
Digital Object Identifier (DOI) 10.1007/s00205-016-1012-0
Arch. Rational Mech. Anal.

On the Wind Generation of Water Waves

Oliver Bühler, Jalal Shatah, Samuel Walsh &
Chongchun Zeng

Communicated by V. Šverák

Abstract

In this work, we consider the mathematical theory of wind generated water
waves. This entails determining the stability properties of the family of laminar
flow solutions to the two-phase interface Euler equation. We present a rigorous
derivation of the linearized evolution equations about an arbitrary steady solution,
and, using this, we give a complete proof of the instability criterion ofMiles [16].
Our analysis is valid even in the presence of surface tension and a vortex sheet
(discontinuity in the tangential velocity across the air–sea interface). We are thus
able to give a unified equation connecting the Kelvin–Helmholtz and quasi-laminar
models of wave generation.

1. Introduction

In this paper, we seek to address the extremely classical problem of determining
howwind blowing over the ocean generates waves. Specifically, our main objective
is to give a mathematically rigorous answer to the question: what must the velocity
profile of the wind be in order to give rise to persistent waves in quiescent water?

For our purposes, the air–sea system is modeled by the two-dimensional incom-
pressible interface Euler problem. That is, we consider the ocean and atmosphere
as immiscible fluids, each evolving according to the free surface Euler equations.
The assumption of incompressibility is widely adopted and reasonable because the
Mach number for typical flows is quite small (see, for example, [15]). At time
t ! 0, the air inhabits the region !+

t , and the water occupies !−
t . The ocean is
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finite depth with a rigid flat bed. We also follow the common practice of taking the
atmosphere region to lie below a rigid flat lid; this is justified on the grounds that,
if the flow is evanescent at high altitudes, its behavior there does not strongly affect
the dynamics near the ocean (see, for example, [15]). Letting St := ∂!+

t ∩ ∂!−
t

denote the air–sea interface, we assume moreover that

!+
t ∪ !−

t ∪ St =: !t ∪ St = T × (−h−, h+).

Here, T := R/2πZ is the one-dimensional torus. The constants h± > 0 are fixed
and describe the location of the ocean bed and atmospheric lid. For simplicity, we
will suppose that St is given as the graph of a smooth function η = η(t, x1). This
is not strictly necessary, but simplifies many of the computations.

The velocity field v = v(t, x) ∈ R2 and pressure p = p(t, x) ∈ R satisfy

Dtv +
1
ρ

∇ p + ge2 = 0 in !t (1.1a)

∇ · v = 0 in !t , (1.1b)

where Dt := ∂t + ∇v is the material derivative, ρ is the density, and g is the
gravitational constant. Implicit above is the assumption that ρ is constant in each
fluid region. We point out that the momentum equation (1.1a) does not include any
turbulent effects—this is a modeling choice that we discuss below.

The motion of the interface is dictated by the kinematic condition which ex-
presses the fact that St is a material line

∂t + v± · ∇ is tangent to {(t, x) | x ∈ St }. (1.1c)

Likewise, the rigidity of the ocean floor and atmospheric lid means that

v± · e2 = 0 on x2 = ±h±. (1.1d)

Note that we are using the convention that, for a quantity f with domain !t ,
f± := f |!±

t
. Lastly, we impose the dynamic boundary condition

p+(t, x) − p−(t, x) = σκ(t, x) = σηx1x1

(1+ η2x1)
3
2

for all x ∈ St . (1.1e)

Here σ ! 0 is a (fixed) material constant, and κ(t, x) is the signed curvature of St
at x .

The local well-posedness theory for (1.1) has been studied intensively. Natu-
rally, the irrotational problem has enjoyed the most attention, but as will become
clear, vorticity in the atmosphere plays a central role in wind-wave generation. Thus
we will limit our discussion to the literature concerning the rotational case. With
or without vorticity, when surface tension is neglected (that is, taking σ = 0), the
linearized system is ill-posed (cf., [4]). When σ > 0, the full nonlinear problem is
locally well-posed (cf., [7,22])

The interface Euler equations possess a large class of nontrivial exact solutions:
observe that any pair (v, St ) with the ansatz

v(t, x) = (U (x2), 0), St = T × {0}
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comprises a time-independent solution of (1.1). These are called laminar or shear
flows, and serve as a model for the state of the air–sea system before water waves
have formed. If the background flow is stable, then perturbations will remain in
a neighborhood of the equilibrium, meaning that the interface does not leave its
quiescent state. On the other hand, if it is unstable, then the free surface will become
deformed at finite amplitude, that is, persistent surface waves will be born. In this
way, the study of wind generation of water waves is equated with diagnosing the
stability/instability of the laminar flows subject to Eulerian dynamics.

A natural starting point is to consider the situation where the ocean is at rest and
the velocity of the air is uniform, that is,U− ≡ 0,U+ ≡ U0, for some constantU0.
This is the classical Kelvin–Helmholtz model, and it is indeed (linearly) unstable
whenever σ = 0 and U0 ̸= 0 (in a sense that we will make precise later). With
surface tension, the flow is (linearly) stable for U0 satisfying the inequality

U 2
0 " 2

ρ+ + ρ−
ρ+ρ−

[
gσ (ρ− − ρ+)

]1/2

(see, for example, [10]). Setting ρ± and σ to their physical values, this predicts that
the onset of instability occurs when U0 > 6.6 m/s, which is an order of magnitude
larger than observation suggest. Worse still, this instability is first felt at very small
wavelength, roughly 0.017m; to excite a wave with a more typical wavelength of
less than 100m, say, requires U0 to be another order of magnitude larger.

One is forced to admit, therefore, that the Kelvin–Helmholtz instability fails
miserably as a model of the wind generation of ocean waves. In particular, it is
missing some destabilizing mechanism inherent in the physical system. Kelvin
himself observed this fact in his original article on the topic in 1871 (cf. [25]). Since
then, the task of finding a suitable replacement has been a fundamental problem
in geophysical fluid dynamics. The next century saw a succession of competing
models (cf., for example, [15] for a summary), but now the majority opinion has
largely settled on the quasi-laminar model. Put forward by Miles in a series of
papers (cf. [16–18]), the quasi-laminar model views the wind generation process as
a resonance phenomenon. Briefly, the idea is the following: since ρ+/ρ− ≪ 1, the
atmosphere may be viewed as a perturbation of a vacuum. For infinite depth gravity
water water beneath vacuum, one has the dispersion relation c = √

g/k, where c is
the wave speed and k is the wavenumber. That is, the formally linearized problem
has an exact solution for which St is given as the graph of a function proportional to
eik(x1−ct). This suggests that the dispersion relation with an atmosphere may have
the asymptotic form

c =
√
g
k
+ c1ε + O(ε2), ε := ρ+

ρ−
. (1.2)

In view of (1.2), the situation where a critical layer exists is of special interest: in
this case the unperturbed phase speed

√
g/k lies in the range of flow speedsU+ and

this may enable a certain resonance between the shear flow in the atmosphere and
the gravity waves in the ocean, which then manifests itself as a linear instability.
Formally linearizing (1.1) and searching for a growing mode solution of the form
v = ψ(x2)eik(x1−ct), Miles concluded that (linear) instability occurs if a critical
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layer location x∗
2 exists where

√
g/k = U (x∗

2 ) andU
′′(x∗

2 ) < 0. This computation
was done with σ = 0, meaning that the Cauchy problem for the full system is
ill-posed. Nonetheless, if one fixes a physically realistic value for the wavenumber
k, one can still study the linear evolution. Doing this, Miles’s scheme gives a
way to estimate the corresponding growth rate. Most importantly, in contrast to
Kelvin–Helmholtz, the quasi-laminar model allows for wave generation without
unreasonably large wind speed (see Remark 4.3).

Though it is now widely accepted, the quasi-laminar model has been criticized
in the applied literature for consigning turbulence to a relatively minor role (cf., for
example, the discussion in [15, Chapter 4]). Indeed, turbulence is absent in the basic
equations (1.1), and so its influence is felt only implicitly. For instance,Miles uses a
logarithmic wind profile in his growth rate computations, which is predicted by the
theory of turbulent laminar flow over a flat plate. Also, the presence of a turbulent
boundary layers is used to justify his assumption that U+(0) = U−(0) = 0. Since
the actual air flow near the ocean surface is known to be highly turbulent, many
authors have argued that the effects of turbulence must be included explicitly in
the dynamics of the air flow. Nonetheless, both in field observations and laboratory
studies [12,20], the quasi-laminar model has proven to be a rather good predictor of
wind energy transfer in many settings. Of course, when considering these studies,
one must take into account the extreme difficulty in obtaining accurate readings;
even the task of deducing the wind profile is highly nontrivial. In short, there is a
great deal of uncertainty, but the ideas of Miles have been more-or-less borne out
by the subsequent half-century of experimentation.

Summary of Results

Having established the background, let us now enumerate the mathematical
contents of the present work. It consists of two parts. The first is a careful derivation
of the linearized interface Euler system (1.1) about an arbitrary steady solution,
including those with a vortex sheet and taking into account surface tension. The
second is a rigorous analysis of the behavior of solutions of the Rayleigh stability
equationwhen the backgroundflowhas a critical layer occurring at an non-inflection
point. We elaborate on both of these points below.

Rigorous Linearization All prior derivations of the linearized equations for the
two phase Euler flow are done heuristically and in a setting that does not allow
surface tension and/or a vortex sheet if the background velocity is non-uniform.
In [15], for instance, Janssen suggests that the two-fluid problem be imagined as a
limit of single-fluid problems with smooth heterogeneous density. The advantage
of this approach is that it obviates the need to fix the domain, since the one phase
fluid simply occupies the entire plane. However, the limiting process as the density
becomes discontinuous over the interface is not straightforward. It is hard, for
instance, to see even at a formal level how the equations governing the dynamics
of the free boundary arise when one allows for a vortex sheet and surface tension.
Moreover, rigorously establishing that the limit of the one phase problems converge
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to a solution of the two phase problem is a very difficult task (cf., for example, [14]
where it is carried out in a very specific physical regime).

Another typical approach is to linearize the Euler equation (1.1a) separately in
each fluid region, then formally linearize the equation of boundary motion (1.1c).
This is precisely what Miles does in [16], where again we note that he assumes the
continuity of the tangential velocity across the interface and works without surface
tension. A flow is then considered linearly unstable if there exists a growing mode
solution of the resulting problem.

There is one feature that this process lacks to be mathematically rigorous. No-
tice that we are considering a free boundary problem, so the meaning of “linearized
operator” is somewhat subtle. From a dynamical systems point of view, the only
suitable definition of the linearized propagator is found by taking the Fréchet deriv-
ative or Gâteaux variation. For this to make sense, the linearized problem must first
be formulated in a specific function space. In the present setting, this issuemanifests
itself when one takes variations of the velocity field. Performing the standard for-
mal linearization of the Euler equation, we can see immediately that the linearized
velocity will have the wrong boundary conditions on the interface and hence is not
in the correct function space. This is expanded upon in Section 2; specifically (2.7)
and Remark 2.5.

Our linearization based on the Hodge decomposition leads us to a system con-
sisting of an ODE, Rayleigh’s equation, coupled to an algebraic equation related
to the dispersion relation. On the one hand, in the absence of surface tension and
a vortex sheet, this coincides with the one derived formally by Miles. Thus our
results mathematically corroborate and generalize his. On the other hand, taking
the background flow to be uniform in the air and water regions, we recover the
classical Kelvin–Helmholtz instability criteria (see Example 3.1). This means that
we can consider simultaneously the destabilizing effects of a vortex sheet and a
critical layer, and we can see quantitatively the individual influence of each one on
the leading-order terms of the unstable eigenvalue.

AProof ofMiles’sCriterion andGeneralizations Using our linearized problem,
we look for an unstable eigenvalue. At this point, in [16], Miles proceeds with the
heuristic argument outlined above, concluding that a linear instability will manifest
at wavenumber k provided that

√
g/k is in the range of the wind profile U+, and

that it occurs at an altitude where U ′′
+ is negative.

Our presentation is the first rigorous treatment of the system studied by Miles
and its generalization that we have derived. Mathematically, the analysis involves
a detailed examination of the Rayleigh equation in the presence of an imaginary
parameter—the complex wave speed c—that couples the ODE to the dispersion
relation.

The Rayleigh equation (also called the inviscid Orr–Sommerfeld equation)
arises when investigating the stability of laminar flows in a rigid channel and has
an extensive literature. However, the challenges we confront here are quite distinct
from those typically encountered. For shear flows in a channel, the boundary con-
ditions are simply homogeneous Dirichlet, whereas the free surface in our system
leads to an inhomogeneous condition on the interface (see also [13]). More sig-
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nificantly, for channel flows, most rigorous sufficient conditions for instability are
based on bifurcation analysis with c near an inflection point of U . In such cases,
treating the wave number as the bifurcation parameter, one finds that the leading-
order part of the Rayleigh equation is in fact not singular. The situation is almost the
complete opposite in our work: the critical layer instability occurs precisely when
c is close to someU (x∗

2 ) withU
′′(x∗

2 ) ̸= 0 . This means that the crucial part of our
analysis is near the singularity of the Rayleigh equation where the solutions will
develop a logarithmic singularity in the limit Re c → 0. One may find plenty of
asymptotic expansions of the Rayleigh equation solutions near such a singularity
in the literature, some of which can be rigorously justified provided that U is ana-
lytic [27]. By contrast, our approach based on more modern tools from dynamical
systems, requires only that U+ ∈ C4 and is transparently rigorous. Along the way,
we obtain a result of independent interest characterizing the limiting behavior of
solutions to the Rayleigh equation as the wave speed c converges to the real axis;
see Proposition 4.1.

This analysis is then used to prove the main contribution found in Theorem
4.1. For a fixed wave number k, let ck denote the wave speed for the corresponding
(linear) capillary-gravity wave in finite-depth water beneath vacuum (cf. (3.7)). We
obtain a sufficient condition guaranteeing the existence of an unstable wave speed
lying in a neighborhood of ck that is valid evenwith a vortex sheet and incorporating
surface tension. We are, moreover, able to determine the leading-order terms of the
unstable eigenvalue, which gives a means of estimating the energy transfer rate;
see (4.30) and (4.31). Additionally, in Proposition 3.1, we obtain an exact (though
implicit) formula for the dispersion relation analogous to (1.2). All of these results
agree with the formal analysis ofMiles when the background velocity is continuous
over the interface and surface tension is neglected. Moreover , in Lemma 3.1,
we show that if a sequence of the unstable wave speed ck,ε converges to ck as
ε = ρ+

ρ− → 0, then ck must be in the in the range of U+. Roughly speaking, this
says that a critical layer is necessary for the generation of instability.

It is alsoworth comparing the linear instability in the channel flow problemwith
the water-air interface problem. In the case of channel flow between rigid bound-
aries, where the wave number is often used as the parameter, the instability occurs
at isolated wave numbers and thus the linearly unstable waves are superpositions of
plane waves of isolated wave numbers. On the contrary, for the water-air interface
problem considered here, the instability due to critical layers occurs at all wave
number k in certain intervals (or a union of intervals). In particular, with surface
tension, sufficiently large or small wave numbers are always stable. Without sur-
face tension, sufficiently long waves are always stable, while the instability of short
wave is affected by both the critical layers and Kelvin–Helmholtz instability. The
linearly unstable waves are superpositions of waves with wave numbers ranging in
an interval.

