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On the vorticity transport due to dissipating or
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Theoretical and numerical results are presented on the transport of vorticity (or
potential vorticity) due to dissipating gravity waves in a shallow-water system with
background rotation and bottom topography. The results are obtained under the
assumption that the flow can be decomposed into small-scale gravity waves and a
large-scale mean flow. The particle-following formalism of ‘generalized Lagrangian-
mean’ theory is then used to derive an ‘effective mean force’ that captures the vorticity
transport due to the dissipating waves. This can be achieved without neglecting
other, non-dissipative, effects which is an important practical consideration. It is then
shown that the effective mean force obeys the so-called ‘pseudomomentum rule’, i.e.
the force is approximately equal to minus the local dissipation rate of the wave’s
pseudomomentum. However, it is also shown that this holds only if the underlying
dissipation mechanism is momentum-conserving. This requirement has important
implications for numerical simulations, and these are discussed.

The novelty of the results presented here is that they have been derived within a
uniform theoretical framework, that they are not restricted to small wave amplitude,
ray-tracing or JWKB-type approximations, and that they also include wave dissipation
by breaking, or shock formation. The theory is tested carefully against shock-capturing
nonlinear numerical simulations, which includes the detailed study of a wavetrain
subject to slowly varying bottom topography. The theory is also cross-checked in the
appropriate asymptotic limit against recently formulated weakly nonlinear theories. In
addition to the general finite-amplitude theory, detailed small-amplitude expressions
for the main results are provided in which the explicit appearance of Lagrangian
fields can be avoided. The motivation for this work stems partly from an on-going
study of high-altitude breaking of internal gravity waves in the atmosphere, and some
preliminary remarks on atmospheric applications and on three-dimensional stratified
versions of these results are given.

1. Introduction
The creation of vorticity due to dissipating or breaking waves is a basic fluid-

dynamical phenomenon that is central to many geophysical and engineering applica-
tions. Classical examples include acoustic streaming and the so-called ‘quartz wind’
(e.g. Lighthill 1978), the vorticity creation due to the breaking of surface waves in
the ocean (especially near shorelines), and the vorticity created by the passage of an
irrotational supersonic flow through a curved shock, or through a shock of varying
strength. An important geophysical application is the vorticity creation due to the
breaking of internal gravity waves at high altitudes in the atmosphere (e.g. Holton et
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al. 1995), which is recognized as being significant for the global-scale circulation of
the atmosphere.

Theoretical descriptions of wave dissipation can often establish a useful quantita-
tive link between vorticity creation and the dissipative decay of local wave properties
such as wave energy or wave pseudomomentum. Indeed, numerical models for the at-
mosphere rely completely on such a theoretical description of gravity-wave breaking,
because most atmospheric gravity waves are much too small in vertical scale to be di-
rectly resolved in such models. This process is known as gravity-wave parametrization,
and in it the effect of dissipating gravity waves is represented by a suitable effective
mean force F̃ directed along stratification surfaces. The magnitude of F̃ is then cal-
culated using assumptions about the prevailing gravity-wave spectrum together with
approximate results of wave–mean interaction theory.

However, it can be argued that the relevant wave–mean interaction theory is simple
and well understood only for calculating the zonal acceleration of a zonally symmetric
mean flow (i.e. a mean flow defined by averaging around latitude circles; ‘zonal’ stands
for east–west). This is because in this case there can be no mean pressure gradient in
the zonal direction, and this greatly simplifies the theory. The theory is significantly
more complicated and less well understood in the case of a local average, say, a local
average over small-scale gravity waves. This is partly because of the more complicated
physical situation and partly because of subtle technical difficulties that arise when
mean-and-disturbance formalisms are applied to compressible or stratified fluids.
These difficulties can easily obscure essential physical features of the problem, such as
the way circulation around material contours evolves when waves are dissipating or
breaking. Studies that investigate these physical features directly are hence of great
value; a recent example is given by the calculations of Peregrine (1998) for breaking
ocean waves.

A central reference for studies of this kind is McIntyre & Norton (1990, hereafter
MN). Their paper presented a conceptual and mathematical tour de force, drawing
together many different theoretical threads in order to embrace a large number of
geophysical and engineering applications. By focusing on the basic properties of
vorticity and potential vorticity (PV), MN avoided the technical difficulties of any
particular averaging formalism. Their aim was to link F̃ directly to the dissipation
rate of the wave’s pseudomomentum p, an approximate connection that has been
called the ‘pseudomomentum rule’ in the literature. Such a rule is practically useful
because the pseudomomentum p plays an important part in linear wave theory. For
instance, atmospheric gravity-wave spectra are routinely described in terms of the
pseudomomentum spectra of these waves. In order to validate the pseudomomentum
rule MN presented several brief examples of their methods, but they did not present
a full mathematical description (or justification) of them. Indeed, applying their
methods näıvely to more complicated examples has sometimes failed (R. Mo & M. E.
McIntyre, personal communication; see also § 2 below), and this has partly motivated
the work presented here.

Here, a detailed study is undertaken of the relevant wave–mean interaction theory in
the simplest possible flow system in which these interactions are non-trivial, namely
the two-dimensional shallow-water system. This provides a test bed and stepping
stone towards more complicated three-dimensional stratified models, for which some
preliminary results are noted in § 7. The mean flow is defined by a local space aver-
age, assuming a suitable scale separation between mean flow and small-scale gravity
waves. The averaging method itself is the particle-following generalized Lagrangian-
mean (GLM) formalism of Andrews & McIntyre (1978a, b, hereafter AM78a, b) (see
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also McIntyre 1981), which gives access to averaged versions of Kelvin’s circulation
theorem and to other conservation laws. In this way, the simplifying power of aver-
aging can be combined with a focus on the essential vorticity dynamics. Specifically,
the wave–mean interaction theory is developed in this paper in two distinct steps:

(a) a precise definition is given of an effective mean force F̃ that captures the
vorticity transport due to dissipating gravity waves, and

(b) the conditions are found under which the pseudomomentum rule holds, meaning
that F̃ can be approximately equated to minus the dissipative decay rate of the wave’s
pseudomomentum p.
The first step can be achieved at finite amplitude and without any approximations
beyond the already assumed spatial scale separation needed to define the mean flow.
Also, non-dissipative mean-flow corrections that are unrelated to the effective mean
force F̃ are naturally incorporated at this step. Such corrections can be significant in
some circumstances, as discussed in detail in Bühler & McIntyre (1998, hereafter BM).
Remarkably, the second, approximate step can be achieved by making just one further
assumption: the wave dissipation process must be momentum-conserving, meaning
that the underlying dissipative force must arise from a stress-tensor divergence in the
usual way.

The plan for this paper is as follows. The equations of motion for a shallow-water
system with background rotation and bottom topography are introduced in § 2, and
the vorticity transport in that system is discussed broadly in the terms of MN, who
did not consider shallow-water flow explicitly. This sets the scene for the GLM the-
ory developed later, and it also highlights some of the difficulties with the original
method of MN and certain ad hoc variations of it. The first step of the wave–mean
programme noted above is then implemented in § 3, resulting in an exact formula
for the effective mean force F̃ derived using GLM theory. The second step follows
in § 4, where momentum-conserving forces and the validity of the pseudomomentum
rule are discussed. This section also contains useful small-amplitude relations for
the various results and a discussion of the implications for direct numerical sim-
ulations. Shock-capturing nonlinear numerical simulations of initial-value problems
and forced–dissipative problems with bottom topography are presented in § 5. These
simulations are in very good agreement with the theory except in one case with very
strong background rotation, where the diagnostic signal-to-noise ratio was low and
the comparison was less clear. The theory is also compared and checked against
the aforementioned asymptotic theories in § 6, which clarifies certain aspects of both
theories. Some concluding remarks on atmospheric applications are given in § 7.

2. Vorticity transport in shallow-water flow
The equations of motion for the two-dimensional shallow-water system in a rotating

frame and including bottom topography as well as momentum forcing are given by
the continuity equation

Dh

Dt
+ h∇ · u = 0 (2.1)

and the momentum equation

Du

Dt
+ f × u + c2

0 ∇(h + hB) = F . (2.2)

Here h is the non-dimensional fluid layer depth such that h = 1 corresponds to a
nominal reference background layer depth, u = (u, v) is the two-dimensional velocity
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Figure 1. Schematic cross-section of the shallow-water system showing the fluid layer depth h and
the bottom elevation hB , which add to give the fluid surface height h + hB .

in the (x, y) directions, f = fẑ is the constant Coriolis parameter f times the unit
vector normal to the (x, y)-plane ẑ, and the speed c0 is a measure of the gravitational
force acting on undulations of the fluid surface. The bottom topography is described
through the bottom elevation hB as illustrated in figure 1, and hB can also be thought
of as including the centrifugal acceleration due to the rotating frame. Note that an
undisturbed fluid surface corresponds to h + hB = const. Finally, F is an arbitrary
body force per unit mass, of dissipative origin or otherwise. The PV is denoted by q,
and it can be seen to satisfy

q ≡ ∇ × u + f

h
and

Dq

Dt
=

∇ × F

h
, (2.3)

where the curl of a two-dimensional vector field is treated as a (pseudo-)scalar.
The PV evolution equation can be re-written in conservation or flux form as

∂(hq)

∂t
+ ∇ · [hqu + J ] = 0, where J ≡ ẑ × F . (2.4)

Here, the body force F has been replaced by an equivalent vorticity flux J , where
equivalence means that ∇ × F = −∇ · J by construction. As noted in MN, irrotational
contributions to F correspond to non-divergent contributions to J . The conservation
form (2.4) makes obvious that changes in absolute vorticity hq = ∇×u+f can always
be thought of as arising through vorticity transport. It can be noted in passing that
the flux vector J can be made the basis of a number of conceptual interpretations of
PV evolution in shallow-water flow and in other flow systems, as has been discussed
in detail in MN and elsewhere. However, in this paper it is sufficient and simpler to
work directly with the force F , and hence the flux vector J will be used only in this
section, where it facilitates discussion and comparison with MN.

