the argument for the first model but it works for either model. Suppose
Ĉuv(k) is real and sign-definite. Define Diso

 (k) as the isotropic solution and Dani
 (k)

as the anisotropic solution from (3.20). Here the isotropic solution simply omits the
cross-spectrum terms. Then (3.20) yields

Dani
 (k) � Diso

 (k) = cot 2✓
k

Z 1

k
Ĉuv(k̄)

k2 + k̄2

k̄2
dk̄. (5.1)

The cross-spectrum does not change sign by assumption and the rational factor is
bounded by 2, therefore

|Dani
 (k) � Diso

 (k)| <
����
2
k

cot 2✓
Z 1

0
Ĉuv(k̄) dk̄

����<
����
2p

k
cot 2✓Euv

����<
���
p

k
E[u2 � v2]

��� .

(5.2)
The last step uses (3.25) and establishes the sought-after stability result. A similar
result obviously holds for the kinetic energy spectra in (3.30) and (3.31). This
implies that for any wavenumber k > 0 the anisotropic decomposition converges to
the isotropic decomposition if Eu2 �Ev2 goes to zero. It also shows that anisotropic
effects are stronger for small wavenumbers. Indeed, the convergence is non-uniform
at k = 0, as could be expected from the solution integral (3.20), the existence of
which at k = 0 relies on the observed power spectra going to zero there. This will
always be the case with data from finite-length tracks, which have a finite cutoff
wavenumber at small k that is inversely proportional to the track length.

5.2. Synthetic examples
In this section, we introduce increasingly challenging synthetic examples of anisotropic
spectra. We generate synthetic velocity fields using zero-mean Gaussian processes
defined by the power spectra, and try different models to recover the true decomposi-
tion. Each sample path is generated through a discrete Fourier transform in which
both the real and Fourier space are discretized into 100 equally spaced grid points.
Some 50 000 paths are generated to minimize sampling errors.

The data generation process works as follows. First, in order to create a random
velocity field with known decomposition, we construct the one-dimensional spectra
Ĉu(k), Ĉv(k) and Ĉuv(k) from the two-dimensional Ĉ (k, l) and Ĉ�(k, l) in (3.3) by
integrating over l. Then we generate sample paths from the underlying Gaussian
process with covariance function Ĉu(k), Ĉv(k) and Ĉuv(k). Finally, we apply various
models to the empirical power spectra so generated to check if we can recover the
original decomposition.
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Example 1. We assume both the stream and potential components are of the isotropic
form (2.7) and have Gaussian exponential decay

Ĉ (k, l) = exp (�pk2
h) and Ĉ�(k, l) = 1

2 exp (�pk2
h). (5.3a,b)

We generate sample paths of the underlying Gaussian process and use both the
anisotropic stream function model and the isotropic model for the decomposition. The
one-dimensional spectra are shown in figure 3(a), indicating a negligible sampling
error. As we can see in figure 3(c), both models recover the true decomposition
with small and comparable error. The fact that the anisotropic stream function model
matches the isotropic model is guaranteed by (5.2) together with Eu2 =Ev2.

Example 2. We now assume that there is anisotropy, but only in the stream function
component:

Ĉ (k, l) = exp (�pk2
h) + (k cos(2p/3) + l sin(2p/3))2 exp

⇣
�p

2
k2

h

⌘
, (5.4)

Ĉ�(k, l) = 1
2 exp (�pk2

h). (5.5)

With ✓ = 2p/3 in the second quadrant we expect Euv > 0, as is confirmed by
the one-dimensional spectra shown in figure 3(b). When both the isotropic and
anisotropic stream function model are applied, the isotropic model is unable to
capture the anisotropy, generating significant model error. This includes divergent
values for some of the spectra in figure 3(d). On the other hand, the anisotropic
stream model, which has the correct model assumptions, successfully recovers the
true decomposition. Notably, in this example Eu2 >Ev2 and the true K in figure 3(d)
is indeed larger than its isotropic counterpart, in accordance with (4.7).

We have also used this example to probe spectra in the limit ✓ ! 0, which is the
Achilles heel case of our method, i.e. Euv = 0 but Eu2 � v2 6= 0. We found that our
method works well down to ✓ ⇡ 0.1, but not below that.

Example 3. Our third example is

Ĉ (k, l) = exp (�2p(k2 + 3l2 + 2kl)) and Ĉ�(k, l) = 0. (5.5a,b)

The rotational spectrum is anisotropic, with non-zero Euv > 0 and Eu2 � v2 < 0, but
it is not of the form assumed in our models! Moreover, the divergent spectrum is
precisely zero, signalling an absence of any internal wave motion in the linear wave–
vortex decomposition scheme described in § 4, which is an additional challenge for
the models to get right. This severely tests the robust performance of our models in
realistic settings.