Unstable Waves with Critical Layer at an Inflection Point The critical layer
analysis is valid under the assumption that the shear profile U is of class C4 in
the air region. As an application of the exact dispersion relation, in Section 5 we
construct an explicit piecewise linear U (thus U ′′ is a δ-function) that are linearly
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unstable. However, it is shown that, for a certain range of parameters, ck is in the
range of U , but occurs away from the mass of the δ-function, hence U ′′ vanishes
there. This implies that the instability is not arising from resonance with the critical
layer but instead from the immensity of |U ′′|. For such waves, we have that wave
speed c is at an O(1) distance from ck , whereas the expansion (1.2) is only valid
up to O(ε). In fact, this demonstrates the sharpness of our necessary condition for
instability in Lemma 3.1; there we require that U+ ∈ C2, whereas these profiles
are of class C0,1.

2. Linearization

In this section, we will derive the linearization of the Euler equation (1.1) about
a steady solution with graph geometry. That is, we consider a solutions of the form

S∗
t = S = {x2 = η∗(x1)}, v = v∗(x1, x2), (2.1)

for some smooth wave profile η∗. One should think of (v∗, S) as representing a
travelingwave observed from amoving reference frame so that it appears stationary.
For the quasi-laminar model, we are specifically interested in shear flows, that is
solutions of the form

S = {x2 = 0}, v∗(x1, x2) =
(
U (x2), 0

)
, x1 ∈ T, x2 ∈ [−h−, h+] (2.2)

where

U (x2) = U−(x2)χ{x2<0} +U+(x2)χ{x2>0}

and U± are smooth functions on ±x2 ∈ [0, h±]. Note that we are allowing v∗ to
have a jump discontinuity over S. Eventually we will consider those shear flows
withU− ≡ 0, that is the water will be assumed to be stationary while there is wind
in the air. For those shear flows, the pressure is hydrostatic,

∇ p∗
± = −gρ±e2. (2.3)

It is elementary to confirm that all shear flows are solutions of the Euler system.
The existence of traveling waves where S is not flat has been established by many
authors in various regimes (cf., for example, [1,26]).

Admissible Spaces and Orthogonal Decompositions

Before we begin, we must introduce the spaces in which the problem is formu-
lated. There are several results that prove the local well-posedness of the Cauchy
problem for the interface Euler equation (1.1) (cf. [7,22]). These consider smooth
velocity fields and surface profiles, for example v ∈ Hs(!±

t ) for s > 5/2. To
establish linear instability, we will assume that the background flow is smooth and
seek solutions of the linearized problem that grow in the L2 norm.
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With that in mind, for any time t ! 0, we consider velocity fields v belonging
to the St -dependent space

X(St ) := {v : L2(T × [−h−, h+],R2; ρ dx) | ∇ · v± = 0 in !±
t ,

v± · e2 = 0 on x2 = ±h±, v+ · N+ + v− · N− = 0 on St }

where N± are the unit outward normals for !±
t . Note that they obviously satisfy

N+ + N− = 0. The boundary conditions on St included in the definition of X(St )
aremeant to guarantee that∇ ·v = 0 in the distribution sense onT×[−h−, h+]. For
a divergence free vector field v in L2, its normal component v ·N is well-defined in
H− 1

2 (St ), as St is smooth, say, St ⊂ R2 being graphs of Hs functions locally where
s > 3

2 (cf., for example, [24]). X(St ) is a subspace of L2(T × [−h−, h+], ρ dx)
and its orthogonal complement X(St )⊥ is given by

X(St )⊥ = {v = −∇q | q = q+χ!+
t
+ q−χ!−

t
, q± ∈ Ḣ1(!±

t ) and

ρ+q = ρ−q on St }.

This can be seen from the Hodge decomposition as described in [21,22]. For any
X ∈ L2(T × [−h−, h+], ρ dx),

there exists w ∈ X(St ) such that X = w − ∇q and − ∇q ∈ X(St )⊥

(2.4)

where q is determined (uniquely up to a constant) by

⎧
⎪⎪⎨

⎪⎪⎩

−,q = ∇ · X
(
T × (−h−, h+)

)
\St

q±|St = 1
ρ± q

S := − 1
ρ±

N−1(N+ · (X+ − ∇,−1
+ ∇ · X+)+ N− · (X− − ∇,−1

− ∇ · X−)
)

∇q± · e2|x2=±h± = X± · e2.
(2.5)

Here we write (,±)−1 to denote the inverse Laplacian on !±
t with zero Dirichlet

boundary condition on St and zero Neumann boundary condition on {x2 = ±h±}.
Likewise, we let

N := 1
ρ+

N+ + 1
ρ−

N−

with N± being the Dirichlet-to-Neumann operator on St associated to ,± with
zero Neumann data on {x2 = ±h±}.

Let us briefly recall how (2.5) is obtained. First observe that, for any X as above,

N± · (X± − ∇,−1
± ∇ · X±) ∈ H− 1

2 (St ),

since X± − ∇,−1
± ∇ · X± is in L2(!±

t ) and divergence free while St is assumed to
be smooth.Moreover,N−1 is bounded as amapping from H−1/2(St ) → H1/2(St ),
and thus (2.5) represents a well-posed elliptic problem for q± in each strip !±

t . Let
q ∈ H1(!±

t ) be the unique (modulo a constant) solution. By construction, q±|St =
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qS/ρ±, and hence −∇q ∈ X(St )⊥. It remains only to show that w := X +∇q lies
in X(St ).

Now, (2.5) immediately implies thatw ∈ L2 and is divergence free. It therefore
has well-defined normal components on St in the H−1/2(St ) sense. To compute
them, note first that

N±q± = N± · ∇(q± + ,−1
± ∇ · X±) ∈ H− 1

2 (St ).

Here we have simply used that q± + ,−1
± ∇ · X± is harmonic in !±

t and its trace
on St coincides with that of q±. Thus, on St ,

w+ · N+ + w− · N− = N+ · (X+ + ∇q+)+ N− · (X− + ∇q−)

= N+q+ + N+ · (X+ − ∇,−1
+ ∇ · X+)

+N−q− + N− · (X− − ∇,−1
− ∇ · X−)

= NqS + N+ · (X+ − ∇,−1
+ ∇ · X+)

+ N− · (X− − ∇,−1
− ∇ · X−) = 0,

in the distributional sense. This confirms thatw ∈ X(St ), and hence that the Hodge
decomposition (2.4) holds with q given by (2.5).

Finally, we remark that the decomposition can be applied tomore regular vector
fields. For s ! 0, define Xs(St ) := {v ∈ X(St ) | v± ∈ Hs(!±

t )} and likewise for
Xs(St )⊥. By a simple elliptic regularity argument, we see that if X± ∈ Hs(!±

t )

and St is smooth (St ⊂ R2 being graphs of Hs0 functions locally, s0 ! s + 1
2

and s0 > 3
2 ), then the corresponding w and −∇q given as in (2.4) possess the

additional smoothnessw ∈ Xs(St ) and∇q ∈ Xs(St )⊥. The linearization procedure
weoutline in the next subsection can therefore be carried out rigorously for solutions
of the interface Euler equation system in appropriate Sobolev spaces. The resulting
linearized problem, however, is just as easily studied by working with L2 velocity
fields. One advantage of this choice is that, by constructing solutions that are smooth
and grow in the L2 norm, we prove the stronger result that linear instability holds
for solutions of class Hs , for any s ! 0.

Linearized Evolution Equation

To compute the linearized equations, let
(
St (α), v(α, t, x)

)
along with the pres-

sure p(α, t, x), be a one-parameter family of solutions of the Euler equation (1.1)
that coincide with the steady state (S, v∗) at α = 0. Since St is close to S (the graph
of η∗) for small α, we may represent St as the graph of a unique function η with
η|α=0 = η∗:

St = {x2 = η(α, t, x1), x1 ∈ R}.
Eventually we will specialize this to the case of a shear flow that is periodic in x1,
but for now we work in the general setting. Here we are relying on the assumption
that (St , v) depend smoothly (e. g. C1) on the parameter α in order to justify the
rigor of the following calculations.
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From the boundary condition (1.1e), we have (suppressing the dependence on
t and α)

p+
(
x1, η(x1)

)
− p−

(
x1, η(x1)

)
= σκ = σηx1x1

(1+ η2x1)
3/2 .

Let z(t, x1) := (∂αη)|α=0, which is the component of the linearized solution cor-
responding to the variation of the interface. Differentiating the above equality we
obtain

σκ ′(η∗)z
= ∂α p+

(
t, x1, η

∗(x1)
)
− ∂α p−(t, x1, η

∗(x1)
)
+ (∂x2 p

∗
+ − ∂x2 p

∗
−)(x1, η

∗(x1))z
(2.6)

where

κ ′(η∗) := 1
(1+ (η∗

x1)
2)3/2

∂2x1 − 3
η∗
x1x1

(1+ (η∗
x1)

2)5/2
η∗
x1∂x1 .

Since v(α, t) ∈ X(St (α)), it follows that
(
v+
(
x1, η(x1)

)
− v−

(
x1, η(x1)

))
· (−∂x1η, 1)

T = 0.

In the above equation, we are again suppressing the dependence on α and t . Dif-
ferentiating in α and evaluating at α = 0, we obtain

(
!∂αv" + !∂x2v∗" z

)
· (−∂x1η

∗, 1)T = !v∗ · e1" ∂x1 z on S. (2.7)

Here, for a function f defined on T × [−h−, h+], we write ! f " := ( f+ − f−)|S .
Observe that this computation shows that in general the linearized velocity field
∂αv is not in X(S) even though ∂αv± is divergence free in !± and ∂αv± · e2 = 0
along {x2 = ±h±}; see also Remark 2.5. Our next step is therefore to decompose
∂αv into two components, one lying in X(S) and the other in X(S)⊥:

∂αv = Y + ∇., Y ∈ X(S) and ∇. ∈ X(S)⊥.

From (2.4), (2.5), and (2.7)
⎧
⎪⎪⎨

⎪⎪⎩

,. = 0 in !

∂x2.± = 0 on {x2 = ±h±},
.± = 1

ρ±
G−1 (!∂x2v∗" z · (−∂x1η

∗, 1)T −
#
v∗
1

$
∂x1 z

)
on S,

(2.8)

whereG is the non-normalizedDirichlet–Neumannoperator for S inT×[−h−, h+]:

G± :=
√
1+ (η∗

x1)
2N±, G := 1

ρ+
G+ + 1

ρ−
G−.

Likewise, linearizing the momentum equation (1.1) we find that ∂αv = Y +∇.

satisfies
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Yt + (v∗ · ∇)Y + (v∗ · ∇)∇. + (Y · ∇)v∗ + (∇. · ∇)v∗ + ∇P = 0 in !,

(2.9)

where Y = (Y1, Y2)T and

P = 1
ρ
pα + .t .

Since Y ∈ X(S), taking the divergence and the normal component along x2 = ±h±
of (2.9) and using (2.6) and (2.8), we can determine P by solving
⎧
⎪⎨

⎪⎩

−,P = ∇ · ((v∗ · ∇)Y + (v∗ · ∇)∇. + (Y · ∇)v∗ + (∇. · ∇)v∗) in !

∂x2 P = 0 on {x2 = ±h±}
ρ+P+ − ρ−P− = −(∂x2 p

∗
+ − ∂x2 p

∗
−)z + σκ ′(η∗)z on S.

(2.10)

Finally, because St is given as the graph of η, the fact that the normal velocity of
the fluid interface coincides with the normal component of the velocity field along
the interface translates to the following statement

ηt (x1) = v(x1, η(x1)) · (−η′(x1), 1)T .

Linearizing this equality gives

zt + (v∗
± · e1)∂x1 z =

(
∂αv± + ∂x2v

∗
±z
)
· (−∂x1η

∗, 1)T on S. (2.11)

Due to (2.7), the above equation does not depend on the choice of + or − sign.
Evolution Eqs. (2.9) and (2.11) along with (2.8) and (2.10) form the linearized

system of the two phase fluid Euler equation at an arbitrary steady solution (v∗, S)
with graph geometry.

In the present work, we are mainly interested in the stability of shear flows
under periodic perturbations. It is therefore useful to record how these equations
simplify for such flows. If we take (v∗, S) to be given as in (2.2), then in particular
S = T × {0}, so G = N and κ ′(0) = ∂2x1 . Thus (2.9) and (2.11) become

Yt +UYx1 +U ′Y2e1 +U∇.x1 + .x2U
′e1 + ∇P = 0 in S (2.12)

zt +U±(0)zx1 = ∂αv± · e2 = Y2 + ∂x2.± on {x2 = 0},
(2.13)

where . and P are determined from
{

,. = 0 in !

∂x2.±|x2=±h± = 0 .±|S = 1
ρ±

(
U−(0) −U+(0)

)
∂x1N−1z, (2.14)

and
⎧
⎪⎨

⎪⎩

−,P = 2U ′(∂x1Y2 + .x1x2) in !

∂x2 P = 0 on {x2 = ±h±}
ρ+P+ − ρ−P− = g(ρ+ − ρ−)z + σ zx1x1 on S = {x2 = 0}.

(2.15)
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Eigenvalues and Eigenfunctions

Notice that the coefficients in the linearized system (2.12), (2.13), (2.14), and
(2.15) depend only on x2. Therefore, each Fourier mode eikx1 is decoupled from
the other modes. Consider solutions of the linearized system taking the form

(z, Y,., P) =
(
z,Y(x2), γ (x2),P(x2)

)
eik(x1−ct), k ∈ Z\{0}, (2.16)

which represents and eigenfunction for the linearized system corresponding to an
eigenvalue −ikc. Clearly, the existence of a solution of this type with Im c > 0
immediately implies exponential linear instability.

In what follows, we derive a linear system for the above unknowns, fixing the
Fourier mode k. Before doing that, let us record the symbol for the Dirichlet–
Neumann operators that we employ:

N̂±(k) = |k| tanh (|k|h±)

N̂ (k) = 1
ρ+

N̂+(k)+
1

ρ−
N̂−(k) = |k|

(
1

ρ+
tanh (|k|h+)+

1
ρ−

tanh (|k|h−)
)
.

(2.17)

We can then solve (2.14) to find

γ±(x2) =
ik(U−(0) −U+(0))z
ρ±N̂ (k) cosh (h±|k|)

cosh (|k|(x2 ∓ h±))

= ρ∓(U−(0) −U+(0))
|k|
(
ρ− tanh (|k|h+)+ ρ+ tanh (|k|h−)

) cosh (|k|(x2 ∓ h±))
cosh (h±|k|)

ikz.

(2.18)

Substituting (2.16) and (2.18) into (2.13) (with the + sign at x2 = 0), we obtain

ik(U+(0) − c)z = Y2(0) − N̂+(k)γ+(0) = Y2(0) − |k| tanh (|k|h+)γ+(0)

= Y2(0) − ρ−(U−(0) −U+(0)) tanh (|k|h+)
ρ− tanh (|k|h+)+ ρ+ tanh (|k|h−)

ikz

which implies

ik
(ρ+U+(0) tanh (|k|h−)+ ρ−U−(0) tanh (|k|h+)

ρ− tanh (|k|h+)+ ρ+ tanh (|k|h−)
− c
)
z = Y2(0). (2.19)

Again we recall that because Y ∈ X(S), Y2+(0) = Y2−(0).
In the next step, we will use the fact that Y is divergence free, along with its

boundary behavior, to eliminateP andY1, obtaining an equation for (Y2, z). Notice,
for instance, that because Y is divergence free,

ikY1 + ∂x2Y2 = 0.