Now, the basic approach discussed in MN is to consider wave-induced contributions
to the flux vector J in (2.4) for the case where these fluxes arise through wave
dissipation. Note that in this section, as in MN, only a broad outline of this approach
is given, leaving many mathematical details unspecified. To this end, consider a
wavetrain of small-amplitude linearized gravity waves, whose amplitude is O(a) where
a % 1 is a suitable non-dimensional wave amplitude. The linear, O(a) contribution to
the dissipative flux J averages to zero over one wave period, but at O(a2) there can
be a systematic contribution, which will be denoted by J . This O(a2) contribution
to J can often be calculated from a knowledge of the linearized, O(a) wave solution
alone.†

If (2.4) is integrated over a fixed, Eulerian control volume and then averaged over a

† In general, quantities for which this statement holds were called ‘wave properties’ in AM78a, b,
a useful terminology that is adopted in this paper. Other examples of wave properties are wave
energy, pseudomomentum, and Stokes corrections. On the other hand, O(a2) corrections to the layer
depth h and to the velocity u are not wave properties.
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wave period, then J captures the wave-induced vorticity flux in and out of this control
volume, provided that the advective vorticity flux hqu makes no contribution at O(a2).
This can be shown to hold for the examples studied in MN and here for irrotational
gravity waves with f = 0, but fails when f &= 0. In the latter case the advective
term must be considered explicitly to obtain the flux at O(a2). This is inconvenient,
as there are now more terms to consider, despite there being no explicit presence of
dissipative terms in hqu. The simplicity of dealing only with J can be regained if
(2.4) is integrated over a moving, Lagrangian control volume, for which (2.4) takes
the relevant form

h
Dq

Dt
+ ∇ · J = 0. (2.5)

The relevant flux is now a flux through undulating material control surfaces, which
involves working out the dot product between J and undulating surface normals (R.
Mo & M. E. McIntyre, personal communication). This ad hoc Lagrangian approach
was applied to stratified flows using zonal averaging in Mo (1994) and using JWKB
approximations in Bühler (1996).

However, the use of Lagrangian control volumes makes the obtained results hard
to interpret in a conventional, Eulerian framework. Furthermore, Lagrangian control
volumes themselves are subject to O(a2) irreversible displacements due to mean-flow
effects first described by Bretherton (1969). For instance, in the presence of O(1) PV
gradients these displacements produce non-dissipative O(a2) changes in the local PV
that can be comparable to dissipative PV changes in some circumstances, as discussed
in detail in BM.

The overall conclusion is that the dissipation-related vorticity transport is simplest
in a Lagrangian, particle-following description, but that a clear interpretation of this
vorticity transport requires a solid mathematical framework in which all relevant
Eulerian and Lagrangian effects can be properly formulated. The GLM theory of
AM78a, b provides such a framework, and its use for the present purpose has been
further prompted by the discovery of certain results concerning the GLM PV described
in BM. The next two sections will pursue the application of GLM theory to this
problem.

3. Finite-amplitude GLM theory and the pseudomomentum rule
This section develops the finite-amplitude GLM theory for the wave-induced vor-

ticity transport in the shallow-water system. A short self-contained introduction to
GLM theory and to the relevance of GLM theorems governing vorticity evolution
can be found in §§ 5.1–5.2 of BM, while a full account of the theory is given in the
original publications (AM78a, b). Only a brief summary of the special GLM notation
is given here, together with some useful details not stressed in these other references.

3.1. GLM theory

It is assumed from the outset that the flow is such that a spatial averaging operation
(. . .) can be defined that decomposes any flow variable φ uniquely into a slowly
varying mean part φ and a rapidly varying, small-scale disturbance part φ′ ≡ φ − φ.
No particular assumption is made about the time-dependence of the mean and the
disturbance parts. It is assumed, in the usual way, that the spatial scale separation
is sufficiently large such that the mean fields are uniquely defined (i.e. that φ′ ≡ 0).
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This assumption represents the only approximation in the finite-amplitude theory
developed here.†

GLM theory differs from Eulerian-mean theories by explicitly introducing an
additional field, namely a disturbance-associated particle displacement field ξ(x, t)
such that x + ξ(x, t) is the actual position of the particle whose mean position is x
(cf. figure 3 in BM for an illustration and further discussion of the nature of ξ). By
construction, ξ ≡ 0 holds. The additional field ξ allows the ‘lifting’ of a function from
mean to actual particle positions, as described by the useful notation

φξ(x, t) ≡ φ(x + ξ(x, t), t) such that φ
L ≡ φξ (3.1)

is the Lagrangian (i.e. particle-following) mean of φ. Here φξ(x, t) is the value of φ
at the location of the particle whose mean position is x at time t, and (. . .) is the

averaging operator introduced above. Thus, φ
L
(x, t) is the average of φ as seen by

the particle whose mean position is x at time t.

By analogy with φ′, the Lagrangian disturbance of φ is defined as φ$ ≡ φξ − φ
L

and φ$ ≡ 0 holds by construction. The Lagrangian-mean velocity uL defines the mean
material time derivative as

D
L ≡ ∂

∂t
+ uL · ∇, (3.2)

and integral curves of uL are mean particle trajectories. Correspondingly, x + ξ(x, t)
evaluated along a mean particle trajectory traces out the actual, rapidly varying
particle trajectory. This can be shown to lead to the remarkably simple GLM formulae
for averaging material derivatives:

D
L
φξ =

(
Dφ

Dt

)ξ

and D
L
φ
L

=

(
Dφ

Dt

)L

. (3.3)

The price for this simplicity is that Lagrangian averaging and partial differentiation
do not commute. Specifically, the chain rule gives

(φξ),t = (φ,t)
ξ + (φ,j)

ξξj,t and (φξ),i = (φ,j)
ξ (δji + ξj,i), (3.4)

where ( ),t denotes time-differentiation, ( ),i denotes differentiation with respect to the
Cartesian coordinate xi, the ξj are the components of the two-dimensional vector
ξ = (ξ, η), and summation over repeated indices is understood. The spatial derivative
in (3.4) has the inverse formula

(φ,i)
ξ =

1

J
Kij(φ

ξ),j , (3.5)

where the scalar J is the Jacobian of the lifting map x → x + ξ, i.e.

J ≡ ∂(x + ξ, y + η)

∂(x, y)
= det {δij + ξi,j} = (1 + ξ,x + η,y + ξ,xη,y − ξ,yη,x) (3.6)

in two dimensions, and where the matrix Kij contains the cofactors‡ of the matrix

† It can be noted that local averaging alone does not guarantee that the mean fields are slowly
varying. The simplest counterexample is that of evanescent waves, e.g. surface waves trapped at an
interface, whose envelope remains rapidly varying in the transverse direction even after averaging
along the interface (cf. McIntyre 1988). Additional averaging over the transverse waveguide structure
is then necessary to make the mean fields slowly varying in all directions.

‡ The cofactors mij of a matrix M are the sub-determinants (with appropriate sign) obtained by
removing the ith row and the jth column from M . It follows that mij/ det (M) is the inverse of MT .
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{δij + ξi,j}, i.e.

Kij ≡
(

1 + η,y −η,x

−ξ,y 1 + ξ,x

)
, or Kij =

∂J

∂(ξi,j)
. (3.7)

In the useful second relation the partial derivative acts on the functional dependence
of J on the numbers ξi,j . The explicit expressions for J and Kij in (3.6)–(3.7) hold for
two space dimensions. In general, J and Kij are polynomials in the numbers ξi,j of
order n and n− 1 respectively, where n is the number of space dimensions. A general
property of Kij is that it provides the lifting map for surface elements. This means
that if dAi is a vectorial surface element in n-dimensional space, then

(dAi)
ξ = Kij dAj, which implies Kij,j ≡ 0 (3.8)

as shown in AM78a.

3.2. Shallow-water GLM theory and mean vorticity budget

The GLM theory is now applied to the shallow-water system. The functional form
of the continuity equation (2.1) can be preserved in GLM theory by defining a mean
layer depth h̃ such that

h̃ dx dy ≡ hξ(dx dy)ξ ⇔ h̃ = hξ J (3.9)

holds, where (dx dy)ξ = Jdx dy denotes the actual material ‘volume’ element corre-
sponding to the mean material element dx dy. If mass is exactly conserved by the
flow, then h̃ is a mean quantity at all times provided it was so initially (AM78a). The
definition (3.9) is then equivalent to

D
L
h̃ + h̃∇ · uL = 0 . (3.10)

In general h̃ &= h
L
, yet (3.10) exemplifies that h̃ rather than h

L
is the natural GLM

mass density. In analogy with h̃, the tilde notation will be used repeatedly in what
follows to denote GLM quantities that are defined in a way that leaves important
fluid-mechanical relations (such as (2.1)) form-invariant under averaging. See, for
another example, the appearance of F̃ in (3.16) below.