The outcome is depicted in figure 4, which shows that the only credible choice here
is the anisotropic stream function model (3.17). That model manages to recover the
true decomposition of the spectra reasonably well and it captures the dominance of
the rotational kinetic energy. In contrast, the isotropic model yields divergent spectra
as in the previous example whilst the anisotropic potential model produces significant
negative values of Ĉu

� , which are clearly unphysical. We consider the ability of our
models to predict their own breakdown by producing unphysical results a positive
feature of our method. As always, the kinetic energy spectra of the anisotropic models
are identical, and here they recover the true decomposition remarkably well.
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FIGURE 3. Synthetic data Examples 1 in (5.3) and 2 in (5.4)–(5.5). (a) + (b) Observed
one-dimensional spectra. (c) + (d) Helmholtz decomposition using different models. Note
divergence of the isotropic model in red when applied to anisotropic data. (a) Isotropic
spectra Example 1. (b) Anisotropic spectra Example 2. (c) Decomposition of isotropic
spectra Example 1. (d) Decomposition of anisotropic spectra Example 2.

7%%"A��((( 20�1#�36� !#6�2!#��%�#�A �7%%"A���3!� !#6��� ������5� ���� 	�
,!( �!03�3�5#!��7%%"A��((( 20�1#�36� !#6�2!#� ���(�/!#:�. �D�#A�%)��! ��	�"#������0%����	
�����AC1��2%�%!�%7���0�1#�36���!#��%�#�A�!5�CA���0D0��01���0%



Anisotropic Helmholtz and wave–vortex decomposition of one-dimensional spectra 379

0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

0 0.5 1.0 1.5 2.0

0 0.5 1.0 1.5 2.0

0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

0.02

0.01

0

0.03

0.04

–0.01

0.02

0.01

0

0.03

0.04

–0.01

0.02

0.01

0

0.03

0.04

–0.01

0.02

0.01

0

0.03

0.04

–0.01

0.02

0.01

0

0.03

0.04

–0.01

0.02

0.01

0

0.03

0.04

–0.01

0.02

0.01

0

0.03

0.04

True

Isotropic model

Anisotropic stream
function model
Anisotropic

potential model

Anisotropic stream
 function model

Anisotropic potential model

 True

Isotropic model

Anisotropic stream
 function model

Anisotropic potential model

 True

Isotropic model

Anisotropic stream
 function model

Anisotropic potential model
Isotropic model

 True  True
Anisotropic stream

 function model
Anisotropic potential model

Isotropic model

 True
Anisotropic stream

 function model
Anisotropic potential model
Isotropic model

(a)

(b)

FIGURE 4. Anisotropic Example 3 in (5.5). Only the anisotropic stream function model in
blue decomposition gives a credible result for all fields. (a) Anisotropic spectra Example 3.
(b) Decomposition of anisotropic spectra Example 3 in (5.5).

Example 4. Our final example is the most challenging:

Ĉ (k, l) =
(

exp (�2p(k2 + 3l2 + 2kl)), kh < 0.6,

2 exp (�2pk2
h), kh > 0.6,

(5.7)

Ĉ�(k, l) = exp (�2p(k2 + 2l2 + kl)). (5.8)

Here both  and � feature different kinds of anisotropies, but neither conforms
to our model. Moreover, the stream function spectrum has a discontinuity and its
anisotropy is restricted to a finite wavenumber range as indicated, which mimics a
return to isotropy at small scales. As expected, figure 5 shows that the decomposition
of the individual velocity components is poor for all models in this example, but we
nonetheless recover extremely good results for the Helmholtz decomposition of the
kinetic energy based on the new anisotropic method! We feel that this bodes well for
a robust wave–vortex decomposition in practical settings.

5.3. Analysis of Gulf Stream data
In this section we apply the anisotropic Helmholtz decomposition to Gulf Stream
spectra from the Oleander dataset (Flagg et al. 1998), which was previously analysed
using the isotropic Helmholtz and wave–vortex decomposition in BCF14. We chose
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FIGURE 5. Example 4 using (5.7)–(5.8), with strong anisotropies in both  and �
that do not conform to the assumptions of our method. The lower panels show that
the method cannot reliably decompose the individual velocity components, but that the
anisotropic method does remarkably well for the crucial Helmholtz decomposition of the
kinetic energy. (a) Anisotropic spectra Example 4. Note that Ĉuv = 0 for k > 0.6. (b)
Decomposition of anisotropic spectra Example 4.

this dataset as a convenient first test case because it is easily available, has been
analysed using isotropic methods several times before, and can be expected to have
noticeable anisotropic components due to the vicinity of the Gulf Stream.