Thus Y1 can be determined from Y2. In light of this observation, the horizontal
component of (2.12) becomes

− (U − c)Y ′
2 +U ′Y2 − k2Uγ + γ ′U ′ + ikP = 0. (2.20)
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On the other hand, the vertical component of (2.12) implies

ik(U − c)Y2 + ikUγ ′ + P ′ = 0. (2.21)

Using the above two equations, we can eliminate P , obtaining the ODE

− Y ′′
2 +

(
U ′′

U − c
+ k2

)
Y2 +

U ′′

U − c
γ ′ = 0, (2.22)

where the prime denotes ∂x2 and we have used the fact ,. = 0. As Y ∈ X(S), we
have moreover that Y2±(±h) = 0. The behavior of Y2 on the interface is dictated
by (2.19). Recall also that the boundary behavior of P is given by (2.15), which,
together with (2.20), implies

(
g !ρ" − σk2

)
z = !ρP"

= i
k

(
−

#
ρ(U − c)Y ′

2
$
+

#
ρU ′$Y2 − k2 !U" ρ+γ+

+
#
ρU ′γ ′$) , (2.23)

as ρ+γ+ = ρ−γ− on S.
In summary, we have the following result.

Proposition 2.1. −ikc is an eigenvalue of the linearized two phase fluid Euler
equation if there exist nontrivial linearized solutions of a single Fourier mode of the
form (2.16). This is equivalent to the existence of a nontrivial solution (z,Y2, γ , c)
to (2.18), (2.19), (2.22), (2.23) and such that Y2±(±h) = 0.

Remark 2.1. The above calculation is still valid if one or both of h± becomes
infinity. For example, if h− = ∞, then defining tanh(|k|h−) = 1, we get

.−(x2) =
ρ+(U−(0) −U+(0))e|k|x2

|k|
(
ρ− tanh (|k|h+)+ ρ+

) ikz,

Y2(0) = ik
(ρ+U+(0)+ ρ−U−(0) tanh (|k|h+)

ρ− tanh (|k|h+)+ ρ+
− c
)
z.

Remark 2.2. Note that, up to this point, we have not exploited any small para-
meters in the problem. So, for instance, Proposition 2.1 holds even for a system
consisting of two fluids with roughly equal density, as one would expect with inter-
nal waves moving through a channel. Of course, the heart of the analysis to come
is in determining Y ′

2+(0), and for this we will make strong use of the assumption
that ρ+/ρ− ≪ 1.

Remark 2.3. Because the problem we are considering is set in 2-d, an alternative
strategy for deriving the linearized problem is to reformulate the system in terms
of the stream function ψ , which is defined up to a constant by (−∂x2ψ, ∂x1ψ) = v.
Note, for example, that the continuity of v · N over St translates simply to the
continuity of ψ in !t . As ψ is a scalar quantity, it is possible that some of the
calculations above could be simplified by adopting this approach. On the other
hand, one advantage of the linearization scheme we have used above is that it has
a straightforward extension to higher dimensions.
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Remark 2.4. While U ′′ appears in Equation (2.22), it is actually not necessary to
assume U ′′

± exists in the strong sense. In fact, in the hypotheses of Proposition 2.1,
one may replace (2.22) by the following equation derived from (2.20) and (2.21):

(
− (U − c)Y ′

2 +U ′Y2 − k2Uγ + γ ′U ′
)′

= ik
(
ik(U − c)Y2 + ikUγ ′

)
.

This is of course equivalent to (2.22) if U± ∈ C2, but makes sense even if U ′
± has

jump discontinuities. In the latter case, one expects that Y ′
2 will likewise exhibit

jump discontinuities at the same locations as U ′. In particular, Proposition 2.1 is
still valid even ifU ′

± has jump discontinuities in the bulk of the air or water regions,
which corresponds to the situation where of U ′′ possesses δ-masses. This justifies
our consideration of piecewise linear wind profiles in Section 5.

Remark 2.5. Let us now revisit the question of how our method differs from the
formal linearization procedure. In (2.7), we demonstrated that ∂αv will not satisfy
the correct boundary conditions on the interface S unless

!∂x2v∗" z · (−∂x1η
∗, 1)T − !v∗ · e1" ∂x1 z = 0.

Note that in the special case of shear flow, this simplifies to

!v∗ · e1" = 0,

which is precisely the statement that there is no vortex sheet. Hence, for a back-
ground flow that is continuous over the interface, ∂αv is indeed the right linearized
quantity to consider in the sense that it is in X(S), but the second one allows for a
vortex sheet, or a non-laminar flow, this ceases to be the case.

This is not merely a technical point. Observe that the tangential velocity does
not affect the motion of the fluid interface, and so to truly have a statement about
the formation of surface waves, one must guarantee that the instability is for the
dynamics of the normal velocity. Our splitting method is precisely what allows us
to do this, and what enables us to see directly what quantities must be controlled in
order to ensure stability/instability.

Lastly, we mention that the Hodge decomposition approach has an underlying
geometric intuition. Consider the Lagrangian formulation of the Euler interface
problem. Incompressibility is equivalent to the statement that the restriction of the
Lagrangian flow map to each fluid region is volume preserving. The set of such
mappings can be viewed as a submanfiold M embedded in L2(!0; ρ dx) (cf.,
[2,5,11,21,23]). Naturally, the linearized problem about a particular Lagrangian
flow map u0 should then be set on the tangent space Tu0M, and the corresponding
variation of the Eulerian velocity should lie in u0(Tu0M). When one formally
linearizes directly in the Eulerian variables, there is no guarantee that this will be
the case becauseM is not a flat manifold. In effect, by thinking exclusively in terms
of Eulerian variables, one risk s losing a crucial piece of geometric data: the base
point of the tangent space. Our procedure is carried out in the physical variables,
but the splitting is done exactly so that Y ◦ u0 ∈ Tu0M and ∇. ◦ u0 ∈ (Tu0M)⊥.
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3. Linear Instability and Critical Layers

In this section, we consider the physical regime where

0 < ε := ρ+
ρ−

≪ 1, U− ≡ 0,

which means the upper fluid (the air) has much lower density than the lower fluid
(the water), and that the lower fluid is stationary. Moreover, since we are interested
in the problem of wind-generation of surface waves, we look for linearized unstable
solutions with z ̸= 0. Without loss of generality, we normalize by taking

ikz = 1.

3.1. Derivation of the Dispersion Relation

Under the above assumptions, γ satisfies

γ+(0) = − U+(0)
|k|
(
tanh (|k|h+)+ ε tanh (|k|h−)

) , γ ′
+(0) = −|k| tanh(|k|h+)γ+(0)

γ ′
+(x2) = |k|γ+(0)

sinh (|k|(x2 − h+))
cosh (|k|h+)

.

(3.1)

The boundary conditions for Y2, which solves equation (2.22), take the form

Y2±(±h±) = 0, Y2(0) = −ε|k| tanh(|k|h−)γ+(0) − c. (3.2)

Since U− ≡ 0 in the water, Y2− can be determined explicitly:

Y2−(x2) =
cosh (|k|(x2 + h−))

cosh (|k|h−)
Y2(0), Y ′

2−(0) = |k| tanh (|k|h−)Y2(0).

(3.3)

Therefore, the unknowns for the linearized systems reduce to (c,Y2+). In addition
to boundary conditions (3.2), Y2+ satisfies

−Y ′′
2+ +

(
U ′′
+

U+ − c
+ k2

)
Y2+ + U ′′

+
U+ − c

γ ′
+ = 0.

We first perform a change of variables to transform this equation into a homoge-
neous one. Let

y = Y2+ + γ ′
+

Y2(0)+ γ ′
+(0)

= Y2+ + γ ′
+

U+(0) − c
.

Then y satisfies

− y′′ +
(

U ′′
+

U+ − c
+ k2

)
y = 0 on x2 ∈ (0, h+), y(h+) = 0 (3.4)
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along with the normalizing condition

y(0) = 1. (3.5)

This is simply the classical Rayleigh’s equation that is well-known in the study
of the linear instability of shear flows on fixed strips. Notice, however, that the
boundary condition for y is inhomogeneous due to the interface motion. Returning
to (2.23), we see that −ikc is an eigenvalue of the linearized problem if

g(1 − ε)+ σk2

ρ−
= −ε

(
U+(0) − c

)
Y ′
2+(0) − cY ′

2−(0)+ εU ′
+(0)Y2(0)

− εk2U+(0)γ+(0)+ εU ′
+(0)γ

′
+(0).

Substituting (3.1), (3.2), and (3.3) into the above equation we obtain

g(1 − ε)+ σk2

ρ−
= −ε

(
U+(0) − c

)
Y ′
2+(0)+ c

(
c|k| tanh (|k|h−) − εU ′

+(0)
)

+ ε|k|
(
c|k| tanh2 (|k|h−) − ε tanh (|k|h−)U ′

+(0)

− |k|U+(0) −U ′
+(0) tanh (|k|h+)

)
γ+(0).

Finally, in terms of y, we have

g(1 − ε)+ ρ−1
− σk2 = −ε

(
U+(0) − c

)2y′(0)+ c2|k| tanh (|k|h−)

+ εU ′
+(0)

(
U+(0) − c

)

+ εc|k|U+(0)
(
1 − tanh2 (|k|h−)

)

tanh (|k|h+)+ ε tanh (|k|h−)
.

(3.6)

This is the dispersion relation for the linearized problem with a quiescent ocean
and a shear flow in the air.

We summarize the computations above in the following proposition.

Proposition 3.1. The linearization of the two phase fluid Euler equation at the
shear flow v = U+(x2)χT×[0,h+]e1 has an eigenvalue −ikc if a solution y of (3.4)
satisfies (3.5) and (3.6).

Remark 3.1. Let us pause to discuss some interesting generalizations. First, one
can incorporate viscous effects by considering the interface Navier-Stokes system
in place of Euler. The linearized problem can be derived in a similar manner, but
ultimately we find that the Rayleigh equation (3.4) becomes the (viscous) Orr–
Sommerfeld equation. This has a number of implications for the linear stability
theory, particularly at small wavelengths (cf., for example, [28]).

Second, it is natural consider the situation where the background velocity in
the water is nonzero, representing for instance a wind drift layer in the ocean.
This has been investigated by a number of authors in the applied literature. In [6],
Caponi et al. consider piecewise linear velocity profiles in both the air and water
with constant velocities outside some finite region; the velocity field is assumed
to be continuous at the air–water interface. Their results reveal that the vorticity
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in the water can strongly effect the unstable growth rates. Recently, Young and
Wolfe [29] performed a similar analysis for background flows where the water and
air velocities are exponential functions of altitude, also with no vortex sheet at the
air–sea interface. Their findings again emphasize the sensitivity of the unstable
eigenvalue to the form of the background profile. We also mention that this paper
includes a very nice summary of the relevant literature.

The linearization procedure outlined above has a straightforward extension to
this case. Rather than the algebraic dispersion relation (3.6), in general the resulting
system will consist of a coupled pair of Rayleigh equations. From an analytical
perspective, this is a far more difficult problem to consider, and hence lies beyond
the scope of the present paper.

When ε = 0, Equation (3.6) has a pair of solutions for c:

ck =
√

g + ρ−1
− σk2

|k| tanh (|k|h−)
or −

√
g + ρ−1

− σk2

|k| tanh (|k|h−)
. (3.7)

This is simply the dispersion relation of the one phase fluid problem (where the
air density is taken as ρ+ = 0.) For ε in a neighborhood of 0, Equation (3.6) is a
quadratic polynomial in c with a complex parameter εy′(0) and a real parameter
ε, when we fix others like k, h±, U+(0), U ′

+(0), and so on. The solution c can be
expressed analytically in terms of ε and εy′(0)

c = F
(
εy′(0), ε

)
.

Near ε = 0 and εy′(0) = 0, this analytic expression has two branches containing the
positive and the negative values of ck in (3.7), respectively. The quadratic formula
clearly implies F(a, ε) ∈ R for small a ∈ R. Therefore, near (ε, εy′(0)) = (0, 0),
F must take the form

c = F
(
εy′(0), ε

)

= fR
(
εRe y′(0), ε Im y′(0), ε

)
+ iε Im y′(0) f I

(
εRe y′(0), ε Im y′(0), ε

)
,

(3.8)

where fR and f I are real valued analytic functions satisfying at (0, 0, 0)

fR(0) = ck, ∂1 fR(0) = f I (0) =
(
U+(0) − ck

)2

2ck |k| tanh (|k|h−)
, ∂2 fR(0) = 0. (3.9)

Here the formula for f I (0) can be obtained via implicit differentiation. More de-
tailed information about f I and fR can be derived from the quadratic formula if
needed. Since we are interested in instabilities, we will seek solutions (y, c) of
(3.4), (3.5), and (3.6) with Im c > 0 and c near ck . Clearly the key task is to ana-
lyze Im y′(0), whose dependence on c is quite intricate as it involves solving the
Rayleigh equation with a singularity.
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3.2. Examples

Wefirst present a few examples where the profile is simple enough to do explicit
calculations. Throughout, h± = ∞ is assumed for ease of computation.

Example 3.1 (Kelvin–Helmholtz instability). Suppose that U+ ≡ U0, that is, the
wind velocity is uniform. Then Rayleigh’s Equation (3.4) simplifies to

− y′′ + k2y = 0 on x2 ∈ (0,∞), y(0) = 1, y → 0 as x2 → ∞. (3.10)

This can be solved explicitly. We find in particular that

y′(0) = −|k|.

Inserting this into (3.6) yields the following quadratic equation for c:

g(1 − ε)+ ρ−1
− σk2 = ε|k|(U0 − c)2 + c2|k|.

Since the coefficients are all real, instability ensues if and only if there are complex
roots of this polynomial. Simply evaluating the discriminant reveals that this will
be the case if and only if

k2U 2
0

ρ+ρ−
(ρ+ + ρ−)2

> g|k|ρ− − ρ+
ρ+ + ρ−

+ σ |k|3 1
ρ+ + ρ−

. (3.11)

Here we have rearranged terms so that the densities ratios are dimensionless. This
inequality is precisely the Kelvin–Helmholtz instability criterion (cf., for example,
[10]).

Example 3.2 (Constant shear without a vortex sheet). Consider the situation where

U (x2) :=
{
µx2 x2 ! 0
0 x2 < 0

,

for a fixed µ > 0. This corresponds to a velocity profile which is continuous over
the air–water interface and has a constant (nonzero) shear in the atmosphere.

As before, Rayleigh’s Equation (3.4) reduces to (3.10), and hence y′(0) = −|k|.
On the other hand, (3.6) becomes

g(1 − ε)+ ρ−1
− σk2 = (1+ ε)|k|c2 − εµc.

It is completely elementary to show that the above quadratic equation has only real
roots when 0 < ε " 1. We conclude that, for any choice of µ, the corresponding
wave is linearly stable. This is in accordance with Miles’s prediction, and our own
Theorem 4.1, because U ′′ vanishes identically.
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Example 3.3 (Constant shear with a vortex sheet). Building on the previous exam-
ple, let us now take U+ to be of the form

U+(x2) := U0 + µx2,

for some U0 ! 0 and µ. The Rayleigh equation for y is trivial to solve explicitly
and we find once more that y′(0) = −|k|. Thus the dispersion relation becomes

g(1 − ε)+ 1
ρ−

σk2 = ε(U0 − c)2|k| + εµ(U0 − c)+ c2|k|.

Evaluating the discriminant, we infer thatU is unstable if and only if the following
inequality is satisfied

ε

(1+ ε)2
U0(U0 +

µ

|k| ) >
ε2

(1+ ε)2
µ2

4k2
+ g

|k|
1 − ε

1+ ε
+ σ |k|

ρ−(1+ ε)
.

Rewriting this in terms of ρ±, we get:

k2
ρ+ρ−

(ρ+ + ρ−)2
U0(U0+

µ

|k| )>
ρ2
+

(ρ+ + ρ−)2
µ2

4
+g|k|ρ− − ρ+

ρ+ + ρ−
+ σ |k|3 1

ρ+ + ρ−
.

Comparing this to (3.11) reveals that vorticity in the air region—even constant
vorticity—can be destabilizing in the sense that it may reduce the minimal value
of U0 required for the wind-generation of water waves.