There are several ways to derive the GLM vorticity budget. One approach is
to manipulate and average the momentum equation (2.2), and then to consider its
curl (cf. Theorem I and Corollary III in AM78a; and § 5.2 in BM). However, this
approach necessitates manipulating several complicated irrotational mean vector fields
at intermediate steps, although eventually these fields have no effect on the vorticity
budget. This is why a different approach directly based on the PV equation (2.3) is
adopted here, which side-steps these complications. This approach also makes obvious
the surprisingly simple relation of the Lagrangian-mean PV qL to other GLM fields,
whose validity in the presence of forcing and dissipation was first demonstrated in
BM. It is convenient to formulate first the following useful lemma, from which the
other results then follow easily.

Lemma 1. Let B(x, t) be any vector field and let B̃(x, t) be a mean vector field such
that

B̃ · dx = (B · dx)
L
, (3.11)
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where dx is a material line element. Then

B̃i = B
L

i + ξj,iB$
j and

(
∇ × B

h

)L

=
∇ × B̃

h̃
. (3.12)

Proof. The first equality follows from substituting

(dxi)
ξ = dxi + dξi = dxi + ξi,j dxj (3.13)

in the right-hand side of (3.11) and noting that dxi is arbitrary and that ξj,iB
ξ
j =

ξj,iB$
j because ξi = 0. The second equality in (3.12) follows from a straightforward

generalization of BM’s proof† for the special case in which B was the absolute
velocity; the proof is given here in an Appendix.

This lemma can now be applied to the Lagrangian-mean of the definition of q and
to its evolution equation, as given in (2.3). The first yields

qL =

(
∇ × u + f

h

)L

=
∇ × (uL − p) + f

h̃
, (3.14)

using the absolute velocity B = u + 1
2f × x in (3.12) and the fact that f is constant.‡

This introduces the GLM pseudomomentum vector p defined as

pi ≡ −ξj,i[u$ + 1
2f × ξ]j , (3.15)

where u$ could be replaced by uξ = u$ + uL without changing p, because ξ = 0. The
striking simplification achieved in (3.14) should be noted: the curl and the (inverse)
density were both ‘pulled out’ of the Lagrangian averaging process by introducing
the GLM fields h̃ and p (cf. BM). Also, the appearance of p in the functional relation
between qL and uL forms the basis for the non-dissipative wave–mean interactions
studied in BM.

The lemma (3.12) is now applied with B = F to the Lagrangian-mean of the second
equation in (2.3), yielding

D
L
qL =

∇ × F̃

h̃
and F̃i = F

L

i + ξj,iF$
j . (3.16)

This equation¶ has the same functional form as the PV equation before averaging
in (2.3), which makes obvious that the global conservation property of hq has been
inherited by h̃qL. Equation (3.16) establishes that the GLM vorticity transport can
indeed be described by an effective mean force, as discussed in the introduction. This
mean force, F̃ , is well-defined in the sense that it depends only on the local flow
fields, and that its curl is insensitive to the irrotational part of the force F . In fact,

it is straightforward to show (using (3.4)) that if F → F + ∇φ, then F̃ → F̃ + ∇φL
,

† There is a typographical error in BM’s proof: the symbol A must be deleted in the first two
integrals in their (5.22).

‡ The case of non-constant f is relevant in geophysics, and in this case the exact definition of
p must be modified. However, the modification is often negligible in typical scaling regimes (BM;
Bühler 1996).

¶ A variant of (3.16) that does not recognize the general validity of (3.14) follows directly from
taking the curl of Theorem I in AM78a; see also Mo (1994).
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leaving ∇ × F̃ unchanged. This completes the first step of the programme laid out in
the introduction; the second step of this programme is now to establish clearly the
extent to which F̃ can be related to wave dissipation.

3.3. GLM pseudomomentum rule

This is achieved by deriving the evolution equation for p. To do this, the jth
component of the Lagrangian-disturbance part of the momentum equation (2.2) is
multiplied by −ξj,i and then averaged. The details of this conceptually straightforward
derivation are described in AM78b. The result is

D
L
pi + uLk,ipk + 1

2(u
$
ku

$
k),i +

1
2(u

$ · f × ξ),i − c2
0 ξj,i(h,j)

$ − c2
0 ξj,i(hB,j)

$ = Fi, (3.17)

where

Fi ≡ −ξj,iF$
j . (3.18)

It can be noted in passing that after multiplication with h̃, the terms on the left-
hand side can be further decomposed into conservative flux-divergence parts and
non-conservative source/sink parts; cf. AM78b. Now, the forcing term Fi is a wave
property (i.e. it can be consistently evaluated at O(a2) in terms of the linearized, O(a)
disturbances, where a % 1 is the disturbance amplitude; cf. AM78a) and it describes
the mean generation or destruction of pseudomomentum pi due to the body force
Fi. Comparing (3.18) and the second of (3.16) produces the remarkably simple result
that

F̃i = F
L

i − Fi . (3.19)

This equation together with (3.14) and (3.16) is the main result of this section.
How should (3.19) be interpreted? The pseudomomentum rule as described in MN

states that F̃i should be equal at leading order to minus the force-induced dissipation
rate of pseudomomentum, which is −Fi. Equation (3.19) now makes obvious that
this is in general only an approximation, i.e. the pseudomomentum rule holds only
if†

F̃i = F
L

i − Fi ≈ −Fi ⇔ |FL

i | % |Fi|. (3.20)

There are no general reasons why (3.20) should hold for arbitrary Fi. Indeed, (3.20)

could fail even for forces with vanishing Eulerian mean, because |Fi| and |FL

i | can
differ by Stokes corrections of the same magnitude as |Fi|. A case in point is
the generation of small-scale waves by a suitable irrotational force F = ∇φw with
vanishing mean (cf. the numerical simulations in § 5.3 below). The force clearly
generates pseudomomentum and hence Fi &= 0, but because ∇ × F = 0 there can be
no material change in PV whatever and hence the pseudomomentum rule does not
apply.

In general, (3.20) must be carefully checked to establish the validity of the pseudo-
momentum rule in any given case, but a much more definite statement can be made
in the special case of a momentum-conserving force. This is investigated in the next
section.

† Strictly speaking, (3.20) needs only to hold for the respective curls of the vectors fields in (3.19).
However, I have not been able to find a case in which this more strict condition leads to interesting
differences.
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4. Momentum-conserving body force Fi
A strong argument can be made for the pseudomomentum rule to hold approxi-

mately provided that the body force Fi is momentum-conserving and that the mean
fields are slowly varying. The argument is not restricted to small-amplitude distur-
bances (though this is an important theoretical regime), it applies to both smooth and
shock-forming disturbances, and it has significant implications for numerical schemes.

4.1. Validity of the pseudomomentum rule

The density of momentum per unit area in shallow-water flow is hu and hence a
momentum-conserving body force Fi in (2.2) must derive from a stress tensor σij via

Fi =
1

h
σij,j , (4.1)

where the inverse density pre-factor 1/h is crucial for the conservation property. This
conservative form of Fi is clearly satisfied, for instance, by the usual viscous force. It
can be shown by using (3.5), (3.8), and (3.9) that this conservative form is inherited

by F
L

i as

F
L

i =
1

h̃
σ̃ij,j , where σ̃ij = σξikKkj (4.2)

is the effective mean stress tensor in GLM theory. In comparison, the expression for
Fi is

Fi = −ξj,iF$
j = −ξj,iF

ξ
j = −ξj,i(σjk,k)ξ/hξ (4.3)

which cannot, for general σij , be written in conservative form. Now, the divergence of
σ̃ij in (4.2) involves spatial derivatives of slowly varying mean fields, which are weak.
Formally, if the gradients of unaveraged fields are O(1), then the gradients of mean
fields are O(µ), where µ % 1 is a small parameter measuring the scale separation.

Therefore, while F
L

i = O(µ) arises due to mean-field variability on a slowly varying
envelope scale, Fi arises due to processes in the ‘bulk’ of the disturbance, i.e. at O(µ0).
Hence it can be argued that the latter will dominate the former, provided that the
scale separation is large enough.

Of course, the above argument is not a rigorous proof of the pseudomomentum
rule under the stated conditions; indeed no such proof is possible for general σij .
Specifically, there are two clear exceptions to the rule: first, the effective mean stress
tensor σ̃ij can contain stresses even in the absence of any disturbance. For instance, if
σij is the usual viscous stress tensor, then σ̃ij contains viscous stresses due to mean-flow

strains alone. The associated F
L

i is then a genuine part of the mean flow and need not
be small compared to Fi, especially if the disturbances are very weak. In such cases,
the argument for the pseudomomentum rule holds only for the disturbance-dependent
part of σ̃ij (cf. § 4.3 below). The second exception arises should there be no O(µ0)
bulk contribution to Fi. This could happen, for instance, if the disturbance fields in

(4.3) are in quadrature. In this case the first contributions to both Fi and F
L

i arise at
O(µ), and no general argument for the pseudomomentum rule can be made.

Apart from these exceptions, the generality of the argument is considerable. Specif-
ically, no assumptions with regard to small amplitude, irrotational flow, near-plane
monochromatic wave disturbances, etc. have been made. It would be very hard to
verify (or even to formulate) the pseudomomentum rule in such generality using the
standard Eulerian averaging as employed, e.g., in MN.
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A further point with regard to practical applications can be noted in passing. The
scale separation in any given application will only be finite, and hence the question
arises whether the pseudomomentum rule holds to sufficient approximation for the
application at hand. It is then useful to note that there is also a qualitative difference
in appearance between the PV change in (3.16) due to the bulk-related Fi and that

due to the envelope-related F
L

i . The curl of these fields enters (3.16) and this gives the

characteristic dipolar signature for the curl of Fi, whereas the signature of ∇ × F
L

is
at least quadrupolar. This is a valuable diagnostic aid for numerical simulations (cf.
figure 8 in § 5.3 below).