The Oleander Project collected velocity data from tracks between New York
Harbour and Bermuda (see figure 6). Our data processing steps are standard and
follow those in Callies & Ferrari (2013) and BCF14. We used velocity observations
at 150 m depth collected between 1994 and 2004. We removed those tracks that
were too far away from a geodesic by measuring the L2 distance between tracks.
We also removed those tracks that had too large gaps between observations. After
this filtering, we were still left with 397 ship tracks, from which we interpolated the
velocity observations onto an equally spaced grid of 2.5 km. We removed the average
velocity from each ship track, calculated the spectra of each ship track, and took the
average among tracks as a surrogate for taking the expectation.

The data are known from previous studies to be dominated by vortical flow rather
than inertia–gravity waves over most of their scale range, which is not too surprising
given the vicinity of the Gulf Stream. Hence, one can anticipate that as the dataset
is dominated by the stream function component over the potential flow component,
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FIGURE 6. Sketch of geographical location of the Oleander dataset and typical Gulf
Stream current structure; typical current speeds are of the order of one metre per second.
The ship track is indicated in red and the diagnosed first principal direction of the velocity
field is indicated in blue. The diagnosed velocity fields are eddy fields, i.e. all velocity
measurements along the ship track have their mean value removed, ensuring that Eu =
Ev = 0 (cf. Callies & Ferrari (2013) and BCF14.)

that this will also be true for the anisotropic component. For comparison purposes,
however, we run all three possible models and let the results speak for themselves.

We first computed the quantities Eu2 � Ev2 and Euv from the raw data as shown
in figure 7(b). These are clearly non-zero, with Eu2 � Ev2 < 0 and Euv > 0, and
therefore indicate an anisotropic component. In figure 7(c) the corresponding principal
directions of the random velocity field are indicated by arrows, with the orange line
corresponding ✓ and the red line corresponding to � . Also plotted in figure 7(a) are
the even and odd parts of the cross-correlation function Cuv(x), which indicates a
non-zero odd part but also that this part is much smaller than the even part. The
corresponding statement applies to the spectrum Ĉuv(k) plotted in figure 8, which has
a dominant real part and a weaker imaginary part, at least for the lower to middle
range of wavenumbers. Importantly, the real part of Ĉuv(k) is sign-definite across the
scales, although at large wavenumbers the spectrum becomes noisy. Still, this indicates
that the velocity cross-correlation can be approximated by a single anisotropy direction
for all scales, which is an intrinsic feature of our models. Performing our model
selection algorithm on the data, we hence find that the test for the assumption of
independence between the stream and potential functions is passed at a reasonable
level.

The observed Ĉu and Ĉv are shown in figure 8, both have a k�3 decay in the
large scales. There is however a flattening starting around a wavelength of 50 km, a
phenomenon that could be related to the numerical algorithm used to compute the
spectra. The Helmholtz decomposition of the Gulf Stream spectra following each
model are shown on figure 9. While the three models give similar decomposition
at small scales (k�1 < 20 km), at a relatively larger scale (k�1 > 100 km), both the
isotropic model and the anisotropic potential model give negative spectra, which can
be attributed to the non-satisfaction by the data of these models’ assumptions. On
the other hand, the anisotropic stream function model decomposes the spectra into
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FIGURE 7. Gulf Stream data. (a) Odd and even components of Cuv(x). (b) Corresponding
real and imaginary part of Ĉuv(k). (c) Observed statistics Eu2 +Ev2, Eu2 �Ev2 and 2Euv
with error bar of 95 % confidence interval. (d) Observed (u, v) velocity samples from ship
tracks from 1994 to 2004. The orange and red arrows are the first and second principal
directions of the velocity field and correspond to � and ✓ , respectively.

physically meaningful, positive spectra at all wavelengths, which we take to indicate
that it is the most consistent with the Gulf Stream data. The energy components
K and K� are dominant at different scales (figure 10): for wavelengths larger then
50 km, the stream component dominates, while at smaller scales (k�1 < 20 km)
the potential component contributes most to the kinetic energy. As a reminder, the
stream components K� corresponds to the half of the total wave energy EW . Since
no buoyancy data are available in this dataset, the vortical component of the energy
cannot be recovered. However, it is clear that at large scales, where K� is substantially
smaller than K , the vortical component contributes most to the energy spectra.
Notably, the anisotropic model is able to recover the K� spectrum over a much larger
range than is possible with the isotropic model, which is an advantage. For example,
this means that the prediction of wave energy levels is possible over a wider range
of scales in the anisotropic model. Overall, we consider this an encouraging first test
run with real ocean data.
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FIGURE 8. Energy spectra and cross-spectrum from the Gulf Stream: observed transverse
and longitudinal kinetic energy spectra Ĉu, Ĉv and cross-spectra Ĉuv . A line corresponding
to a k�3 power law has also been added for reference.