In each of these examples, we have been able to explicitly compute the solution
of the Rayleigh’s equation, which is unfortunately not possible for the vast majority
of background velocities. One additional case where this can be done is for U+ of
exponential type; see [6, Appendix B], where an exact expression for the dispersion
relation and unstable eigenvalues is found in terms of hypergeometric functions.

3.3. The Necessity of Critical Layers for Instability

Formal calculations indicate that there exists an unstable eigenvalue−ikc with
c near ck provided that ck belongs to the range of U+ on [0, h+], see for example
[15,16]. In the following lemma, we prove that this is a necessary condition for the
existence of instability near ck . Here, for simplicity, we only consider the case of
finite atmosphere h+ < ∞.

Lemma 3.1. Suppose U+ ∈ C2 and ck /∈ U+([0, h+]), then there exists εk > 0
such that, if (y, c) solve (3.4) along with (3.5) and (3.6) for ε ∈ (0, εk), and

|c − ck | " 1
4

min
x2∈[0,h+]

|ck −U+(x2)|,

then c ∈ R.
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Proof. Let ψ = ψ(x2) be defined by

y(x2) =:
(
U+(x2) − c

)
ψ(x2)+

h+ − x2
h+

,

and denote

δ := min
x2∈[0,h+]

|ck −U+(x2)|.

Then (3.4) implies
⎧
⎨

⎩
−
(
(U+ − c)2ψ ′)′ + k2(U+ − c)2ψ +

(
U ′′
+ + k2(U+ − c)

)h+ − x2
h+

= 0,

ψ(0) = ψ(h+) = 0.

Multiplying the above equation by ψ̄ and integrating on [0, h+], we obtain
∫ h+

0
(U+ − c)2(k−2|ψ ′|2 + |ψ |2) dx2

=
∫ h+

0

( U ′′
+

k2(U+ − c)
+ 1
)h+ − x2

h+
(U+ − c)ψ̄ dx2.

Even though c may not be real, |c − ck | " δ/4 implies Re (U+ − c)2 ! δ2/2.
Taking the real part of the above equality, we have

k−1|ψ ′|L2 + |ψ |L2 " Cδ−2,

which implies that

k−1|y′|L2 + |y|L2 " Cδ−2,

where C is a constant independent of δ, ε, and c.
Let

W := − i
2
(ȳ y′ − y ȳ′) ∈ R. (3.12)

One may compute

W ′ = U ′′
+ Im c

|U+ − c|2 |y|
2, W(0) = Im y′(0), W(h+) = 0. (3.13)

Along with the above estimates on y, this implies

| Im y′(0)| " Cδ−6| Im c|.
From (3.8), we obtain | Im c| " Cδ−6ε| Im c| and thus Im c = 0. ⊓4
Remark 3.2. Weemphasize that this result, under theC2 assumption onU+, means
unstable eigenvalues can only bifurcate out of the imaginary axis from ±ikck in
the range of U . If U+ /∈ C2, as our constructions later show, it is entirely possible
that there are unstable eigenvalues lurking elsewhere (cf. Section 5).

The calculation of the Wronskian (3.12) and (3.13) will play an important role
in the next section where we provide a sufficient condition for instability.
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4. Instability Induced by Critical Layers

In this section, we answer the question raised at the beginning of the paper
regarding the wind generation of waves in quiescent water. Specifically, we present
a sufficient condition for the linear instability of the air–sea system (2.2) due to
critical layers. We do this by seeking a solution (y, c) of (3.4) along with (3.5) and
(3.6) with |c − ck | ≪ 1 and Im c > 0, for ε := ρ+/ρ− ≪ 1. Here ck is given in
(3.7) and we are assuming h+ < ∞. Our main result is the following.

Theorem 4.1. Assume U+ ∈ C4, h+ < ∞, and ck ∈ R satisfies

∅ ̸= {s ∈ [0, h+] | U+(s) = ck} = {s1, . . . , sm} ⊂ (0, h+),

and

U ′
+(s j ) ̸= 0, ckU

′′
+(s j ) " 0, ∀1 " j " m, and ckU

′′
+(s j ) < 0 for j = m − 1 or m.

For ε = ρ+/ρ− ≪ 1, there exists a solution (y, c) of (3.4) along with (3.5) and
(3.6) with |c − ck | = O(ε) and Im c > 0 with a positive lower bound of order
O(ε).

Remark 4.1. Here ck may take either its positive or negative value, whichever
satisfies the above assumptions. A weaker hypothesis is given later in (4.32) and
the leading order form of Im c can be found at the end of Section 4.4.

Before we give the rigorous argument, it is interesting to outline the heuristic
calculation of Im y′(0) which is the key in obtaining the instability due to (3.8).
The essence of this calculation can be found, for example, in [15].

Assume c∗ ∈ R satisfies

{s ∈ [0, h+] | U+(s) = c∗}
= {s1, . . . , sm} ⊂ (0, h+), U ′

+(s j ) ̸= 0, j = 1, . . . ,m ! 1 (4.1)

and (y, c) solves (3.4) with |c − c∗| ≪ 1, 0 < | Im c| ≪ 1, and |y|2 reasonably
regular. Let

{s′
1, . . . , s

′
m} := U−1

+ ({Re c}),

where s′
j is close to s j . By integrating (3.13), we first obtain

Im y′(0) = W(0) ≈ − sgn (Im c)π
m∑

j=1

U ′′
+(s

′
j )|y(s′

j )|2
|U ′

+(s
′
j )|

≈ − sgn (Im c)π
m∑

j=1

U ′′
+(s j )|y(s j )|2
|U ′

+(s j )|
,

where the discrete summation resulted from the limit δ-masses produced by the
singularity of the integrand at the critical layers.
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From (3.8) we find

Im c ≈ − sgn (Im c)

⎡

⎣επ

(
U+(0) − ck

)2

2ck |k| tanh (|k|h−)

m∑

j=1

U ′′
+(s j )|y(s j )|2
|U ′

+(s j )|

⎤

⎦ .

Therefore, instability occurs if the above square bracketed term is negative. We will
make the existence of critical layer induced instability rigorous in this section. The
crucial part is the analysis near the coefficient singularity of the Rayleigh Equation
(3.4).

Let us also note that a determining Im c is of particular importance to applica-
tions because it determines the linear growth rate. From the above formal argument
(and our own rigorous version below), it clear that this will in particular require es-
timates for the solution y to the Rayleigh equation evaluated at the critical layer(s).
Due to the singular nature of the equation, this is quite difficult to carry out analyti-
cally. In [19], Morland and Saffman give a numerical treatment of the problem and
found that, not surprisingly, the growth rate is quite sensitive to the prescribed flow
structure. Nonetheless, logarithmic profiles mimicking turbulent shear flow deliver
quite robust and reliable eigenvalue estimates.
Rayleigh equation In the process of proving Theorem 4.1, we obtain the following
proposition on the convergence of solutions to the Rayleigh Equation (3.4) as the
parameter c approaches a limit in R. This result can be useful by itself in the study
of instability of shear flows.

Proposition 4.1. Suppose c∗ ∈ R is a regular value of U+ ∈ Cl , l ! 4, on [0, h+]
and c∗ /∈ {U+(0), U+(h+)}.Weuse the notationas in (4.1). For c = c∗+icI ∈ C\R
sufficiently close to c∗, let y be the solution of (3.4) along with y′(h+) = 1. We
have

(1) There exists a unique solution y∗ of

−y′′
∗ +

(
U ′′
+

U+ − c
+ k2

)
y∗ = 0 on x2 /∈ (0, h+) ∩U−1

+ ({c∗}),

y∗(h+) = 0, y′
∗(h+) = 1

that, at any s ∈ U−1
+ ({c∗}), exhibits the behavior

y∗(s) = y∗(s±) and lim
x2→0+

y′
∗(s + x2) − y′

∗(s − x2) = i sgn (cI )
πU ′′

+(s)
|U ′+(s)|

y∗(s).

(4.2)

(2) For any s ∈ U−1
+ ({c∗}),

|y′
∗(s + x2)| = O(| log |x2||) as x2 → 0.

Moreover y∗ is Cl−3 in c∗ for x2 /∈ U−1
+ ({c∗}).
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(3) For any δ > 0 and α ∈ (0, 1),

|y(x2) − y∗(x2)| = O(|cI |α), for all x2 ∈ [0, h+] \
m⋃

j=1

(s j − δ, s j + δ).

The above estimates are uniform in k for k on any compact subset of R+.

Outline of the Proof of Theorem 4.1

While the above formal argument provides a useful insight, it is far fromstraight-
forward how to turn it into a rigorous proof of Theorem 4.1. Among the issues, for
example, are that one needs some control on y and y′ for | Im c| ≪ 1, including
some positive lower bound on |y|2 to ensure the instability. This can be potentially
achieved by identifying the limit of y as Im c → 0 along with convergence esti-
mates, but this is very nontrivial due to the creation of δ-masses near critical layers
in the limiting process of the singular Equation (3.4). As the rigorous proof of The-
orem 4.1 presented in this section is rather technical, here we give a brief outline of
the analysis near one singularity s0 ∈ (0, h+)where |U+(s0)−Re c|+| Im c| ≪ 1.

Step 1. As Im c → 0, y and y′ do not remain bounded uniformly. Our first step is
thus to understand the behavior of y(x2) for x2 near s0 when | Im c| ≪ 1.
We change variables to τ := U (x2)−Re c, which ismore convenient for the
local analysis due to its appearance in the denominator. Meanwhile the un-
knowns are transformed to the more geometric quantities (u1, u2, u3,W),
where u1 and u3 represent the squares of the norms of y and y′, and u2
and W the dot and cross products of y and y′. It turns out that u1 remains
uniformly Hölder continuous as Im c → 0, whileW develops a jump dis-
continuity at τ = 0, u2 a logarithmic singularity in τ , and u3 a singularity
of the order of the square of logarithm. More careful analysis reveals that
in the leading orders the singularities are symmetric in τ near τ = 0.

Step 2. A priori estimates in Step 1motivate us to make the right guess for the limit
Equation (4.12) along with conditions (4.13) at the singular point τ = 0.
Coefficients and solutions of this limit system still possess singularities. To
better understand the limit problem,we apply another linear transformation
B(τ ) to the unknowns which depends on τ smoothly in neighborhood of
τ = 0. The resulting system has very simple variable coefficients and can
be solved explicitly.

Step 3. After carefully separating the singular parts of the solutions, and with the
help of the above linear transformation B(τ ) applied to solutions y of (3.4)
for | Im c| ≪ 1, we will complete the proof of the Proposition 4.1 and
obtain very good error estimates near one critical layer. Finally, the proof
of Theorem 4.1 is carried out by combining these estimates near all of the
critical layers.
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4.1. Preliminary Estimates Near a Singularity of Rayleigh’s Equation

AssumeU+ ∈ C3([0, h+]) and suppose there is an s0 ∈ (0, h+) and δ ∈ (0, 1)
with

U ′
+(s0) ̸= 0,

|U ′
+(x2)|

|U ′
+(s0)|

∈
(
1
2
, 2
)

on [s0 − δ, s0 + δ]. (4.3)

In this section, we analyze the solutions y of (3.6) on the interval [s0 − δ, s0 + δ]
for c very close toU+(s0) with cI := Im c ̸= 0. For such c, there exists s such that

Re c =: cR = U+(s), and |s − s0|, |cI | ≪ δ.

In other words, s is the altitude at which the wind profile takes the value Re c.
Since (3.4) is invariant under multiplication by a complex scalar, we make

the following transformation which better reflects the rotational invariance on the
complex plane: let

u1 := |y|2, u2 :=
1
2
(y′ ȳ + ȳ′y), u3 := |y′|2, W := − i

2
(ȳ y′ − y ȳ′).

(4.4)

Geometrically, u1 and u3 are the squares of the norms of y and y′, while u2 andW
are the dot and cross products of y and y′. Obviously, they satisfy

(u2)2 +W2 − u1u3 = 0 (4.5)

and determine the solution y and y′ up to a rotation in the complex plane. One of
the advantages of these new variables is that identity (3.13), which relates W to
|y|2, is easier to handle and directly links to the generation of the instability.

One may compute that (u1, u2, u3,W) satisfy
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′
1 = 2u2

u′
2 =

(

k2 + U ′′
+ (U+ − cR)

(U+ − cR)2 + c2I

)

u1 + u3

u′
3 = 2

(

k2 + U ′′
+ (U+ − cR)

(U+ − cR)2 + c2I

)

u2 +
2cIU ′′

+
(U+ − cR)2 + c2I

W

W ′ = cIU ′′
+(

U+ − cR
)2 + c2I

u1

(4.6)

where U+, U ′
+, U

′′
+ are evaluated at x2. It is straightforward to show that (4.5) is

satisfied by solutions of (4.6).
To handle the singularity U+ − cR = U+ − U+(s) at s = 0 for small cI , we

work with a new independent variable

τ = τ (x2, s) := U+(x2) − cR = U+(x2) −U+(s).

This is a validC3 change of coordinate on [s0−δ, s0+δ] depending on the parameter
s. Let δ1,2 = δ1,2(s) > 0 be defined by
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−δ1(s) := min{U+(s0 ± δ) −U+(s)}, δ2(s) := max{U+(s0 ± δ) −U+(s)}.
Note that this implies that δ1,2 = O(δ) due to (4.3) and the fact |s − s0| ≪ δ. For
τ ∈ [−δ1, δ2], we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1τ = 2
U1

u2

u2τ = 1
U1

(

k2 + τU2

τ 2 + c2I

)

u1 +
u3
U1

u3τ = 2
U1

(

k2 + τU2

τ 2 + c2I

)

u2 +
2cIU2

(τ 2 + c2I )U1
W

Wτ = 1
U1

cIU2

τ 2 + c2I
u1

(4.7)

where

U1(s, τ ) := U ′
+
(
x2(τ, s)

)
, U2(τ, s) := U ′′

+
(
x2(τ, s)

)
.

Clearly U1,2 and δ1,2(s) are also smooth in s.
We first obtain some uniform estimates on solutions to the transformed system

(4.7).

Lemma 4.1. For any α ∈ (0, 1) and C0 ! 1, there exist δ ∈ (0, 1) satisfying (4.3)
and C, ε0 > 0 depending only on α, k, C0, |U ′

+(s0)|−1, and |U+|C3([0,h+]), such
that for all

|s − s0| < ε0, , 0 < |cI | < ε0 and τ1,2 ∈ [−δ1, δ2], with |τ2| " C0|τ1|,
solutions to (4.7) satisfy on the interval [τ1, τ2] (or [τ2, τ1] if τ2 < τ1)

|u1(τ )|, |W(τ )| " C |u(τ1)|w

|u2(τ )| " C
(
1+ | log c2I + τ 21

c2I + τ 2
|
)
|u(τ1)|w,

|u3(τ )| " C
(
1+

(
log

c2I + τ 21

c2I + τ 2

)2)|u(τ1)|w

|u1(τ ′) − u1(τ ′′)| " C
(
| log c2I + τ 21

c2I + (τ ′′′)2
||τ ′ − τ ′′|

+
(
c2I + (τ ′′′)2

) 1−α
2 |τ ′ − τ ′′|α

)
|u(τ1)|w,

where τ ′′′ ! 1
C0

max{|τ ′|, |τ ′′|} and

|u(τ )|w :=
(
u1(τ )2 + u2(τ )2 + u3(τ )2 +W(τ )2

) 1
2 .

Moreover, for τ " min{|τ1|, |τ2|},
|u2(τ ) − u2(−τ )| " Cτ 1−α

∗ τα|u(τ1)|w, |u3(τ ) − u3(−τ )| " C |u(τ1)|w
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where

τ∗ = (c2I + τ 21 )
1
2 .