4.2. Shock waves

The argument of the previous section can be extended to apply to dissipative forces
related to shock formation. To see this, consider the usual viscous stress tensor in two
dimensions

σij = η1(ui,j + uj,i − δijuk,k) + η2δijuk,k, (4.4)

where the diffusivities η1, η2 ! 0 to ensure that kinetic energy is always dissipated. It
is now assumed in the usual way (cf. Whitham 1974) that any non-zero diffusivity
maintains the differentiability of all flow fields, thus allowing the formal application
of GLM theory, and that the standard jump conditions for mass and momentum
fluxes at emerging near-discontinuities are independent of η1, η2 for sufficiently small
values of these diffusivities. For any flow configuration it is then possible to imagine a
sequence of flows with diminishing diffusivities, the limit of which is the appropriate
‘weak’ solution† of the ideal, non-dissipative equations. The pseudomomentum rule
then holds for each member of the sequence and hence it presumably holds for the
limiting weak solution as well. The overall conclusion is that the pseudomomentum
rule holds for shocks on slowly varying mean flows, subject only to the general
reservations noted in the previous section.

4.3. Small-amplitude and slowly varying approximations

Detailed mathematical calculations of wave–mean interactions are typically restricted
to small disturbance amplitudes, as this allows detailed predictions to be made that
can be tested, for instance, against numerical simulations. Furthermore, it is often
possible at small amplitude to avoid using ξ explicitly in the diagnostic relationships
needed for extracting various Lagrangian-mean quantities from the numerical data.
Both reasons will come into play in § 5 below, and hence the necessary small-amplitude
expressions are provided here.

All flow fields are expanded in the leading three powers of a suitable small-
amplitude parameter a % 1. This produces an O(1) background mean state, O(a)
disturbances on top of that background state, and an O(a2) mean-flow response to
the disturbances. In the cases studied here, the background state is a rest state with
depth h0 defined such that the fluid surface height h0 + hB is constant. The derivatives
of the disturbance fields are assumed to be O(1), such that, for instance, ξi,j = O(a).
Consistent with this, the spatial derivatives of mean fields are O(µ), where µ % 1 is a
suitable scale separation parameter. For example, ξi,ju$j = O(a2), but (ξiu$j ),j = O(µa2).
No specific restriction is placed on µ/a, and no scaling is specified for time derivatives.

† In the usual way (cf. Whitham 1974), a ‘weak’ solution satisfies the governing differential
equations in smooth flow regions whereas it satisfies appropriate integral conservation laws across
flow discontinuities such as shocks.
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The Lagrangian disturbance φ$ of any field φ is approximated by (AM78a)

φ$ = φ′ + ξ · ∇φ + O(a2) = φ′ + O(µa, a2). (4.5)

The Lagrangian-mean of φ can be approximated based on the relation φ
L

= φ+ φ
S
,

where φ
S

is the Stokes correction. At small amplitude φ
S

is (AM78a)

φ
S

= ξ′
jφ

′
,j + 1

2ξ
′
iξ

′
j φ,ij + O(a3) = (ξ′

jφ
′),j − ξ′

j,jφ
′ + 1

2ξ
′
iξ

′
j φ,ij + O(a3), (4.6)

where ξ′
i is the conventional notation for the O(a) components of ξ. Under the slowly

varying assumption the term −ξ′
j,jφ

′ dominates in (4.6). Now, the disturbance depth
satisfies (cf. (3.8) in BM, or (5.16) in § 5.3 below)

h′ + h0ξ
′
j,j = −ξ′ · ∇h0 + O(a2) = O(µa, a2). (4.7)

Substituting in (4.6) then yields

φ
S

=
h′φ′

h0
+ O(µa2, a3), i.e. φ

L ≈ φ +
h′φ′

h0
(4.8)

for use as a Lagrangian-mean diagnostic of numerical data.
An Appendix shows how leading-order expressions for h̃ = hξJ and p as defined

in (3.15) can be derived in the same way. The result is

h̃ = h and p = h′u′/h0 = uS to O(a2). (4.9)

The surprisingly simple expression for p makes use of ∇ × u′ − fh′/h0 = O(a2). As
noted in BM, the relation p = uS does not generalize to other flow systems such as
the Boussinesq system, for instance.

The use of h0 in these expressions restricts their validity to cases where the mean
state has only changed by an O(a2) amount. This is justified for an unforced initial-
value problem, or in the early stages of a forced–dissipative problem.

For small-amplitude disturbances the disturbance-dependent parts of both Fi and
σij are O(τ−1a), where τ is a typical time scale associated with the action of the force
Fi. For instance, in the viscous case this would be the usual dissipation time scale. By
comparison with (3.17), this scaling means that Fi is typically O(τ−1a2).

The numerical simulations in § 5 feature O(a) waves that develop shocks on a
nonlinear time scale ∝ 1/a. To describe such O(a) shocks properly requires following
the evolution of the O(a) fields over such a long time scale with a suitable singular
perturbation theory, whose formidable complexity in the presence of rotation and
bottom topography is not worth pursuing here. Instead, the above expressions will
be used as a simplistic diagnostic tool for the numerical data even in the presence
of shocks. This is not formally justifiable, but it is motivated by the observations
that the amplitude of shock-forming fields (such as h′, for instance) remains O(a)
throughout, and that the scale separation between disturbance and mean fields is
only increased by the shock formation. It is noteworthy that this simplistic approach
affects only the numerical diagnostics; it does not affect the validity of the theory
developed previously.

4.4. Implications for direct numerical simulations

The local conservation of momentum during small-scale dissipation in direct numer-
ical simulations depends on the functional representation of the dissipative terms
and on the numerical discretization technique used in the model. Dissipative terms
in a numerical model that are to represent internal physical processes ought to be
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momentum-conserving (i.e. they should be of the form (4.1)), which then also implies
that the pseudomomentum rule should hold under the assumptions discussed above.
(Of course, in some cases forcing terms in numerical models are meant to represent
external momentum sources and then the foregoing does not apply, but these cases
will not be discussed here.) In practice, this can be a fairly difficult test to pass.

To begin with, it is clear that ad hoc dissipative terms such as Rayleigh damping (in
which F ∝ −u) are not momentum-conserving. More subtly, the diffusion (or hyper-
diffusion) that is sometimes applied directly to the variables {u, v} (say, in a spectral
model) is also not momentum-conserving, because it corresponds to (4.1) without the
factor 1/h. This leads to a leading-order disagreement with the pseudomomentum
rule even at small disturbance amplitude a. This is despite the fact that Fi can be
computed to O(a2) using only the O(a) part of F ′

i , which is σ′
ij,j/h0. In other words, to

O(a2) the neglect of h′ in the denominator does not affect the wave property Fi , but

it does affect Fi
L
.

Similar comments apply to local mass conservation; specifically any mass ‘dif-
fusion’ or damping may invalidate the pseudomomentum rule. Finally, the numerical
discretization method also affects the conservation properties. For instance, a spectral
model might guarantee the global conservation of h and hu, but this might entail
non-local redistribution of mass and momentum, which again invalidates the local
conservation property on which the pseudomomentum rule is based. Of course, such
non-local effects can be minimized by increasing the model resolution. Alternatively,
finite-volume conservative schemes can be used (as in § 5 below), which are designed to
achieve exact local conservation of mass and momentum at any resolution. However,
at present the performance of typical finite-volume schemes deteriorates severely
when applied to the strongly rotating, strongly dispersive systems of most interest
in atmosphere and ocean fluid dynamics, which by itself can lead to substantially
increased resolution requirements. In practice, this must be offset against the desirable
in-built conservation properties of these schemes.

5. Numerical simulations
Nonlinear numerical simulations were performed to illustrate and verify the wave-

induced vorticity transport described theoretically in the previous sections. Two basic
cases were considered: first a freely decaying zonally symmetric wavetrain, and second
a slowly varying wavetrain subject to continuous forcing and dissipation.

5.1. Numerical model description

The numerical model was a purpose-built shock-capturing finite-volume scheme for
the rotating shallow-water system with bottom topography. The scheme uses the mass
and momentum densities {h, hu, hv} as flow variables in a conservative discretization
of the equations of motion (cf. (2.1)–(2.2) for notation)

∂h

∂t
+ ∇ · (hu) = 0, (5.1)

∂(hu)

∂t
+ ∇ ·

(
huu + I

c2
0

2
h2

)
+ f × hu + hc2

0 ∇hB = h∇φw. (5.2)

Here, provision has been made for including wave forcing by an irrotational body
force with potential φw . No explicit diffusion mechanism is present and hence the
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only physical diffusion and dissipation can occur through shock formation. The
computational domain is rectangular with side lengths L and D in the x (zonal)
and y (meridional) directions. The domain is sub-divided into computational cells
using a uniform Cartesian grid with constant grid spacings ∆x and ∆y. The above
equations contain conservative fluxes as well as momentum source terms due to
(constant) rotation, topography, and wave forcing. Fluxes and sources are considered
separately in the model. At each time step, the fluxes of mass and momentum
between adjacent cells are calculated and the net change in mass and momentum
in each cell is computed. The mass and momentum that leaves a cell through a
particular cell interface necessarily enters an adjacent cell, which means that mass
and momentum are always locally conserved by design. This discrete conservation
property is known to be crucial for simulating gas-dynamical flows with shocks, and
it also appears to be crucial for capturing wave–mean interaction effects according to
the pseudomomentum rule, as was demonstrated in § 4.