6. Concluding remarks
In this paper we have developed and tested a simple anisotropic extension of the

isotropic Helmholtz and wave–vortex decomposition method for one-dimensional
spectra presented in BCF14. Under appropriate modelling choices both velocity
components can be decomposed into rotational and divergent parts, but the most
important results are the Helmholtz decomposition of the kinetic energy in (3.30)–
(3.31) and the accompanying expression for the wave energy in (4.6):

2K (k) = Ĉv(k) + 1
k

Z 1

k


Ĉv(k̄) � Ĉu(k̄) + Eu2 �Ev2

Euv
Ĉuv(k̄)

�
dk̄, (6.1)

2K�(k) = Ĉu(k) � 1
k

Z 1

k


Ĉv(k̄) � Ĉu(k̄) + Eu2 �Ev2

Euv
Ĉuv(k̄)

�
dk̄, (6.2)

EW(k) = 2K�(k) + Ĉw(k). (6.3)

These expressions do not require any particular modelling choice and can be used ‘as
is’ for data analysis, except in the Achilles heel case (1.4), in which one must revert
to the isotropic version.

Compared to the isotropic method in BCF14, the new ingredient is the one-
dimensional cross-spectrum Ĉuv, which can be computed from the raw (u, v)-data
just as Ĉu and Ĉv. So this new ingredient requires no new data sources. Moreover,
it is obvious from these equations that the new method also requires no extra
computational cost and we have demonstrated that it reliably reduces to the isotropic
method in the appropriate limit. Overall, we found the method robust and easy to
use and we hope that it will be as useful in practice as its isotropic progenitor.

Of course, as discussed, any anisotropic extension can only work by restricting the
class of possible anisotropies in some fashion, so there is a balancing act between
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FIGURE 9. Helmholtz decomposition of Gulf Stream data. The left side shows the
longitudinal spectrum Ĉu and the right side shows the transverse spectrum Ĉv . Shown are
the results of the (a) isotropic, (b) anisotropic stream and (c) anisotropic potential model.
Missing parts in these log–log plots indicate negative values.
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FIGURE 10. Helmholtz decomposition of the kinetic energy spectrum for the Gulf Stream
data. (a) Shows the isotropic model (as in BCF14) and (b) shows the new anisotropic
model, which recovers significantly more of the divergent spectrum K� at large scales.
This indicates the anisotropy of the data at large scales.

the requirement to have a simple tractable model and the desire to cover the greatest
possible class of anisotropies that may occur in nature. One physical limitation of
our method is that the anisotropy direction ✓ or � is assumed to be the same for
all wavenumbers k; being able to relax this assumption would be a considerable
advantage. Another limitation is that the observed cross-spectrum Ĉuv(k) has to
be real and sign-definite, which can lead to practical problems with noisy spectra,
especially at large wavenumber k. Here a pragmatic solution is to just use the real
part of the observed Ĉuv(k), or even to use the absolute value |Ĉuv(k)| instead. For
what it is worth, we have tested these variations on the ocean data in this paper and
found no significant changes.

Also, one might investigate specific physical conditions that would lead to an
imaginary part of Ĉuv(k), which we know implies a statistical correlation between  
and �. Such an investigation might also lead to further improvements already in the
isotropic case. A natural candidate in this direction is to consider the ageostrophic
corrections to quasi-geostrophic dynamics, which involve a flow potential � that is
slaved to the quasi-geostrophic stream function  . Conversely, it would be interesting
to consider nonlinear corrections to the internal wave field and how they would affect
the wave–vortex decomposition method. This should be approachable at least for
weakly nonlinear waves, or in regimes such as the one studied in Young & Jelloul
(1997).

Finally, it would be desirable to find a way to avoid the Achilles heel case (1.4),
which may never occur in practice, but mars the otherwise clean appearance of our
method.
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Appendix A. Manipulations of correlation functions
We illustrate how to manipulate two-dimensional correlation functions such as

Cuv
 (x, y) = �E[ y(x0, y0) x(x0 + x, y0 + y)]. (A 1)

The key is consider the quantity in square brackets temporarily as a function of the
four independent variables (x0, y0, x, y) and to exploit the fact that the expectation of
any quantity is independent of (x0, y0) by the assumption of homogeneity. This results
in

Cuv
 (x, y) = �E


@

@y0
( (x0, y0))

@

@x
 (x0 + x, y0 + y)

�

= + @

@x
E

 (x0, y0)

@

@y0
 (x0 + x, y0 + y)

�

= + @

@x
E

 (x0, y0)

@
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 (x0 + x, y0 + y)

�

= + @2

@x@y
E[ (x0, y0) (x0 + x, y0 + y)]

= @2

@x@y
C (x, y). (A 2)

For the power spectra this is equivalent to

Ĉuv
 (k, l) = �klĈ (k, l), (A 3)

which is listed in (2.5). The other expressions are derived in the same way.
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