In the above estimates, an almost logarithmic singularity appears at τ = 0, but
disappears as τ evolves past 0 at roughly the same rate at which it appeared.

Proof. For notational simplicity, we mainly consider the case τ1 > 0 and τ2 ∈
[−τ1, τ1], the argument for the other cases being similar (or easier) due to the
absolute value outside the logarithm in the above inequalities. See the comments
at the end of the proof.

First, we establish an inequality that we will make repeated use of later:

∫ τ ′′

τ ′

∣∣∣∣∣log
c2I + (τ ′′′)2

c2I + τ 2

∣∣∣∣∣

m

dτ

" C(c2I + (τ ′′′)2)
1−α
2 |τ ′ − τ ′′|α, where |τ ′|, |τ ′′| " C0|τ ′′′|, (4.8)

and the constant C depends only on α ∈ (0, 1), C0 ! 1, and m > 0 but is
independent of cI , τ ′, τ ′′, and τ ′′′. The above estimate is based on the observation

c2I + (τ ′′′)2

c2I + τ 2
! 1

C2
0

8⇒
∣∣∣∣∣log

c2I + (τ ′′′)2

c2I + τ 2

∣∣∣∣∣

m

" C

∣∣∣∣∣
c2I + (τ ′′′)2

c2I + τ 2

∣∣∣∣∣

1−α
4

.

Applying Hölder’s inequality

∫ τ ′′

τ ′

∣∣∣∣∣log
c2I + (τ ′′′)2

c2I + τ 2

∣∣∣∣∣

m

dτ " C(c2I + (τ ′′′)2)
1−α
4 |τ ′ − τ ′′|α

( ∫ τ ′′

τ ′
τ− 1

2 dτ
)1−α

" C(c2I + (τ ′′′)2)
1−α
4 |τ ′′′| 1−α

2 |τ ′ − τ ′′|α

and thus (4.8) follows.
For a constant M ! 1, let

τ0 := sup{τ ′ ∈ [τ2, τ1] | |u2(τ )|

" M

(

1+ | log c2I + τ 21

c2I + τ 2
|
)

|u(τ1)|w, for all τ ∈ [τ ′, τ1]}.

Clearly τ0 < τ1. We will show τ0 = τ2 for appropriately chosen M and δ. In the
rest of the proof, we will use C to denote a generic constant depending only on C0,
α, k, |U ′

+(s0)|−1, and |U+|C3([0,h+]). For τ0 " τ ′ < τ ′′ " τ1, let τ ′′′ be given with
τ ′′′ ! 1

C0
max{|τ ′|, |τ ′′|}. Then from (4.7) and (4.8), we have
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|u1(τ ′) − u1(τ ′′)| " CM |u(τ1)|w
∫ τ ′′

τ ′

(
1+ | log c2I + τ 21

c2I + τ 2
|
)
dτ

" CM |u(τ1)|w
((

1+ | log c2I + τ 21

c2I + (τ ′′′)2
|
)
|τ ′ − τ ′′|

+
∫ τ ′′

τ ′
| log c2I + (τ ′′′)2

c2I + τ 2
| dτ
)

" CM
(
| log c2I + τ 21

c2I + (τ ′′′)2
||τ ′ − τ ′′|

+
(
c2I + (τ ′′′)2

) 1−α
2 |τ ′ − τ ′′|α

)
|u(τ1)|w.

This inequality indicates that u1 is Hölder continuous. It also shows that |u1| "
2|u(τ1)|w on [τ0, τ1] if M and δ are chosen to satisfy CδM " 1.

Integrating Wτ on [τ, τ1] with τ ∈ [τ0, τ1] and using the estimate of u1, we
have

|W(τ ) − W(τ1)| = |
∫ τ1

τ

u1(τ ′)U2(τ
′)

U1(τ ′)
cI

(τ ′)2 + c2I
dτ ′| " C |u1|C0 " C |u(τ1)|w

if CδM " 1.
We will proceed in two steps to estimate u2,3. First, for τ ∈ [max{0, τ0}, τ1],

(4.7) and the above bounds on W imply

|u3(τ ) − u3(τ1)|

" C |u(τ1)|w
∫ τ1

τ

[

M
(
1+ τ ′

(τ ′)2 + c2I

)(
1+ | log c2I + τ21

c2I + (τ ′)2
|
)
+ |cI |

(τ ′)2 + c2I

]

dτ ′.

Some terms in the integrand above can be directly integrated, yielding terms like
tan−1, log, and log2. Ultimately, we find

|u3(τ ) − u3(τ1)|

" C

⎛

⎝1+ M

⎛

⎝τ 1−α
∗ |τ1 − τ |α + | log c2I + τ 21

c2I + τ 2
| +
(

log
c2I + τ 21

c2I + τ 2

)2
⎞

⎠

⎞

⎠ |u(τ1)|w.

Along with the estimates on u1,3, the u2 equation in (4.7) implies, for τ ∈
[max{0, τ0}, τ1],

|u2(τ ) − u2(τ1)| " C
∫ τ1

τ

[
(
1+ τ ′

c2I + (τ ′)2
)
|u(τ1)|w + |u3(τ ′)|

]

dτ ′

" C

(

| log c2I + τ 21

c2I + τ 2
| + Mτ 1−α

∗ |τ1 − τ |α
)

|u(τ1)|w

" C

(

1+ | log c2I + τ 21

c2I + τ 2
|
)

|u(τ1)|w,
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if CMδ " 1. From the above inequalities, we infer that the value M as in the
definition of τ0 can not be achieved on [max{0, τ0}, τ1] if M is reasonably large
and δ is chosen such that CδM " 1. Therefore, either (i) τ0 = τ2 in the case
τ2 ∈ [0, τ1] which completes the proof of the claim τ0 = τ2, or else (ii) τ0 < 0 in
the case τ2 < 0.

Let us consider the latter: suppose that τ2 < 0.Unfortunately, one cannot simply
extend the above argument for τ < 0 since the desired logarithmic upper bounds
on u2,3 start to decrease as τ decreases past 0. Instead, we study the quantities

ũ2,3(τ ) := u2,3(τ ) − u2,3(−τ ), τ ! 0,

which satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ũ2τ = − 1
U1(−τ )

ũ3 +
(

1
U1

+ 1
U1(−τ )

)
u3 +

τ

τ 2 + c2I

(
U2u1
U1

− U2u1
U1

(−τ )

)

+k2u1
U1

+ k2u1
U1

(−τ )

ũ3τ = 2τ

τ 2 + c2I

(
U2

U1
(−τ )ũ2 +

(
U2

U1
− U2

U1
(−τ )

)
u2

)
+ 2k2

(
u2
U1

+ u2
U1

(−τ )

)

+ 2cI(
τ 2 + c2I

)
((

U2W
U1

)
+
(
U2W
U1

)
(−τ )

)
.

(4.9)

Here, all functions are evaluated at τ unless stated otherwise. Recall that the as-
sumed upper bound on u2, and the estimates derived for u1 and W , are valid
on [τ0, τ1] and τ0 < 0. Using these, with τ ′′′ = |τ1| for u1, we obtain on [0,
min{−τ0, τ1}]

|ũ2| " C
∫ τ

0

(
|ũ3(τ ′)| + |u3(τ ′)| + (Mτ 1−α

∗ (τ ′)α−1 + 1)|u(τ1)|w
)
dτ ′

" C
(
Mτ 1−α

∗ τα|u(τ1)|w +
∫ τ

0
|ũ3(τ ′)| dτ ′

)
.

(4.10)

Similarly, the ũ3 equation and the assumed upper bound on u2 imply that, for
τ ∈ [0,min{−τ0, τ1}],

|ũ3| " C
∫ τ

0

(
τ ′

c2I + (τ ′)2
|ũ2(τ ′)| +

(

M
(
1+ | log c2I + τ 21

c2I + (τ ′)2
|
)

+ |cI |
(τ ′)2 + c2I

)
|u(τ1)|w

)

dτ ′

" C

(∫ τ

0

τ ′

c2I + (τ ′)2
|ũ2(τ ′)|dτ ′ +

(
1+ Mτ 1−α

∗ τα
)
|u(τ1)|w

)

.



Wind Generated Water Waves

Substituting the estimate (4.10) for ũ2 into the one for ũ3 above, taking CMδ " 1,
and then integrating by parts, leads to the following inequality:

|ũ3| " C
(
|u(τ1)|w +

∫ τ

0
Mτ 1−α

∗ (τ ′)α−1|u(τ1)|w

+ τ ′

c2I + (τ ′)2

∫ τ ′

0
|ũ3(τ ′′)|dτ ′′dτ ′

)

" C

(

|u(τ1)|w +
∫ τ

0
| log c2I + τ 2

c2I + (τ ′)2
||ũ3(τ ′)|dτ ′

)

.

Therefore, for τ ∈ [0,min{−τ0, τ1}],

|ũ3|C0([0,τ ]) " C

(

|u(τ1)|w +
(∫ τ

0
| log c2I + τ 2

c2I + (τ ′)2
| dτ ′

)

|ũ3|C0([0,τ ])

)

" C
(
|u(τ1)|w + (c2I + τ 2)

1−α
2 τα|ũ3|C0([0,τ ])

)
,

which, along with the fact that ũ3(0) = 0, implies

|ũ3|C0([0,τ ]) " C |u(τ1)|w

for τ ∈ [0,min{−τ0, τ1}]. From this we may conclude that

|ũ2(τ )| " CMτ 1−α
∗ τα|u(τ1)|w, τ ∈ [0,min{−τ0, τ1}].

Now, choosing M and δ such that M ! C and CMδ " 1, the above in-
equality and the previous estimate of u2 on [0, τ1], show that we must have τ0 "
max{−τ1, τ2}. Thus, all of the inequalities in statement of the lemma hold on
[max{τ2,−τ1}, τ1], which completes the proof in the case τ2 ∈ [−τ1, τ1].

We will conclude the proof of the lemma by discussing several other cases of
τ1,2. First note that the case τ1 < 0 can be treated in the exactly same manner as
the case τ1 > 0 because one may consider u(−τ ) and all the estimates go through.
The above arguments complete the proof in the case τ1 > 0 and τ2 ∈ [−τ1, τ1]. In
fact, if τ2 ∈ [0, τ1], the estimates on ũ2,3 are superfluous. The proof for the case
0 < τ1 " τ2 " C0τ1 is exactly the same (again, there is no need to consider ũ2,3).
Finally, if τ2 ∈ [−C0τ1,−τ1]we can combine the estimates on [τ2,−τ1] and those
on [−τ1, τ1] to obtain the desired inequalities. ⊓4

The above lemma provides some preliminary control of solutions to (4.7). We
refine them in the next corollary.

Corollary 4.1. For any τ1,2 ∈ [−δ1, δ2] with |τ2| " |τ1|, the following inequality
holds

|u1(τ1) − u1(τ2)| " C(|cI | + |τ1|)1−α log2(|cI | + |τ1|)|τ1 − τ2|α|u(δ2)|w.
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Moreover, for 0 " τ " min{δ1, δ2}, we have
|u2(τ ) − u2(−τ )| " C(|cI | + |τ |)1−ατα log2(|cI | + |τ |)|u(δ2)|w
|W(τ ) − W(−τ ) − 2U2(0)u1(0)

U1(0)
tan−1 τ

cI
| + |W(τ )+W(−τ ) − 2W(0)|

" C |cI | log2 |cI | log
(
1+ τ

|cI |

)
|u(δ2)|w,

and

|u3(τ ) − u3(−τ ) − 2U2(0)
U1(0)

(
W(−τ )+W(τ )

)
tan−1 τ

cI
| " Cτα|u(δ2)|w.

Here C is independent of cI and τ . Also, wherever |u(δ2)|w occurs above, it can
be replaced by |u(−δ1)|w.
Proof. Taking τ ′′′ = |τ1| and appealing to Lemma 4.1, we can see that u1 is Hölder
continuous on the interval [τ1, τ2] with exponent α and Hölder constant

C(c2I + τ 21 )
1−α
2 |u(τ1)|w " C(|cI | + |τ1|)1−α log2(|cI | + |τ1|)|u(δ2)|w

where we used the estimates on |u(τ )|w in terms of |u(δ2)|w. This proves the
improved Hölder estimate of u1 in the corollary. The estimate on u2(τ ) − u2(−τ )

follows similarly. From (4.7), we have

∂τ

(
W(τ ) − W(−τ )

)
= cI

τ 2 + c2I

((
U2u1
U1

)
(τ )+

(
U2u1
U1

)
(−τ )

)
.

Thus, the Hölder continuity of u1 implies

∂τ

(
W(τ ) − W(−τ )

)
= 2cIU2(0)u1(0)

U1(0)(τ 2 + c2I )
+ O

( |cI |
|cI | + τ

log2(|cI |+τ )

)
|u(δ2)|w.

For cI ̸= 0,W is smooth and so we are permitted to integrate this identity yielding
∣∣∣∣W(τ ) − W(−τ ) − 2

U2u1
U1

(0) tan−1
(

τ

cI

)∣∣∣∣

" C |cI ||u(δ2)|w
∫ τ

0

log2
(
|cI | + τ ′)

∣∣cI | + τ ′ dτ ′

" C |cI ||u(δ2)|w log2 |cI |
∫ τ

0

1
|cI | + τ ′ dτ

′

" C |cI | log2 |cI | log
(
1+ τ

|cI |
)
|u(δ2)|w,

and thus we have proved the desired estimate for W(τ ) − W(−τ ). Again from
(4.7), we have

|∂τ

(
W(τ )+W(−τ )

)
| =

∣∣∣∣∣
cI

τ 2 + c2I

(
(
U2u1
U1

)(τ ) − (
U2u1
U1

)(−τ )

)∣∣∣∣∣

" C
|cI | log2(|cI | + τ )

τ + |cI |
|u(δ2)|w (4.11)
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and the desired estimate onW(τ )+W(−τ ) follows similarly.
Finally, to control u3(τ )−u3(−τ ), we use (4.9) and (4.11), along with Lemma

4.1 (first with τ1 = τ and then τ1 = δ2), and the above estimate onW , to show
∣∣∣∣∂τ

(
u3(τ ) − u3(−τ ) − 2U2(0)

U1(0)

(
W(−τ )+W(τ )

)
tan−1

(
τ

cI

))∣∣∣∣

" C

(

log2(|cI | + τ )|u(δ2)|w + τ

c2I + τ 2
|u2(τ ) − u2(−τ )| + |u(τ )|w

)

" C
(
log2(|cI | + τ )|u(δ2)|w + |u(τ )|w

)
" C log2(|cI | + τ )|u(δ2)|w.

Integrating this inequality using (4.8) yields the desired estimate for u3. ⊓4

4.2. Heuristic Limit Equation Near a Singularity of Rayleigh’s Equation

Consider a family of solutions (u = (u1, u2, u3)T ,W) parametrized by cI ̸=
0. As cI → 0±, formally, we expect (u,W) to converge to a solution (V =
(V1, V2, V3)T ,W∗) of

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Vτ =

⎛

⎜⎜⎜⎜⎜⎝

2
U1

V2
1
U1

(
k2 + U2

τ

)
V1 +

V3
U1

2
U1

(
k2 + U2

τ

)
V2

⎞

⎟⎟⎟⎟⎟⎠
=: 1

τ A(τ )V,

W∗τ = 0

(4.12)

on the interval τ ∈ [−δ1, δ2]\{0}. At τ = 0, Lemma 4.1 and Corollary 4.1 hint that

• u1 has a continuous limit;
• limτ→0 limcI→0(u2(τ ) − u2(−τ )) = 0;
• W converges to a piecewise constant function with a jump πU2u1

U1
(0) at τ = 0;

and
• limτ→0 limcI→0(u3(τ ) − u3(−τ )) exists.