The inter-cell fluxes are calculated using Roe’s approximate one-dimensional Rie-
mann solver at each cell interface. Nominal second-order accuracy in space is achieved
by using a bilinear interpolation scheme (with limiter for stability) to calculate the
two-dimensional gradients of each variable in each cell. The interfacial states that
enter the Riemann solver are then calculated using these gradients. Fluxes through
all interfaces are calculated simultaneously in this model, i.e. there is no operator
splitting of the space dimensions. Second-order accuracy in time is achieved by using
a Lax–Wendroff two-step explicit time stepping method and the source terms in (5.2)
are incorporated at this stage.

The boundary conditions in the model can be periodic, resembling a solid wall, or
resembling a radiation condition. The latter two are implemented by using a ring of
ghost cells surrounding the computational domain. Each ghost cell contains either
the mirror image (at a wall) or simply a copy (at a radiation boundary) of the state in
the adjacent computational cell. These simplistic boundary procedures could be made
more accurate if necessary, but no such need was found in the simulations reported
here. All runs were performed on a workstation.

5.2. Case I: freely decaying wavetrain

This is a pure initial-value problem without bottom topography or forcing, i.e. hB = 0
and φw = 0 in (5.2). The initial conditions are given by a zonally symmetric train
of gravity waves with Gaussian envelope shape in the meridional direction. The
boundary conditions are periodicity in x and radiation conditions at y = 0 and
y = D. Specifically, the initial fields are

h = 1 + a sin (kx)

(
1 +

1

k2d2

(
2 − 4

d2
y2
c

))
exp (−y2

c /d
2), (5.3)

u = a sin (kx)

(
ω̂

k
− 2f

k2d2
yc

)
exp (−y2

c /d
2), (5.4)

v = −a cos (kx)

(
f

k
− 2ω̂

k2d2
yc

)
exp (−y2

c /d
2), (5.5)

introducing the non-dimensional wave amplitude a, wavenumber vector k = (k, 0),
envelope scale d, centred y-coordinate yc = y − D/2, and intrinsic frequency

ω̂(k) = +
√
c2
0 κ

2 + f2 where κ ≡ |k|. (5.6)
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Case Ia Case Ib Case Ic
non- weakly strongly

Parameter Symbol rotating rotating rotating

Coriolis parameter f 0 1/40 1
Rossy deformation length LR ≡ c0/f +∞ 40 1
Wave amplitude a 0.2 0.2 0.2
Wavenumber magnitude κ 1 1 1
Meriodional envelope scale d 40 40 40
Slowly varying parameter µ = (κd)−1 0.025 0.025 0.025

Domain size in x and y (L,D) (2π, 320) (2π, 320) (2π, 320)
Resolution (L/∆x, D/∆y) (42, 54) (42, 54) (126, 162)
CFL number c0∆t(1/∆x + 1/∆y) 0.7 0.7 0.54

Table 1. Physical and numerical parameters for cases Ia–c. Note that the parameter c0 = LRf was
the same in all runs and that the numerical resolution was substantially increased in the strongly
rotating case Ic.

The terms involving inverse powers of d are necessary to ensure that there is no
initial PV disturbance, i.e. that q = f at t = 0. The wavenumber k is chosen positive,
which together with (5.6) corresponds to linear waves with positive phase and group
velocities. No effort has been made to match nonlinear modifications to the wave
structure at higher order in a.

Three runs with different values of the Coriolis parameter f were performed and
the relevant parameters are collected in table 1. A useful measure of the strength
of the rotation in each case is the Rossby deformation length LR ≡ c0/f, above
which rotation strongly influences the linear shallow-water dynamics. The length LR

is formally infinite in the non-rotating case Ia, whilst LR = d in the weakly rotating
case Ib, which implies that rotation affects the zonally averaged mean flow but not
yet the small-scale gravity waves. Finally, LR = κ−1 in the strongly rotating case Ic,
and hence the gravity waves themselves are strongly affected by the rotation.

The numerical grid was fine enough to render numerical diffusion unimportant
during the integrations. In order to achieve sufficient accuracy of the PV field a finer
grid was necessary in the strongly rotating case than in the other two cases. This was
due to the numerical stiffness of the problem in this regime, in which source and flux
terms must balance in (5.2) despite them being represented in completely different
ways in the numerical scheme. The CFL number also had to be reduced in case Ic,
as the waves developed substantial transient crests, with correspondingly increased
nonlinear wave speeds (cf. figure 2).

As illustrated in figure 2, both the non-rotating case Ia and the weakly rotating
case Ib exhibit rapid shock formation followed by sustained dissipative decay. In
the strongly rotating case Ic, on the other hand, the wave steepens initially but
then adjusts after a transient phase of dissipative decay into a steadily propagating
nonlinear equilibrium shape, in which nonlinearity and dispersion balance. This is
verified in figure 3, where the time evolution of the domain-integrated energy shows
essentially constant amplitude at large times. It has been checked that the nonlinear
equilibrium shape closely resembles the detailed structure of exact nonlinear periodic
waves in rotating shallow water (e.g. Bühler 1993). Somewhat surprisingly, these
nonlinear waves appear to be sufficiently stable against small-scale perturbations to
emerge naturally in these simulations.

Let us now turn to the evolution of the mean flow. Mean fields are defined here by
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Figure 2. Snapshots of h at y = D/2 at various times, showing the initial sinusoidal shape,
shock formation, decay, and (in case Ic) adjustment to a nonlinear equilibrium shape. The four
snapshots are denoted by 1–4, and the corresponding times are t = (0, 2π, 4π, 20π) in Ia and Ib, and
t = (0, 1.4π, 2.8π, 5.6π) in Ic. Note that the amplitude of h is steadily decreasing with time in Ia and
Ib, whilst in Ic the second snapshot, which is just at the onset of breaking, has maximum amplitude.
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Figure 3. Plot of the time evolution of the domain-integrated energy 0.5(u2 + v2 + c2
0 (h − 1)2). The

rapidly decaying curves for Ia–b fall on top of each other, while for Ic the curve shows initial decay
followed by adjustment to a nearly steady energy level.

a zonal x-average, which implies that φ,x = 0 for any field φ. Zonal averaging is a
valid limiting case of small-scale averaging, and hence all the previous theory applies

here. The simple diagnostic expression (4.8) for Stokes corrections φ
S ≡ φ

L − φ is

used to compute φ
L
, as are the expressions in (4.9) for h̃ and p. Initial conditions

for the relevant mean fields {h̃, uL, qL, p} can now be diagnosed from (5.3). This gives
h̃ = 1, uL = p0, q

L = f, with

p0 =
k

ω̂
E0 =

k

ω̂
1
2 (u

′2 + c2
0 h

′2)
∣∣
t=0

= k 1
2a

2 ω̂

k2
exp (−2y2

c /d
2) to O(a2), (5.7)

where k = (k, 0) and E0 is the mean disturbance energy density per unit mass at
t = 0. In summary, the initial mean flow consists of a fluid layer with uniform
depth and uniform PV together with a zonal jet with Gaussian envelope scale d/

√
2

and maximum speed 0.5a2ω̂/k. Note that non-uniform uL is indeed compatible with
uniform qL in the presence of waves (cf. (3.14) and BM).

The time evolution of qL under the pseudomomentum rule is governed by (3.16)
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Figure 4. Plots of ∆q = qL − f as a function of y at time t = 6π. The scaling factor 1000 = (µa2)−1.
The solid line is ∆q and the dashed line is p,y − kE0,y/ω̂. Here, qL has been diagnosed directly from

q = (∇ × u + f)/h as qL ≈ q + h′q′. The closeness of the solid and the dashed lines indicates the
very good agreement with the pseudomomentum rule.

and (3.20), i.e.

qL,t = F,y + O(a3) (5.8)

where F is the zonal component of the dissipative pseudomomentum source vector
Fi in (3.17). The dissipative term F,y arises through the dissipative shock formation
and can only be diagnosed indirectly from the numerical simulations. To this end the
x-component of (3.17) must be considered, i.e.

p,t − F + O(a3) = c2
0 ξ

′
j,xh

′
,j = c2

0 (η′
,xh

′),y , (5.9)

where p is the zonal component of p. The term on the right-hand side has been
reformulated using φ,x = 0 and (4.7); it describes a meridional flux of zonal pseudo-
momentum that results in the meridional spreading of the wavetrain. The scale of
this term is at most O(µa2) and it will be neglected for simplicity.† Substituting (5.9)
in (5.8) then yields qL,t = p,yt, or

qL − f = p,y − k

ω̂
E0,y , (5.10)

where O(a3) terms have been neglected and the mean-flow initial conditions have been
used. This result shows that the shock-induced qL − f = O(µa2). The two sides of
(5.10) are plotted in figure 4 and very good agreement between the numerical results
and the theoretical predictions based on the pseudomomentum rule is found.

The evolution of qL is essentially similar in all three cases, but this is not true for
the evolution of uL due to the strong effect of background rotation when LR " d.
This can be demonstrated most easily by considering the GLM expression for qL in
(3.14), which gives

qL = −uL,y + p,y + f − f(h̃ − 1) + O(a3) (5.11)

valid throughout the evolution. Substituting from (5.10) gives

uL,y + f(h̃ − 1) =
k

ω̂
E0,y (5.12)

† Strictly speaking, this requires τµ % 1, where τ is the dissipation time scale introduced in § 4
such that F = O(τ−1a2). This is a very good approximation for the strongly decaying cases Ia–b,
but leads to a small error for the weakly decaying late-time evolution in case Ic.
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Figure 5. Snapshot of u′(x, y) at t = 60π in case IIa. Boundary conditions are solid walls at x = 0,
y = 0, y = D, and radiation at x = L.

neglecting O(a3) terms as before.† This shows that in the non-rotating case Ia there
is no change in uL, which is compatible with simplistic ideas about the wave’s Stokes
drift being transferred dissipatively to the Eulerian mean flow. In the rotating cases,
however, uL changes significantly as f(h̃− 1) changes and no simple relationship with
the wave’s Stokes drift holds. This emerges clearly in the long-time limit, when the
O(a) wave field as well as all O(a2) transients have settled down. Then, as investigated
in detail in BM, a geostrophic balance relationship holds approximately between
c2
0 h̃,y , fu

L, and (in case Ic) E,y . This relation together with (5.12) allows uL and h̃ to
be calculated, which results in a uL structure that is strongly influenced by rotation
and quite different from the wave’s Stokes drift.

5.3. Case II: forced–dissipative wavetrain

A wavetrain subject to continuous forcing and dissipation may produce a mean
PV change that grows in time. This is demonstrated here by studying a slowly
varying wavetrain of the form (5.3) that is continually forced near the left-hand x-
boundary. The wavetrain then travels to the right until it encounters a strong decrease
in background depth due to a hump-shaped topography in the centre region. The
concomitant increase in wave amplitude pushes the waves over the breaking threshold,
and shock-related dissipation occurs locally. Thereafter the topography reduces to
zero again and a wavetrain with reduced amplitude propagates out of the right-hand
x-boundary (see figure 5 for a wavetrain snapshot). The averaging operation is now
a local average over the small-scale waves.

The (irrotational) wave-forcing and topography source terms in the momentum
equations (5.2) do not affect the conservation of mass or PV. The topography term is
also energy-conserving, as can be seen from the exact energy law

h
D

Dt

{
u2

2
+

c2
0

2h
∆h2

}
+ ∇ ·

(
c2
0 ∆h hu − c2

0

2
∆h2u

)
= 0, (5.13)

† For diagnostic purposes h̃ can be replaced by h to O(a2), although in case Ic this is not strictly
justified because f(h̃ − h) = O(fµa2) is then not strictly negligible in (5.12).
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where the wave-forcing term has been omitted. Here ∆h is the deviation of h from a
variable background h0(x) that corresponds to constant surface height, i.e.

∆h ≡ h − h0 and h0 + hB = 1. (5.14)

In the usual way, the energy density in curly brackets in (5.13) measures the energy
of the present state relative to an equal-mass rest state with an undisturbed surface.

It turns out to be extremely useful to consider first the unforced linearized equations
in one dimension in the usual ray-tracing JWKB approximation. This will fix the
appropriate definitions of O(a) wave amplitudes, it will allow setting parameters for
the amplitude increases due to hB > 0 in the centre, and it will also permit a simple
diagnostic for Fi to be defined. The one-dimensional linear equations are obtained
from (5.1)–(5.2) by setting all y-derivatives to zero, letting

u = u′ + O(a2) and ∆h = h′ + O(a2), (5.15)

and collecting terms at O(a). The result is

h′
,t + (h0u

′),x = 0, (5.16)

u′
,t − fv′ + c2

0 h
′
,x = 0 and v′

,t + fu′ = 0, (5.17)

where h0(x) enters only in the continuity equation (5.16). The mean disturbance energy
density per unit mass at O(a2) can be read off from (5.13) as

E =
1

2

(
u′2 +

c2
0

h0
h′2
)
. (5.18)

The local average is such that h0 = h0 to sufficient approximation. The expression in
(4.9) is used for p, i.e.

p = h′u′/h0 (5.19)

to O(a2). Using (5.18)–(5.19) in (5.13) then gives the energy conservation law

(h0E),t + (c2
0 h0

2p),x = 0 (5.20)

at leading order. The system can be closed by making the JWKB assumption, which
assumes a slowly varying wavetrain containing small-scale sinusoidal waves moving
to the right with local intrinsic frequency ω̂ > 0 and local zonal wavenumber k > 0
that satisfy the local dispersion relation

ω̂ = +
√
c2
0 h0k2 + f2. (5.21)

The O(1) background state (i.e. h0(x)) is steady but x-dependent and correspondingly

ω̂ = const. and h0(x)k
2 = const. (5.22)

along group-velocity rays. Assuming a single-frequency wave source then implies that
ω̂ and h0(x)k2 are the same across all rays and hence everywhere in the domain. The
generic relation p = kE/ω̂ holds for propagating waves and using this relation, (5.20),
and (5.22) in combination gives the pseudomomentum evolution equation

(h0p),t + (h0E[1 − f2/ω̂2]),x = −h0 ,x
E

2
[1 − f2/ω̂2] (5.23)

at leading order. The specific form of (5.23) is useful for the numerical diagnostics
described below but the usual ray-tracing form is recovered by noting that the group
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ω̂ k p E |u′| |h′| a

const. h0
−1/2 h0

−2 h0
−3/2 h0

−3/4 h0
−1/4 h0

−5/4

Table 2. Steady-state scalings of local wavetrain parameters with h0(x). For example, if h0 decreases
from h0 = 1 to h0 = 1

3 , then the local pseudomomentum density p increases ninefold. The scaling

k ∝ h0
−1/2 is also the scaling of the amount of pseudomomentum contained between two points

moving with the local group velocity, which shows that pseudomomentum is not conserved unless
h0 is constant. Note that |u′| and |h′| stand for local amplitudes in these fields. The wave amplitude a
is defined as a = max (|h′|/h0), which in JWKB theory implies a = max (|u′|k/ω̂) and a =

√
2Ek/ω̂.

Case IIa Case IIb Case IIc
non- weakly strongly

Parameter Symbol rotating rotating rotating

Coriolis parameter f 0 1
40 1

Wave amplitude a 0.02 0.02 0.1
Wavenumber magnitude κ 1 1 1
Meriodional envelope scale d 40 40 40
Maximum of hB(x) 2

3
2
3

2
3

Maximum of |dhB(x)/dx| 0.056 0.056 0.056
Domain size in x and y (L,D) (30π, 320) (30π, 320) (30π, 320)
Resolution (L/∆x, D/∆y) (856, 76) (856, 76) (856, 76)
CFL number c0∆t(1/∆x + 1/∆y) 0.87 0.87 0.7

Table 3. Physical and numerical parameters for cases IIa–c. The shape of hB(x) is shown in
figure 6 and the boundary conditions are described in the caption of figure 5. Because of prohibitive
computational cost, it was not possible to use the substantially increased resolution of case Ic in
case IIc here.

velocity cg satisfies cgk/ω̂ = [1 − f2/ω̂2]. Equation (5.23) makes clear that pseudomo-
mentum is created wherever the background depth h0(x) decreases, and vice versa.

The local wavetrain parameters change from place to place as h0(x) changes.
Specifically, for a steady wavetrain the scalings in table 2 have been deduced from the
above JWKB relations. The ratio f/ω̂ is constant, and hence the relative importance
of rotation for the waves is unaffected by changes in h0. It is noteworthy that a,
|u′|, and |h′| all scale differently as h0 changes, with the wave amplitude a showing
the greatest sensitivity. This is important for judging the strengthening of nonlinear
effects as h0 is decreased, because these effects scale with a.

Let us return now to the two-dimensional set-up. Three cases IIa–c have been
studied and the parameters are summarized in table 3. The type of wave-forcing
potential φw used was the same as in BM, i.e. for numerical robustness a wavetrain
moving in both x-directions was generated continually. The forcing was centred half
a wavelength away from the left-hand solid-wall boundary, which led to a reflection
of the left-going waves and their desired constructive interference with the right-going
waves in the bulk of the domain. Various centreline sections of the wavetrain are
presented in figures 6 and 7 (see captions for details). A simple x-average over one
wavelength has been used to calculate the mean fields. The wave amplitude a was
chosen such that shock formation was localized in the centre region, i.e. the waves
were able to travel to the centre before breaking. Note that in the strongly rotating
case IIc, a had to be chosen five times larger than in the other cases due to the
resilience to breaking of strongly rotating inertia–gravity waves.
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Figure 6. Snapshot along centreline y = D/2 at t = 60π in case IIa, whose disturbance fields are
virtually identical to case IIb. (a) Hump-shaped bottom topography hB(x), which is raised over
three wavelengths to its centre maximum hB = 2

3 (corresponding to h0 = 1
3 ); also shown is the

undisturbed free surface such that h0 is the distance between the two curves. (b) Disturbance velocity
u′ showing slow initial steepening, rapid amplitude increase, shock formation, and decay to reduced
amplitude. The dashed line is the u′ amplitude scaling based on (non-dissipative) JWKB theory.
(c) Corresponding disturbance energy density E. The dashed line is Eh0

3/2, which is constant as
long as (non-dissipative) JWKB theory is valid.
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Figure 7. Snapshot along centreline y = D/2 at t = 60π in case IIc, using the same bottom
topography as in IIa,b but note the increased wave amplitude. (a) Disturbance velocity u′ showing
an initial peak–trough asymmetry characteristic of large-amplitude inertia–gravity waves. The
dashed line is the u′ amplitude scaling based on (non-dissipative) JWKB theory and an initial
amplitude a =

√
2Ek/ω̂ ≈ 0.1, which gives max |u′| ≈ 0.14. (b) Corresponding disturbance energy

density E. The dashed line is Eh0
3/2, which is constant as long as (non-dissipative) JWKB theory is

valid.
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Case IIb

min –4.4e-06 max 4.4e-06

min –3.9e-06 max 3.9e-06

min –1.2e-04 max 9.5e-05

Case IIb

min –4.2e-06 max 4.2e-06

min –3.7e-06 max 3.6e-06

min –6.7e-05 max 1.7e-04

(a) (b)

y

y

y

Case IIa Case IIa

Case IIc Case IIc

x x

Figure 8. Snapshots of qL,t at t = 60π. A centred region ten wavelengths wide in x and six
envelope scales d wide in y is shown. Solid and dashed contours mark positive and negative values,
respectively. (a) qL,t diagnosed based on the difference of qL at t = 80π and t = 40π. (b) qL,t estimated

from the pseudomomentum rule and plotted with the same contour levels as the diagnosed qL,t ; see
text for details.