Therefore, we impose the following conditions at the singularity τ = 0:

lim
τ→0+

(
V1,2(τ ) − V1,2(−τ )

)
= 0, W∗(0+) − W∗(0−) = sgn (cI )

πU2(0)V1(0)
U1(0)

,

lim
τ→0+

(
V3(τ ) − V3(−τ )

)
= sgn (cI )

πU2(0)
U1(0)

(
W∗(0+)+W∗(0−)

)
.

(4.13)

Even though cI is already taken as 0 here, we still track its sign as the direction
from which the real axis is approached does make a significant difference.

We begin by analyzing the limiting system which will help us justify the con-
vergence and obtain the necessary error estimates. Since V is decoupled from W
in the limiting system except at τ = 0, most of the work can be first carried out for
V .

As a preliminary step, in the following lemma, we perform a coordinate change
that makes the 1/τ singularity in (4.12) more tractable.
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Lemma 4.2. AssumeU+ ∈ Cl , l ! 3, then there exists B(τ ) ∈ M3×3(R) (M3×3(R)
the space of 3 × 3 real valued matrices) which is Cl−2 in τ ∈ [−δ1, δ2] such that
B(0) = I and for any solution V of (4.12) for τ ̸= 0, Ṽ := B(τ )−1V satisfies

Ṽτ = U2(0)
τU1(0)

A0Ṽ = τ−1A(0)Ṽ , τ ̸= 0, (4.14)

where

A0 =

⎛

⎝
0 0 0
1 0 0
0 2 0

⎞

⎠ .

Moreover, there exists β ∈ (0, 1) such that B is Cl−3,β in its dependence on the
parameters k and s for s is close to s0.

It is worth pointing out that B is smooth at τ = 0 even though the equation is
singular there.

Proof. The proof of the lemma is an application of the invariant manifold theory
in dynamical systems. Substituting V = B(τ )Ṽ into (4.12), we obtain

Ṽτ = τ−1B(τ )−1(A(τ )B(τ ) − τ B ′(τ )
)
Ṽ .

Comparing this to (4.14), we see that it suffices to find B ∈ Cl−2 so that B(0) = I
and

B ′(τ ) = τ−1(A(τ )B(τ ) − B(τ )A(0)
)
. (4.15)

To remove the singularity τ−1, we treat τ as a new dimension in the phase space
R10 and consider a nonlinear augmented system in a new independent variable θ :

(
B
τ

)

θ

=
(
A(τ )B − BA(0)

τ

)
=: G(B, τ ). (4.16)

Clearly solutions of (4.16) with τ ̸= 0 lead to solutions of (4.15).
Notice that (I, 0) is a steady state of the augmented system (4.16) and

DG(I, 0) =
(
A Aτ (0)
0 1

)
where the operator A is defined as

AB = A(0)B − BA(0).

One may verify through direct computations that

eθAB = eθ A(0)Be−θ A(0).

Since

e
U2(0)θ
U1(0)

A0 = eθ A(0) =

⎛

⎜⎜⎜⎜⎝

1 0 0
U2(0)
U1(0)

θ 1 0

U2(0)2

U1(0)2
θ2

2U2(0)
U1(0)

θ 1

⎞

⎟⎟⎟⎟⎠
, (4.17)
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we infer that the solution map eθDG(I,0) at the steady state (I, 0) has the 9-
dimensional invariant subspaces {τ = 0} ⊂ R10 and eθDG(I,0) has only alge-
braic growth in θ there. In the transversal direction, clearly 1 is an eigenvalue of
DG(I, 0).Motivated by the above formula of eθA, onemay verify through a routine
calculation that (B1, 1)T is a eigenvector of the eigenvalue 1 where

B1 =
∫ +∞

0
e−θ+θAAτ (0) dθ =

∫ +∞

0
e−θeθ A(0)Aτ (0)e−θ A(0) dθ .

The convergence of this integral is guaranteed by the fact that eθA has only algebraic
growth.

Therefore, from the standard invariantmanifold theory in dynamical systems [8,
9], there exists a one-dimensionalCl−2 locally invariant unstable manifold of (I, 0)
which is tangent to (B1, 1) at (I, 0). The regularity of the unstable manifold follows
from the observation that G ∈ Cl−2. The smoothness of the unstable manifolds
with respect to external parameters—s0 and k here—is like the smoothness of the
unstable fibers with respect to base points in the center manifold. Therefore it is
Cl−3,β for some β ∈ (0, 1) [3,8]. The unstable manifold can be parametrized by
τ as B = B(τ ), and will satisfy B(0) = I , B ∈ Cl−2. The invariance of the
one-dimensional unstable manifold implies that B(τ ) is a solution of (4.15). Since
(4.15) is a linear ODE system, the solution B(τ ) can be extend to τ ∈ [−δ1, δ2]. In
addition, the tangency of the unstable ma nifold at (I, 0) to (B1, 1) implies

B ′(0) =
∫ +∞

0
e−θeθ A(0)Aτ (0)e−θ A(0) dr (4.18)

which can be integrated explicitly. This complete the proof. ⊓4

As a corollary,we obtain explicit forms of Ṽ (τ ) = B(τ )−1V (τ ) for any solution
(V,W∗) of (4.12) and (4.13).

Corollary 4.2. Let (V,W∗) be a solution of the limiting system (4.12) satisfying
the conditions at the singular point in (4.13), then

(1) V is uniquely determined by constants (a1, a2, a3) along with either W∗(0−)

or W∗(0+) such that Ṽ (τ ) = B(τ )−1V (τ ) is given by

Ṽ1(τ ) = a1, Ṽ2(τ ) = a1
U2(0)
U1(0)

log |τ | + a2,

Ṽ3(τ ) = a1
U2(0)2

U1(0)2
log2 |τ | + 2a2

U2(0)
U1(0)

log |τ | + a3 ± a′
3

where the ± is chosen so that ±τ > 0, and

a′
3 = sgn (cI )

πU2(0)
2U1(0)

(
W∗(0+)+W∗(0−)

)
;

moreover, V1(0) = Ṽ1(0) = a1;



O. Bühler, J. Shatah, S. Walsh & C. Zeng

(2) there exists a constant C > 0 depending only on k, |U+|C3([0,h+]), |U+(s0)|−1,
and δ such that

1
C

(|V (−δ1)| + |W∗(−δ1)|) " |V (δ2)| + |W∗(δ2)| " C (|V (−δ1)| + |W∗(−δ1)|)

for any solution of (4.12)–(4.13).

Proof. From Lemma 4.2, there exist (a1±, a2±, a3±), such that

Ṽ (τ ) = e(log |τ |)A(0)(a1±, a2±, a3±)T , ±τ > 0.

Since B(0) = I and B(τ ) is C1 in τ , we have for 0 < τ ≪ 1,

V (τ ) − V (−τ ) = B(τ )Ṽ (τ ) − B(−τ )Ṽ (−τ ) = Ṽ (τ ) − Ṽ (−τ̃ )+ O(|τ | log2 |τ |)

which implies

lim
τ→0+

(
V (τ ) − V (−τ )

)
= lim

τ→0+
(
Ṽ (τ ) − Ṽ (−τ )

)
.

From the boundary condition (4.13) and the explicit form (4.17) of er A(0) it is
easy to see that a1,2+ = a1,2− and the jump condition on a3± = a3± a′

3 holds. For
V1(0), since B(τ ) = I + O(|τ |), we have

V1(0) = lim
τ→0

V1(τ ) = lim
τ→0

(Ṽ1(τ )+ O(|τ | log2 |τ |) = a1.

Part (2) is a simple consequence of Lemma 4.1 and part (1) of this corollary. In
fact, one canfirst identify parametersa1,2 aswell as

(
a3−a′

3,W∗(0−)
)
by the values

of (V,W∗) and B at −δ1. Consequently, condition (4.13) allows us compute the
values ofW∗(0+)−W∗(0−) and thus a′

3 and a3 using V1(0) = Ṽ1(0) = a1. These
parameters completely determine the solution on the interval [−δ1, δ2]. Therefore,
the estimates on V and W∗ follow from the explicit forms of Ṽ and W∗ and the
smoothness of B. ⊓4

Before we finish the analysis on the solutions to the limit system (4.12)–(4.13),
we consider the conservation law (4.5). Observe that, at this stage, we cannot yet
conclude V 2

2 + W2
∗ − V1V3 = 0 because (V,W∗) is only assumed to be a local

solution for τ ∈ [−δ1, δ2].

Lemma 4.3. Let (V,W∗) be a solution of (4.12)–(4.13) for τ ∈ [−δ1, δ2].
(1) Conservation law (4.5) holds in the sense that

(V2)2 +W2
∗ − V1V3 = const on [−δ1, δ2].

(2) Suppose (V2)2 +W2
∗ − V1V3 = 0 and V1(0) = 0, then (V,W∗) is smooth on

[−δ1, δ2] and takes the form

V (τ ) = B(τ )(0, 0, a3)T , W∗(0−) = W∗(0+) = 0.
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Proof. From (4.12), it is easy to verify through direct computation that ∂τ

(
V 2
2 +

W2
∗ − V1V3

)
= 0 for τ ̸= 0, and thus we only need to show

(
V 2
2 +W2

∗ − V1V3
)
(0−) =

(
V 2
2 +W2

∗ − V1V3
)
(0+).

Again since B(τ ) = I +O(|τ |) implies V (τ ) = Ṽ (τ )+O(|τ | log2 |τ |), it suffices
to prove the above identity for (Ṽ ,W∗), which is straightforward from the explicit
form of Ṽ given in part (1) of Corollary 4.2.

Suppose V1(0) = 0, then Corollary 4.2 implies a1 = 0 and thus

Ṽ (τ ) =
(
0, a2,

2a2U2(0)
U1(0)

log |τ | + a3 ± a′
3

)T

.

The smoothness of B and the fact that B(0) = I then give

V (τ ) =
(
0, a2,

2a2U2(0)
U1(0)

log |τ | + a3 ± a′
3)

T + O(|τ log |τ ||
)
, for |τ | ≪ 1.

Substituting this into the assumption V 2
2 +W2

∗ = V1V3, we obtain

a22 +W2
∗ + O(|τ log |τ ||) = O(|τ | log2 |τ |).

From this we conclude that a2 = W∗(0−) = W∗(0+) = 0, and hence part (2)
follows. ⊓4

4.3. Convergence Estimates Near a Singularity of Rayleigh’s Equation

Operating under the assumptions in (4.3), we now derive an error estimate
comparing solutions of (4.7) and the limiting system (4.12)–(4.13) for 0 < |cI | ≪
1. The following lemma gives some preliminary bounds.

Lemma 4.4. Givenany solution (u,W)of (4.7)on [−δ1, δ2] such that |u(−δ1)|w "
1, let (V ,W∗) be the unique solution of (4.12)–(4.13) so that

W∗(0−)+W∗(0+) = 2W(0), V (−δ1) = u(−δ1).

Then we have

|u1(τ ) − V 1(τ )| " C |cI | log2 |cI |, τ ∈ [−δ1, δ2],

and

|u(δ2) − V (δ2)| " C |cI |α, |W(δ2) − W∗(0+)| + |W(−δ1) − W∗(0−)|
" C |cI | |log |cI ||3 .

Or, alternatively, we may assume |u(δ2)|w " 1 and the initial condition V (δ2) =
u(δ2), which will give the same inequalities except with δ2 replaced by −δ1.
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Note that in general u − V does satisfy the error estimate on the whole interval
[−δ1, δ2] as u1 − V 1 does. This is natural since u3 andW are smooth for 0 < |cI |
while V 3 and W∗ are singular at τ = 0.

Proof. Since the linear transformation through B(τ ) simplifies the equation for V ,
which is basically the principle part of the equation satisfied by (u,W), we apply
the same transformation to the latter by letting u = B(τ )ũ. One may compute
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ũτ = U2(0)
τU1(0)

A0ũ − c2IU2

τ (τ 2 + c2I )U1
B−1A0Bũ + B−1

(

0, 0,
2cIU2W

(τ 2 + c2I )U1

)T

Wτ = cIU2u1
(τ 2 + c2I )U1

(4.19)

where B and U1,2 are evaluated at τ unless otherwise specified.
Ideally, onemight try to control the error ũ− Ṽ = B(τ )−1(u−V ) andW−W∗.

However, ũ3 andW are continuous at τ = 0 for cI ̸= 0, while Ṽ 3 andW∗ are not,
and this discrepancy makes it inconvenient to estimate ũ− Ṽ andW−W∗ directly.
Instead, we consider the modified error functions (Z = (Z1, Z2, Z3)

T ,W) defined
for τ > 0 by

Z1,2 := ũ1,2 − Ṽ 1,2 −
(
ũ1,2(−τ ) − Ṽ 1,2(−τ )

)

= ũ1,2 − ũ1,2(−τ )

Z3 := ũ3 − Ṽ 3 − 2U2(0)W∗(0+)

U1(0)

(
tan−1

(
τ

cI

)
− π

2
sgn (cI )

)

−
(
ũ3(−τ ) − Ṽ 3(−τ ) − 2U2(0)W∗(0−)

U1(0)

(
− tan−1

(
τ

cI

)
+ π

2
sgn (cI )

))

= ũ3 − ũ3(−τ ) − 2U2(0)
U1(0)

(
W∗(0+)+W∗(0−)

)
tan−1

(
τ

cI

)

W := W − W∗(0+)+W(−τ ) − W∗(0−)

= W +W(−τ ) − 2W(0),

(4.20)

where all functions are evaluated at τ unless otherwise stated. Here we have used
the property that Ṽ j (τ ) − Ṽ j (−τ ) = 0 for j = 1, 2, and, for j = 3, is a specified
constant given by Corollary 4.2. For any cI ̸= 0, (Z ,W) is smooth for τ ! 0 and

|Z(0)| = |W(0)| = 0.

From Corollary 4.1, we have

|W(τ )| " C |cI | log2 |cI | log
(
1+ τ

|cI |

)
.

The next step is to estimate Z(τ ). Towards that end, we compute that

Zτ (τ ) = ũτ (τ )+ ũτ (−τ ) −
(

0, 0,
2cIU2(0)

U1(0)(c2I + τ 2)

(
W∗(0+)+W∗(0−)

)
)T

.
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Recalling (4.19), this becomes

Zτ (τ ) =
U2(0)
τU1(0)

A0 (ũ(τ ) − ũ(−τ )) − c2I
τ (τ 2 + c2I )

((U2

U1
B−1(0, u1, 2u2)T

)
(τ )

−
(
U2

U1
B−1(0, u1, 2u2)T

)
(−τ )

)
+ 2cI

τ 2 + c2I

((
B−1(0, 0,

U2W
U1

)T
)
(τ )

−
(
0, 0,

U2(0)W∗(0+)

U1(0)

)T

+
(
B−1(0, 0,

U2W
U1

)T
)
(−τ ) −

(
0, 0,

U2(0)W∗(0−)

U1(0)

)T )
.

Since A0(0, 0, 1)T = 0, we see that, for τ ! 0, Z solves

Zτ (τ ) =
U2(0)
τU1(0)

A0Z(τ )+
2cIU2(0)

U1(0)(τ 2 + c2I )

(
0, 0,W(τ )

)T + φ1(τ )+ φ2(τ ),

where φ1,2 are given by

φ1(τ ) :=
2cI

τ 2 + c2I

((
B−1(0, 0,

U2W
U1

)T
)
(τ )+

(
B−1(0, 0,

U2W
U1

)T
)
(−τ )

−
(
0, 0,

U2(0)
U1(0)

(W(τ )+W(−τ ))

)T )

= O
(
|cI |τ (τ 2 + c2I )

−1),

and

φ2(τ ) := − c2I
τ (τ2 + c2I )

((
U2
U1

B−1(0, u1, 2u2)
T
)
(τ ) −

(
U2
U1

B−1(0, u1, 2u2)
T
)
(−τ )

)

= c2I O
(
τα−1(τ + |cI |)−(1+α) log2(|cI | + τ )

)

= c2I O
(
τα−1(τ + |cI |)−(1+α) log2 |cI |

)
.

Here we used the smoothness of B and Corollary 4.1.
From the equation for Zτ and the fact that er A0(0, 0, 1)T = (0, 0, 1)T due to

(4.17), we have

Z(τ ) = e
U2(0)
U1(0)

(log τ
τ0
)A0 Z(τ0)+

∫ τ

τ0

[ 2cIU2(0)

U1(0)
(
(τ ′)2 + c2I

)
(
0, 0,W(τ ′)

)T

+ e
U2(0)
U1(0)

(log τ
τ ′ )A0

(
φ1(τ

′)+ φ2(τ
′)
)]

dτ ′.
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Employing the estimates of φ1,2 and W derived above, as well as the explicit
expression (4.17) for er A(0), we then find that for τ > 0

|Z(τ )| " C
(
1+ | log τ

τ0
|2
)
|Z(τ0)| + C

∫ τ

τ0

[c2I log
2 |cI | log

(
1+ τ ′

|cI |
)

(|cI | + τ ′)2

+ (1+ | log τ

τ ′ |
2)

(
|cI |τ ′

(|cI | + τ ′)2
+ c2I log

2 |cI |
(τ ′)1−α(|cI | + τ ′)1+α

)]
dτ ′.

When cI ̸= 0, Z is smooth for τ ! 0 and thus Z(τ0) = O(|τ0|) as τ0 → 0+. This
implies

|Z(τ )| " C
∫ τ

0

⎡

⎣
c2I log

2 |cI | log
(
1+ τ ′

|cI |
)

(|cI | + τ ′)2

+
(
1+ | log τ

τ ′ |
2
)( |cI |τ ′

(|cI | + τ ′)2
+ c2I log

2 |cI |
(τ ′)1−α(|cI | + τ ′)1+α

)]

dτ ′

" C |cI |
∫ τ

|cI |

0

τ ′ + log2 |cI | log(1+ τ ′)
(1+ τ ′)2

+ log2 |cI |
(τ ′)1−α(1+ τ ′)1+α

+ τ
α
2 (|cI |τ ′)−

α
2
( τ ′

(1+ τ ′)2
+ log2 |cI |

(τ ′)1−α(1+ τ ′)1+α

)
dτ ′.

Integrating the above inequality gives

|Z(τ )| " C |cI |
(
log2 |cI | + log

(
1+ τ

|cI |
))

+ Cτ
α
2 |cI |1−

α
2 log2 |cI | " C |cI |α,

for 0 " τ " δ0 := min{δ1, δ2}. Recalling the definition of Z , and using the fact
that

tan−1
(

δ0

cI

)
− sgn (cI )

π

2
= O(|cI |),

we can turn the above inequality into an estimate for ũ and Ṽ :

|ũ(δ0) − Ṽ (δ0)| " |ũ(−δ0) − Ṽ (−δ0)| + C |cI |α.

Since the system (4.7) is a regular perturbation of (4.12) on [−δ1, δ2]\[−δ0, δ0],
with the difference in their coefficients being of order O(|cI |), and noting that we
have already established that V (−δ1) = u(−δ1) and B(τ ) is bounded, it is simple
to show that the above inequality implies the desired estimate on u(δ2) − V (δ2).

Next, we refine the bound on u1. Observe that the first row of the matrix A0
vanishes. Therefore, for τ ∈ [−δ1, δ2], Equation (4.19), the property B(0) = I ,
and Lemma 4.1 together imply

|ũ1τ | " Cc2I
c2I + τ 2

|u(τ )| " Cc2I log
2(|cI | + |τ |)

c2I + τ 2
.
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Arguing as we did before when we integrated Zτ in the previous paragraph, we
obtain

|ũ1(τ ) − ũ1(−δ1)| " C |cI | log2 |cI |.

From Corollary 4.2, Ṽ 1 is a constant and thus Ṽ (−δ1) = ũ(−δ1). These facts,
together with the boundedness of B and the above inequality lead to the stated
inequality for u1 − V 1.

Finally, we complete the proof of the lemma by deriving the estimate onW(δ2).
In fact, the bounds onW in Corollary 4.1 give

|2W(τ ) − 2U2u1
U1

(0) tan−1
(

τ

cI

)
− 2W(0)| " C |cI | log2 |cI | log

(
1+ τ

|cI |

)
.

(4.21)

Moreover, the definition of W∗ and the jump condition on W∗ at τ = 0 given in
(4.13) show that

∣∣∣∣W(τ ) − W∗(0+) − U2

U1
(0)
(
u1(0) tan−1

(
τ

cI

)
− sgn (cI )

π

2
V 1(0)

)∣∣∣∣

" C |cI | log2 |cI | log
(
1+ τ

|cI |
)
.

Thus the estimate on u1 − V 1 implies the desired estimate on W(δ2) − W∗(0+).
The analogous inequality forW(−δ1) − W∗(0−) is obtained similarly. ⊓4

Notice that W∗ in Lemma 4.4 does not have the same initial value as W at
τ = −δ1. This can be fixed easily by using Corollary 4.2, as we show in the next
corollary.

Corollary 4.3. Givenany solution
(
u,W

)
of (4.7)on [−δ1, δ2] such that |u(−δ1)|w

" 1, let (V,W∗) be the unique solution of (4.12)–(4.13) so that

(V,W∗)(−δ1) = (u,W)(−δ1).

Then we have

|u1(τ ) − V1(τ )| " C |cI || log |cI ||3, τ ∈ [−δ1, δ2],

and

|u(δ2) − V (δ2)| " C |cI |α, |W(δ2) − W∗(0+)| " C |cI | |log |cI ||3 .

Or, alternatively, assume |u(δ2)|w " 1 and the initial condition on (V,W∗) at
τ = δ2. Then the same estimate holds only at τ = −δ1 rather that δ2.
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Proof. Denote by (V ,W∗) the solution to (4.12)–(4.13) defined in Lemma 4.4 and
put Ṽ := B−1V . On the one hand, from (4.13) and Corollary 4.2, we have

W∗(0−) = 1
2

(
W∗(0+)+W∗(0−)

)
− 1

2

(
W∗(0+) − W∗(0−)

)

= W(0) − sgn (cI )
πa1U2(0)
2U1(0)

,

where a1 := V 1(0) = Ṽ 1(0). On the other hand, (4.21) and Corollary 4.2 imply

|W(−δ1) − W(0)+ sgn (cI )
πU2u1
2U1

(0)| " C |cI | |log |cI ||3 .

Furthermore, using the estimate on u1 − V 1 given in Lemma 4.4, we see that

|W∗(0−) − W(0)+ sgn (cI )
πa1U2

2U1
(0)| " C |cI | |log |cI ||3 .

Therefore, combining these observations, one arrives at

|W∗(−δ1) − W∗(−δ1)| " C |cI | |log |cI ||3 ,

and thus the corollary follows from Lemma 4.4 and Corollary 4.2. ⊓4

Changing from the τ variable back to the x2 variable, we obtain the other formof
the limit system for (u∗,W∗)(x2) = (V,W∗)(τ (x2, s))on x2 ∈ [s0−δ, s0+δ]\{s0}:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u′
∗1 = 2u∗2

u′
∗2 =

(
k2 + U ′′

+
U+ − Re c

)
u∗1 + u∗3

u′
∗3 = 2

(
k2 + U ′′

+
U+ − Re c

)
u∗2

W ′
∗ = 0

(4.22)

where we recall Re c = U+(s). To show that the correct conditions hold at x2 = s,
we note that for |x ′

2| ≪ 1

τ (s ± x ′
2, s) = U+(s ± x ′

2) −U+(s) = ±U ′
+(s)x

′
2 + O(|x ′

2|2),

so u∗ := (u∗1, u∗2, u∗3)T satisfies

u∗(s + x ′
2) − u∗(s − x ′

2) = V
(
τ (s + x ′

2, s)
)
− V

(
τ (s − x ′

2, s)
)

= Ṽ
(
τ (s + x ′

2, s)
)
− Ṽ

(
τ (s − x ′

2, s)
)

+ O(|x ′
2| log2 |x ′

2|).

Then, since,

|Ṽτ | = O(|τ |−1 |log |τ ||), τ (s − x ′
2, s)+ τ (s + x ′

2, s) = O(|x ′
2|2) = O(τ 2),
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we may conclude
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

lim
x ′
2→0+

(
u∗1,2(s + x ′

2) − u∗1,2(s − x ′
2)
)
= 0,

W∗(s+) − W∗(s−) = sgn (cI )
πU ′′

+(s)u∗1(s)
|U ′

+(s)|
,

lim
x ′
2→0+

(
u∗3(s + x ′

2) − u∗3(s − x ′
2)
)
= sgn (cI )

πU ′′
+(s)

|U ′
+(s)|

(
W∗(s+)+W∗(s−)

)
.

(4.23)

At last, we can state the following result on the convergence of solutions of
(4.6) to those of the limiting system (4.22)–(4.23). This is simply a rephrasing of
the previous corollary in light of the change of variable computations above.

Proposition 4.2. Given any solution
(
u,W

)
of (4.6) on [s − δ, s + δ] such that

|u(s + δ)|w " 1, there exists a unique solution (u∗,W∗) of (4.22–4.23) so that

(u∗,W∗)(s + δ) = (u,W)(s + δ).

In addition we have

|u1(τ ) − u∗1(τ )| " C |cI || log |cI ||3, τ ∈ [s − δ, s + δ],

and

|u(s − δ) − u∗(s − δ)| " C |cI |α, |W(s − δ) − W∗(s−)| " C |cI | |log |cI ||3 .

Alternatively, we may assume |u(s + δ)|w " 1 and impose the initial condition on
(u∗,W∗) at x2 = s − δ. Then, one has the estimates above at x2 = s + δ rather
than x2 = s − δ.

4.4. Linear Instabilities Due to Critical Layers

Suppose c∗ ∈ R is a regular value of U+ on [0, h+] satisfying (4.1). As in the
statement of Theorem 4.1, let

U−1
+ ({c∗}) =: {s1 < . . . < sm} ⊂ (0, h+), where U ′

+(s j ) ̸= 0.

We consider solutions to (4.6) for c = cR + icI ∈ C\R close to c∗. Eventually we
restrict our attention to c∗ = ck , but the following analysis holds for any regular
value c∗.

Proposition 4.3. For any α ∈ (0, 1) and k ∈ N, there exist C, ε0, δ ∈ (0, 1]
depending only on α, k, |U+|C3([0,h+]), and max j |U ′

+(s j )|−1, such that

0 < s1 − δ < s1 + δ < s2 − δ < . . . < sm − δ < sm + δ < h+

and the following estimates hold for any c = cR + icI satisfying |c − c∗|,
|cI | ∈ (0, ε0). Let (u,W) be the solution of (4.6) with the initial condition

u(h+) = (0, 0, 1)T , W(h+) = 0
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and let (u∗,W∗) be the solution of (4.22) for x2 /∈ U−1
+ ({cR}) satisfying

u∗(h+) = (0, 0, 1)T , W∗(h+) = 0

and (4.23) at all s ∈ U−1
+ ({cR}). Then we have

|u1(τ ) − u1∗(τ )| " C |cI |α, τ ∈ [0, h+], (4.24)

and

|u − u∗| + |W − W∗| " C |cI |α, on [0, h+]\
m⋃

j=1

(s j − δ, s j + δ). (4.25)

It is clear that the above solution (u,W) corresponds to a solution of (3.4).
Moreover the existence and uniqueness of (u∗,W∗) is due to Corollary 4.2.

Proof. When 0 < ε ≪ 1, for any c = cR + icI in an ε-neighborhood of c∗, there
exist s′

1 < . . . < s′
m ∈ (0, h+) close to s1 < . . . < sm (with distance of the order

of O(ε)) such that

{s′
1, . . . , s

′
m} = {s ∈ [0, h+] | U+(s) = cR}, U ′

+(s
′
j ) = U+(s j )+ O(ε) ̸= 0.

(4.26)

We first fix δ > 0 and take ε0 sufficiently small so that |s′
j − s j | " δ/2 and the

estimates in Proposition 4.2 hold for s = s′
j , 1 " j " m.

For notational convenience, let s0 := −δ and sm+1 := h++ δ. By induction on
j from j = m to j = 0, we will prove the desired estimates (4.25) for u − u∗ and
W −W∗ on the interval [s j + δ, s j+1 − δ] and the estimate (4.24) for u1 − u1∗ on
[s j + δ, s j+1 + δ] ∩ [0, h+]. Together, these imply the proposition.

Consider j = m. Since (u,W)(h+) = (u∗,W∗)(h+) and (4.7) is a regular
perturbation of (4.22) on [sm + δ, h+], as ε → 0+, inequalities (4.25) and (4.24)
hold on [sm + δ, h+] automatically, and actually do so with a better bound C |cI |.

Suppose we have proved (4.25) on [s j ′ + δ, s j ′+1 − δ] and (4.24) on [s j ′ +
δ, s j ′+1 + δ] ∩ [0, h+], for j ′ = j + 1, . . . ,m and 0 " j " m − 1. We will now
prove them for j ′ = j . Let (ũ, W̃) be the solution of (4.22) with (ũ, W̃)(s j+1 +
δ) = (u,W)(s j+1 + δ). On the one hand, from Proposition 4.2 and the induction
hypothesis, we first obtain

|(u − ũ)(s j+1 − δ)| + |(W − W̃)(s j+1 − δ)| " C |cI |α,
|(u1 − ũ1)(τ )| " C |cI |α, τ ∈ [s j+1 − δ, s j+1 + δ].

On the other hand, Corollary 4.2 and the induction hypothesis imply

|(u∗ − ũ)(s j+1 − δ)| + |(W∗ − W̃)(s j+1 − δ)| " C |cI |α.

Moreover, the boundedness of B(τ ) established inLemma4.2, alongwithCorollary
4.2, yields

|(u∗1 − ũ1)(τ )| " C |cI |α, τ ∈ [s j+1 − δ, s j+1 + δ].



Wind Generated Water Waves

Therefore (4.25) holds at x2 = s j+1 − δ and (4.24) holds on [s j+1 − δ, s j+1 + δ].
Finally, since (4.6) is a regular perturbation of (4.22) on [s j + δ, s j+1 − δ] as
ε → 0+, inequalities (4.25) and (4.24) hold on [s j + δ, s j+1 − δ] and thus we
obtain (4.25) on [s j + δ, s j+1 − δ] and (4.24) on [s j + δ, s j+1 + δ]. The proof of
the proposition is then completed by induction. ⊓4

In order to obtain a solution of (3.4) and (3.5), we need to prove u1(0) > 0
which follows from Proposition 4.3 and the next lemma.

Lemma 4.5. Assume U+ ∈ C4. Let U−1
+ ({cR}) = {s′

1, . . . , s
′
m} and say that

(u∗,W∗) is the solution of (4.22) on [0, h+] \ {s′
1, . . . , s

′
m} that satisfies

u∗(h+) = (0, 0, 1)T , W∗(h+) = 0

and (4.23) at any s ∈ U−1
+ ({cR}). Then

(
u∗(0),W∗(0)

)
is C1 in cR for cR in a

neighborhood of c∗. Moreover

u∗1,3(x2) ! 0, x2 ∈ [0, h+]; u∗1(s′
m) > 0, and if m ! 2, then u∗1(s′

m−1) > 0

where s′
j , j = 1, . . . ,m, are defined in (4.26).