Having discussed the essentially one-dimensional disturbance dynamics along the
centreline, it is now possible to turn to the mean-flow dynamics. In the early stages the
forced–dissipative flows studied here are amenable to simple O(a2) diagnostics of the
type introduced earlier and used for the initial-value problems Ia–c. The flow starts
from rest and hence the initial mean fields {h̃, uL, qL, p} are h̃ = h0, uL = 0, qL = f/h0,
and p = 0. Note that qL varies due to h0(x) in the rotating cases IIb,c; indeed
qL,x = O(µf). This means that material advection of background PV contributes to

qL,t on top of the wave-breaking contributions summarized by the pseudomomentum

rule. The leading-order evolution equation for qL hence reads

qL,t + uL
(
f

h0

)

,x

=
F,y − G,x

h0
+ O(a3) (5.24)

where (F,G) are the components of Fi. It is clear that |G| % |F| due to the y-
symmetry of the wavetrain, and hence it only remains to find a diagnostic expression
for F. However, using the x-component of (3.17) as before brings no direct result
here due to various (. . .),x terms in that equation. Those terms vanished under zonal
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Figure 9. (a) Snapshots of q at large time, i.e. at t = 1000π. The same centre region as in figure 8
is shown. In the rotating cases IIb,c the background PV has been significantly affected by material
displacements, which breaks the y-symmetry observed in IIa. The reason for the asymmetry is
that the wave breaking occurs at a maximum of PV and hence advection of PV can only deepen
negative anomalies. (b) Time evolution of extremal values of the PV anomaly q − f/h0. The solid
line shows maximal values and the dashed line shows (sign-reversed) minimal values. Again, cases
IIb,c become asymmetrical at large times, with dominant minimal values.

averaging, but they persist under the small-scale averaging used here. Evaluating these
terms would involve ξ′, which is not directly available from the numerics. Therefore,
a simplistic diagnostic approach based on JWKB theory is adopted here, in which F
is defined as the residual of the steady pseudomomentum equation (5.23), i.e.

(h0E[1 − f2/ω̂2]),x + h0 ,x
E

2
[1 − f2/ω̂2] = h0F, (5.25)

or
1

h0
3/2

(h0
3/2E[1 − f2/ω̂2]),x = F. (5.26)

In JWKB theory this would be justified as equating F to the appropriately scaled
pseudomomentum flux convergence. While JWKB theory is clearly not formally
applicable here, the fact remains that F is indeed equal to an appropriate pseudo-
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momentum flux convergence, even outside JWKB theory. Equation (5.26) is used as
a simplistic first approximation to this flux convergence.

The advective term in (5.24) requires uL, which is diagnosed as uL = u + h′u′/h0 to
O(a2). Figure 8 compares the directly diagnosed qL,t (using qL = q+h′q′/h0 at different
times; see caption) to a prediction based on (5.24) at t = 60π. It can be seen that the
agreement is very good in IIa,b, but markedly worse in case IIc. With considerable
effort, this has be traced back to poor convergence of u in the advective term in
(5.24). There are two reasons for this: first, the u′ field shows signs of sub-harmonic
pairing in the wavetrain, which contributes to a ‘blotchy’ u. Second, in case IIc the
Rossby deformation length LR % d and hence the non-dissipative wave-induced uL

ought to be very small compared to uS (cf. § 8.2 in BM for an analysis). This means
that uL is the small difference between two large quantities, u and −uS , which leads
to further diagnostic difficulties. The localized wave breaking relies on strong h0 ,x,
which invariably implies large qL,x if f = 1, and hence the advective term in (5.24) is
invariably important in this scenario. Hence, it appears that the pseudomomentum
rule can be demonstrated clearly in IIa,b, but that it cannot be demonstrated beyond
all doubt in IIc. Significantly more costly numerical simulations, beyond the scope
of this study, appear to be necessary to test clearly the pseudomomentum rule in
the strongly rotating case. Still, I cannot think of a theoretical reason why the
pseudomomentum rule should fail there.

Figure 9 illustrates the large-time behaviour with snapshots of q at time t = 1000π.
The rotating cases IIb,c show marked y-asymmetries at this time, which is commented
on in the caption. Also shown there is a time series of the maxima and minima of
the created PV anomalies, which in all cases shows cumulative growth in the early
stages, which is modified at larger times when the created PV anomalies affect the
dynamics; again see caption.

Finally, it can be noted that the dissipative changes in qL arising in these simulations
are linked in an essential way to the lateral envelope shape of the wavetrain. In
genuinely one-dimensional simulations, as described recently by Kuo & Polvani (1999),
the lateral envelope shape is effectively infinite and no such dissipative change in qL

occurs.

6. Comparison with related weakly nonlinear asymptotic theories
The results described here and in BM can be compared with results that have

been obtained elsewhere using asymptotic theories of weakly nonlinear wave–mean
interactions. This cross-comparison is helpful because it provides an asymptotic check
on both the theory and the numerics presented here and it also illuminates certain
aspects of both theories that would otherwise be perhaps less obvious.

The attraction of weakly nonlinear asymptotic theory lies in the fact that, within
the restrictions of the chosen asymptotic scaling regime, it can produce results with
rigorous mathematical error control. For an unforced flat-bottom shallow-water sys-
tem on a periodic domain, such a theory has recently been investigated independently
by two groups: Babin, Mahalov & Nicolaenko (1997) and references therein, and
Majda & Embid (1997) and references therein. (Both groups have extended their
approach to the significantly more complicated case of three-dimensional stratified
flow.) The brief pedagogical account of the basic results in Majda & Embid (1997) is
sufficient for this section. The set-up of the theory involves an asymptotic sequence
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of flows ordered by an asymptotic parameter ε % 1 such that†

c0, f ∝ ε−1 and LR = c0/f = const. (6.1)

The initial conditions are independent of ε provided that the flow is described using
the variables U = {u, v, c0∆h}, which implies that ∆h = O(ε). This down-scaling of
the depth disturbance ∆h is necessary to render the initial flow energy in (5.13)
ε-independent. After suitable non-dimensionalization, the formal structure of the
equations of motion can be usefully summarized as (cf. (10) in Majda & Embid 1997)

∂U

∂t
+

1

ε
L(U) + B(U,U) = 0, U(x, y, 0) = O(1), t " O(1), (6.2)

where L is a linear operator with constant coefficients that describes the usual ‘2+1’
dynamics of two gravity-wave modes and one steady balanced mode, and B contains
the nonlinear terms. The structure in (6.2) makes obvious that ε % 1 corresponds to
a weakly nonlinear asymptotic regime, in which the magnitude of the nonlinear terms
is formally O(1), but is O(ε) when compared to the magnitude of the linear terms.
The theory proceeds by decomposing (6.2) into spectral modes, introducing fast and
slow time scales to capture linear and nonlinear terms, and solving the resultant set
of equations with rigorous error control for t " O(1). The technically demanding
solution procedure involves averaging over the fast, linear time scale whilst taking
proper account of all possible cubic resonant interactions between spectral modes.
The validity for times up to t = O(1) corresponds to an asymptotically large number
of linear gravity-wave oscillations (whose frequency is ω̂ ∝ ε−1; cf. (5.6)), and to a
fixed nonlinear time span of, say, one vortex turnover time.

The asymptotic results for the mean flow and the gravity waves are as follows. The
mean flow exhibits standard quasi-geostrophic dynamics, i.e. the mean PV is advected
by a non-divergent mean velocity field that is in geostrophic balance with the mean
depth field. The functional relation between the mean PV and the other mean fields
is that of the linearized steady balanced mode, which implies, e.g., the absence of cy-
clostrophic corrections to the structure of vortices. Most notably, the mean flow is com-
pletely unaffected by the gravity waves as ε → 0. As for the gravity waves themselves,
there is no nonlinear inter-scale dynamics between modes with different wavenumber
vector magnitudes κ. The only nonlinear dynamics that does occur produces energy
exchanges within ‘shells’ of constant κ, for which the mean flow is acting as a catalyzer.
By implication, shock formation is impossible for t " O(1).‡ All the usual JWKB
effects (e.g. focusing, Doppler shifting) are negligible in the asymptotic limit ε → 0.

How do these results compare with the wave–mean theories studied here and in
BM? To begin with, the averaging operators of the different theories agree when
applied to wavetrains containing small-scale waves: they simply reduce to the average
over the rapidly varying phase of the waves. Now, discarding the Stokes corrections
for the moment, (3.14) shows that the functional relation between mean PV and the
other mean fields contains wave-related terms such as ∇ × p. The same occurs in
BM’s explicit JWKB result (1.3), where the O(a2) balance relation contains ∇ × p and
a further term ∝ E/(LRc0) due to O(a2) changes in the mean depth. At first sight,
this appears to disagree with the aforementioned asymptotic mean-flow results, in

† This is what is called the ‘low Froude, low Rossby number’ in Majda & Embid (1997); the
alternative ‘low Froude, fixed Rossby number’ limit is not considered here.

‡ According to Babin et al. (1997) an even stronger regularity result can be proven, albeit subject
to certain technical restrictions: shock formation is impossible for time intervals that go to infinity
as ε → 0.
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which no such terms were present. However, it turns out that the pseudomomentum
p = O(ε), and hence its presence in (3.14) is indeed negligible for t " O(1). This
scaling can be read off, for instance, from the JWKB relation p = kE/ω̂ and by
noting that ω̂ ∝ ε−1 whilst k and E are ε-independent. The same argument also
shows that the term ∝ E/(LRc0) = O(ε). Another way to derive this scaling, not
using JWKB theory, is via (4.9) and recalling that h′ = O(ε). The same argument
also shows that all Stokes corrections are in fact O(ε), and hence that Eulerian and
Lagrangian averaging must produce the same result asymptotically. This justifies the
previous discarding of Stokes corrections in (3.14).

Most fundamentally, h′ = O(ε) implies that ξ = O(ε). Therefore, in the limit ε → 0
both the disturbance-associated displacement field ξ and the pseudomomentum field
p go to zero. Physically, the fluid layer becomes increasingly ‘stiff ’ as ε is decreased,
and material oscillations must hence reduce in amplitude for any fixed energy level.
This also explains why the asymptotic mean-flow dynamics can be initialized by
simply taking the initial PV as the initial mean-flow PV, a procedure that neglects
undulations of PV contours by gravity waves: such undulations are again described
by ξ and are hence O(ε).

The restriction of the asymptotic results to t " O(1) cannot in general be relaxed to
t " O(1/ε), which would cover many nonlinear vortex turnover times. For instance,
the various wave-related O(ε) terms described above would become important over
such a long time period. BM’s example of a resonantly growing Rossby wave driven by
a gravity-wave wavetrain demonstrates this point. As is well-known, other O(ε) effects
not related to gravity waves (such as cyclostrophic corrections to vortex structures)
are also important over such long time periods.

Finally, the asymptotic theory makes an interesting prediction for the shock for-
mation exhibited in the numerical simulations here: the asymptotic theory forbids
shock formation for t " O(1) even for small-scale gravity waves satisfying κLR . 1.
This is despite the fact that the linear structure of such waves is virtually unaffected
by rotation. This asymptotic result clearly does not yet apply to the waves in the
weakly rotating case Ib in § 5. However, for fixed initial conditions, ε can always be
reduced sufficiently far to reach the asymptotic regime. Numerical experimentation
for case Ib has shown that c0 and f need to be increased by a factor of ≈ 1500 whilst
keeping the initial {u′, v′, c0h

′} constant before the dispersion begins to suppress the
shock formation significantly. This suggests that for these wavelike initial conditions
ε ≈ max |h′|(κLR)2, which gives ε ≈ 0.2 after the increase of c0 and f.

7. Concluding remarks on atmospheric applications
Work is currently underway to adapt the present shallow-water theory to three-

dimensional stratified flow systems. This is not an entirely straightforward process,
if only because of the presence of diabatic heating effects in stratified flows. Such
diabatic effects are important for geophysical applications: for instance, gravity-wave
dissipation by diabatic heating contributes significantly to the gravity-wave budget
of the middle atmosphere (e.g. MN). There are also further technical complications
because diabatic heating interferes with the kinematical workings of finite-amplitude
GLM theory (cf. BM).

Certain broad conclusions for the numerical treatment of atmospheric gravity waves
can already be drawn from the present work. High-resolution general circulation mod-
els (GCMs) for the atmosphere are becoming increasingly ‘gravity-wave-permitting’,
meaning that more and more small-scale gravity-wave activity is becoming part of
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the internal dynamics of these models. Therefore, the numerical issues discussed in
§ 4.4 are becoming to some extent relevant for GCM design.

Specifically, sufficient numerical accuracy in local mass and momentum conserva-
tion will be required to obtain correct wave–mean interaction results in GCMs. This
holds for a wider range of wave–mean interactions than just the pseudomomentum
rule. One example is the so-called Lighthill radiation, or spontaneous emission of
gravity waves by unsteady vortex motion. It is well known theoretically that Lighthill
radiation has a comparatively weak quadrupolar source type in the standard compact
source limit, but this result depends crucially on the local conservation of mass and
momentum and hence non-conservative numerical models might show spuriously
strong Lighthill radiation.

Despite the growing importance of direct numerical simulations of gravity waves,
GCMs will continue for a long time to rely heavily on the so-called parametrization
of gravity waves, in which the effect of unresolved gravity waves is approximately
represented in the model via suitable body forces. Current parametrization schemes
are based on fluxes of pseudomomentum derived from one-dimensional JWKB theory
for the waves and on zonally symmetric mean flows for the interaction theory. The
theory developed here might help in devising parametrization schemes that go beyond
these restrictions in a consistent way, especially if the generation of pseudomomentum
by spatial mean-flow variability is to be taken into account.

It is important in this connection that the effective mean force F̃ in the vorticity
budget (3.16) is only part of the mean momentum budget. Other, irrotational mean
forces exist that complete the mean momentum budget, unless there are special
mean field symmetries (AM78a). These irrotational mean forces are not in general
amenable to a simple analysis of the type that has led to the pseudomomentum
rule. Still, the existence of these irrotational mean forces implies, for instance, that
there is no obvious bound on |F̃ | that can be derived from global momentum
conservation. If the pseudomomentum rule applies, then this is consistent with the
fact that pseudomomentum can be freely generated by spatial mean-flow variability,
thereby changing the effective mean force that is available for dissipative mean
vorticity transport. For example, the effective mean force in case II of the numerical
simulations was a factor of

√
3 larger than would have been expected by simply

comparing the incoming and outgoing fluxes of pseudomomentum (cf. table 2).
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waves with O. Bokhove and A. C. Kuo as well as further fluid-dynamical input by
JBB near the end of this study are also gratefully acknowledged.

Appendix
A.1. Proof of lemma (3.12)

Consider a closed contour Cξ and the circulation of B around it, which is given by

Γ =

∮

Cξ

B · dx =

∮

C

(B · dx)ξ . (A 1)

The second integral is around the contour C composed of the mean positions
belonging to the particles on Cξ (cf. figure 4 in BM). The equality of both integrals
follows from the properties of the lifting map (. . .)ξ , which provides the appropriate
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transformation of the integrand. Averaging the second integral (which only involves
the integrand because C is a mean contour), using the definition of B̃, and applying
Stokes’s theorem then gives

Γ =

∫ ∫

A

∇ × B̃ dx dy, (A 2)

where A is the area enclosed by C . On the other hand, Stokes’s theorem applied
directly to the first integral in (A 1) results in

Γ =

∫ ∫

Aξ

∇ × B dx dy =

∫ ∫

A

(∇ × B)ξ(dx dy)ξ (A 3)

=

∫ ∫

A

(
∇ × B

h

)ξ

h̃ dx dy, (A 4)

where Aξ is the area enclosed by Cξ and where the last integral uses the definition of h̃.
Averaging the last integral gives another expression for Γ , and demanding that both
expressions must agree for arbitrary Cξ then implies the second equality in (3.12).

A.2. Approximate expressions for h̃ and p

Consider an O(1) background state with zero velocity and a slowly varying mean
depth h0 satisfying h0 + hB = 1. It is assumed that disturbances have small amplitude
a % 1 and that all mean-field derivatives are weak, as measured by µ % 1. The
following two integrals of the disturbance continuity equation and of the disturbance
vorticity equation then hold approximately:

h′ + h0∇ · ξ′ = O(µa, a2), (A 5)

v′
,x − u′

,y − fh′/h0 = O(µa, a2), (A 6)

using the fact that ξ′
,t = u′ + O(µa, a2).

Using (A 5), (3.6), (4.8), and integration by parts, the effective mean depth h̃ defined
in (3.9) can be approximated via

h̃ = hξJ = hξJ = hξ(1 + ∇ · ξ + ξ,xη,y − ξ,yη,x) (A 7)

⇒ h̃ = h
L

+ h′∇ · ξ′ + h0(ξ′
,xη

′
,y − ξ′

,yη
′
,x) + O(µa2, a3) (A 8)

⇒ h̃ = h + h
S − h′2/h0 + h0

(
(ξ′η′

,y),x − (ξ′η′
,x),y

)
+ O(µa2, a3) (A 9)

⇒ h̃ = h + O(µa2, a3). (A 10)

Using (A 5) and (A 6), the x-component of the pseudomomentum vector p defined
in (3.15) can be approximated via

p = −ξj,x[u$ + 1
2f × ξ]j = −ξ′

,xu
′ − η′

,xv
′ + 1

2f(ξ
′
,xη

′ − η′
,xξ

′) + O(µa2, a3) (A 11)

⇒ p = −ξ′
,xu

′ + η′v′
,x + f ξ′

,xη
′ + O(µa2, a3) (A 12)

⇒ p = −ξ′
,xu

′ − η′
,yu

′ + f η′h′/h0 + f ξ′
,xη

′ + O(µa2, a3) (A 13)

⇒ p = h′u′/h0 − f η′η′
,y + O(µa2, a3) (A 14)

⇒ p = h′u′/h0 + O(µa2, a3), (A 15)

where the final result holds for p because p and u′ are vectors.
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Note added in proof. The exact nonlinear waves mentioned near the foot of p. 249,
see Bühler (1993), were described earlier by V. I. Shrira in the Russian literature. A
summary of that work and further references can be found in Grimshaw et al. 1998.
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