Proof. Since the transformationmatrix B(τ ) given in Lemma 4.2 is smooth in both
τ and the parameter s close to s0 (in terms of the notations in Lemma 4.2), Corollary
4.2 implies the smoothness in cR of (u∗,W∗) near (but not at) a singularity. Equation
(4.22) is regular away from {s′

1, . . . , s
′
m} with uniform bounds on the coefficients.

Therefore we see that
(
u∗(0),W(0)

)
is C1 in cR near c∗.

To prove u∗1,3 ! 0, notice that Lemma 4.3 and the boundary conditions for
(u∗,W∗) at h+ imply

u∗1u∗3 − u2∗2 − W2
∗ ≡ 0 on [0, h+]. (4.27)

It follows immediately that u∗1 and u∗3 cannot vanish simultaneously at any x2 /∈
U−1
+ ({cR}), and this occurs onlywhen the solution is trivial. Conservation law (4.27)

actually further implies that, if one ofu∗1,3(x2) = 0 at some x2 /∈ U−1
+ ({cR}), it does

not change sign since the other one does not vanish in a neighborhood. Moreover,
since u∗1 is continuous on [0, h+], if u∗1(s′

j ) ̸= 0, then u∗3 does not change sign
near this s′

j due to (4.27). Finally, if u∗1(s′
j ) = 0, Lemma 4.3 implies (u∗,W∗) is

smooth near this s′
j and u∗3(s′

j ) ̸= 0. Therefore u∗1 does not change sign near s′
j

as well. Summarizing the above discussion, we conclude that u∗1,3 ! 0 on [0, h+].
Finally we prove u∗1(s′

m) > 0 and u∗1(s′
m−1) > 0 if m ! 2. Even though

we will continue to work in the framework of (4.22), the calculation is essentially
carried out to the form of the equation used in the proof of Lemma 3.1 where
ψ = y/(U+ − c) was considered. Let

H(x2) := u∗2 − U ′
+

U+ − cR
u∗1, x2 ∈ [0, h+]\U−1

+ ({cR}).
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On the one hand, one may compute

H ′(x2) = k2u∗1 +
(

U ′
+

U+ − cR

)2

u∗1 + u∗3 − 2U ′
+

U+ − cR
u∗2

! k2u∗1 +
(∣∣∣∣

U ′
+

U+ − cR

∣∣∣∣
√
u∗1 − √

u∗3

)2

! 0,

in view of (4.27). Indeed, the conservation law (4.27) also implies that the above
derivative vanishes only for the trivial solution. Since H(h+) = 0, themonotonicity
of H implies

lim
x2→s′m+

H(x2) ∈ [−∞, 0). (4.28)

On the other hand, from (4.27), it is clear H(x2) = 0 if u∗1(x2) = 0 at some
x2 ∈ [0, h+]\U−1

+ ({cR}). Moreover, suppose u∗1(s′
j ) = 0 for some j = 1, . . . ,m,

Lemma 4.3 and (4.22) imply u∗(x2), and thus H(x2) as well, is smooth near
x2 = s′

j . Moreover (4.27) yields u∗2(s′
j ) = W∗(s′

j±) = 0. Therefore u′
∗1(s

′
j ) =

2u∗2(s′
j ) = 0which leads to H(s′

j ) = 0.Consequently, (4.28) implies u∗1(s′
m) > 0.

From (4.23), we obtain W∗(s′
m−) ̸= W∗(sm+) = 0. Again, Lemma 4.3 implies

u∗1(s′
m−1) ̸= 0 if m ! 2. This completes the proof of the lemma. ⊓4

Corollary 4.4. Assume in addition to the hypotheses of the previous lemma that
U ′′
+(s j ), j = 1, . . . ,m, are all non-positive or all non-negative, and U ′′

+(s j0) ̸= 0
for j0 = m or m − 1. Then, for any cR near c∗, there exists a unique solution of
(u∗,W∗) of (4.22) such that

u∗1(0) = 1, u∗1,2(h+) = 0, W∗(h+) = 0,

and (u∗,W∗)(0) is C1 in its dependence on cR. Furthermore, u∗1(x2) ̸= 0 at
x2 = 0, s′

j , . . . , s
′
m and

W∗(0) = − sgn (cI )π
m∑

j=1

U ′′
+(s

′
j )u∗1(s′

j )

|U ′
+(s

′
j )|

̸= 0.

The additional assumption and Lemma 4.5 imply W∗ ̸= 0 and W∗ does not
change sign on x2 < s′

j0
. Consequently, (4.27) and Lemma 4.5 imply u∗1(x2) > 0

for x2 < s′
j0
. The corollary follows from normalizing the solution furnished by

Lemma 4.5.
Finally, combining Proposition 4.3 and Lemma 4.5 gives the following state-

ment about the solution of Rayleigh’s equation (3.4)with a near singular coefficient.

Proposition 4.4. Under the assumptions in Corollary 4.4, for c = cR + icI suffi-
ciently close to c∗ with cI ̸= 0, there exists a unique solution y to (3.4) and (3.5),
which corresponds to a unique solution (u,W) of (4.6) satisfying

u1(0) = 1, u1,2(h+) = W(h+) = 0, u3(h+) > 0. (4.29)
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Let (u∗,W∗) be the solution given in Corollary 4.4 for cR and sgn (cI ). For any
α ∈ (0, 1), there exists C > 0 such that

|u − u∗| + |W − W∗| " C |cI |α.

Moreover

y′(0) = u2(0)+ iW(0).

Proof. According to (4.4), any solution y of (3.4) clearly gives rise to a solution
(u,W) of (4.6) with the above specified boundary conditions. Such a solution
(u,W) is unique, much as we saw in Corollary 4.4, in light of Proposition 4.3.

Conversely, we can reconstruct y from such (u,W). In fact, the conservation
law (4.5) implies u1 and u3 cannot vanish simultaneously, unless the solution is
trivial. This and (4.5) further imply that u1,3 do not change sign on [0, h+] and thus
both remain nonnegative. Let θ = θ(x2) be defined as the solution of

θ ′ = W
u1

, θ(0) = 0.

This function is well-defined as, if u1(x2) = 0 at some x2 ∈ [0, h+], then (4.6) and
conservation law (4.5) imply

u′
1(x2) = 2u2(x2) = 0 = W(x2) = W ′(x2), and u′′

1(x2) = u3(x2) > 0.

Let y := √
u1eiθ . One may compute using the definition of θ , (4.5), and (4.6),

that

y′ = 1√
u1

(u2 + iW)eiθ ,

while

y′′ =
(

− u2u
− 3

2
1 (u2 + iW)

+ 1√
u1

((

k2 + U ′′
+ (U+ − cR)

(U+ − cR)2 + c2I

)

u1 + u3 +
icIU ′′

+
(U+ − cR)2 + c2I

u1

)

+ iWu
− 3

2
1 (u2 + iW)

)
eiθ

=
(

− u
− 3

2
1 (u22 +W2)+ 1√

u1

(
k2u1 + u3 +

U ′′
+

U+ − c

)
u1
))
eiθ

=
(
k2 + U ′′

+
U+ − c

)
y.

Therefore y solves (3.4). The estimates on y are from Proposition 4.3. ⊓4
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Proof of Proposition 4.1. The correspondence between the solution y of (3.4)
and (u,W) was established in the proof of Proposition 4.4. The properties of
(u,W) and the convergence estimateswere alreadyobtained in the previous lemmas
and propositions. To complete the proof, one only needs to confirm that the jump
conditions on (y∗, y′

∗) are satisfied at each s where U+(s) = c∗. In fact, the log2

growth bound on |u∗3| implies y′
∗ has atmost a logarithmic singularity, which shows

that y∗ is Hölder continuous. This allows us to infer that in the limit x2 → 0+,

(y′
∗ ȳ)(s + x2) − (y′

∗ ȳ)(s − x2) =
(
y′
∗(s + x2) − y′

∗(s − x2)
)
ȳ∗(s − x2)

− y′
∗(s + x2) (ȳ∗(s + x2) − ȳ∗(s − x2))

→ ȳ∗(s) lim
x2→0+

(
y′
∗(s + x2) − y′

∗(s − x2)

As u∗2 and W∗ are the real and imaginary parts of y′
∗ ȳ∗, condition (4.2) follows

from the above calculation and (4.23). ⊓4

Finally we are in the position to prove the main theorem.

Proof of Theorem 4.1. Let (u#,W#) be the solution of the limiting system (4.22)
with the parameter cR = ck and put

c# = −π

(
U+(0) − ck

)2

2ck |k| tanh (|k|h−)

m∑

j=1

U ′′
+(s j )u#1(s j )
|U ′

+(s j )|
. (4.30)

Note that c# > 0 due to Lemma 4.5. Define a mapping G = (G1,G2)(c̃1, c̃2, ε) by

G1(c̃1, c̃2, ε) := ck + c̃1 − fR(εRe y′(0), ε Im y′(0), ε)
G2(c̃1, c̃2, ε) := c# + c̃2 − Im y′(0) f I (εRe y′(0), ε Im y′(0), ε)

where fR,I are given in (3.8) and y is the solution of (3.4) and (3.5) with the
parameter

c = ck + c̃1 + iε(c# + c̃2). (4.31)

The existence and uniqueness of y is ensured by Proposition 4.4 for small c̃1 and ε.
Clearly G is smooth for ε(c# + c̃2) > 0. In addition, the zero-set of G corresponds
to the solutions of (3.8), and thus solutions to (3.4)–(3.6). Proposition 4.3 and
Corollary 4.4 imply

y′(0) = u2(0)+ iW(0) = u∗2(0)+ iW∗(0)+ O(εα),

where α can be taken arbitrarily in (0, 1), {s′
1, . . . , s

′
m} := U−1

+ ({ck + c̃1}), and
(u∗,W∗) is the solution of (4.22) and (4.23) with the parameter ck + c̃1. From the
smoothness of (u∗(0),W∗(0)) in c̃1 due to Corollary 4.4, we have

y′(0) = u#2(0)+ iW#(0)+ O(|c̃1| + εα)

= u#2(0) − iπ
m∑

j=1

U ′′
+(s j )u#1(s j )
|U ′

+(s j )|
+ O(εα + |c̃1|).
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On the other hand, (3.8) and (3.9) give us that

G(c̃1, c̃2, ε) =
(
c̃1 + O(ε), c̃2 + O(εα + |c̃1|)

)
.

Take (c̃1, c̃2) in a rectangle [−δ, δ] × [−Mδ,Mδ], where the fixed constants δ

is small and M is large. By considering the the image of the boundary of this
rectangle under the mapping G(·, ·, ε), a standard degree theory argument implies
that G has a zero point near 0 for any fixed small ε > 0. Unravelling definitions,
this corresponds to an eigenvalue near ck with positive imaginary part. The proof
of the theorem is complete. ⊓4

Remark 4.2. (1) To ensure the existence of an instability, the above argument
makes clear that one needs only that

− ck
m∑

j=1

U ′′
+(s j )u#1(s j )
|U ′

+(s j )|
> 0, (4.32)

and thus those given in Theorem 4.1 are sufficient, but not necessary.
(2) If both the positive and negative values of ck belong to the range of U+ and

satisfy the assumption in Theorem 4.1, the above proof implies that there exist
at least two distinct unstable modes.

Remark 4.3. To illustrate how the critical layer instability captured byTheorem4.1
differs from that of the Kevin–Helmholtz model, let us consider how it applies for
a wind profileU+ withU ′

+ > 0,U ′′
+ < 0 on [0, h+]. In this case, the sign condition

hypotheses of Theorem 4.1 are automatically satisfied, and hence an instability
occurs at every wave number k for which ck ∈ U+((0, h+)). By contrast, for the
classical Kelvin–Helmholtz model where U+ ≡ U0, the stability criterion (3.11)
implies that the set of unstable wave numbers is a neighborhood of a critical k that
expands asU0 increases, and is empty whenU0 is below the critical value of about
6.6 m/s.

As a concrete example, consider the logarithmic wind profile. Let U+(x2) :=
U0 + U1 log (1+ x2), for some U0 ! 0 and U1 > 0. Then U+ is strictly convex
and increasing on [0, h+], and hence the set of unstable wave numbers consists of
those k for which

U 2
0 <

(
g
|k| +

σ

ρ−
|k|
)
coth (|k|h−) < (U0 +U1 log (1+ h+))2 .

For simplicity, let us take h− = ∞ (which is allowed in Theorem 4.1). An elemen-
tary computation then shows that a critical layer instability occurs whenever

(U0 +U1 log (1+ h+))2 > 2
√
gσ
ρ−

. (4.33)

Evaluating the right-hand side above with physical values for g, σ , and ρ−, this
in particular shows that such an instability ensues if U0 exceeds about 1.2 m/s
(here we are sending U1 → 0+). Note that this is considerably smaller than the
threshold of 6.6 m/s given by Kelvin–Helmholtz. Moreover, if U1 or h+ are large,
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then instability manifests even whenU0 = 0. For instance, letting h+ = 10 m, and
setting U0 = 0, we see from (4.33) that it suffices to have U1 greater than about
0.1 m/s.

Finally, we note that the time-scale inwhich instabilitymanifests can be roughly
approximated by 1/| Im c|. For the critical layer theory, this will obviously be
proportional to 1/ε (though the proportionality constant depends on the solution
of the Rayleigh equation). In the next section, we will construct unstable profiles
where Im c = O(ε1/2).

5. Instability by Other Means

We can summarize the central conclusion of the previous two sections as fol-
lows. Assume U+ ∈ C4 and fix a wave speed k. Let ck denote the corresponding
wave speed for the capillary-gravity water wave beneath vacuum problem (that is
ε = 0) given in (3.7). On the one hand, if a sequence of unstable wave speed ck,εn
of the water-air problem converges to ck as the density ratio εn → 0+, then Lemma
3.1 implies that there must be a critical layer in the shear flow in the air, that is,
ck ∈ U+([0, h+]). On the other hand, under the non-degenerate shear condition on
U ′
+ and some sign condition on U ′′

+, unstable wave speeds may bifurcate from ck
at ε = 0.

The situation for the Kelvin–Helmholtz instability is different. Inequality (3.11)
indicates that Kelvin–Helmholtz instability occurs if and only if the parameters
(k, ε) are in a region K ⊂ {k, ε > 0}. With surface tension, there is a positive
distance between K and the set {ε = 0}, that is, for any wind speed U0 > 0,
instability does not occur if ε is too small. Without surface tension, on the one
hand, for any fixed k > 0, we have (k, ε) /∈ K , that is, the wave number k is stable
if ε > 0 is sufficiently small. In this case, no unstable wave speed bifurcates from
ck at ε = 0. On the other hand, the distance between K and {ε = 0} is zero, because
any sequence {(kn, εn)} ⊂ K with kn → ∞ must satisfy εn → 0. One implication
of this is that, for any ε > 0, all sufficiently large modes k are unstable. In contrast
to the water-vacuum setting, this instability “bifurcates from infinity”.

Relaxing the assumption that U+ ∈ C4 may lead to additional instability that
does not fall into the critical layer theory. To illustrate this point, in this section
we show that there exist background flows U that are linearly unstable at a wave
number k for which ck is in the range ofU+, but the critical layer and support ofU ′′

+
are separated by a distance uniform in small ε > 0. In fact, these are solutions of the
Euler system for which U ′′

+ is a δ-measure of negative mass, and the critical layer
is at an inflection point. In the view of Remark 2.4, it is justified to use (3.4)–(3.6)
to study the instability of such non-smooth shear flows.

For simplicity, in these computations we take σ = 0 and h± = ∞. Consider
background profiles of the form

U+(x2) :=
{
µx2 0 " x2 " x∗

2
µx∗

2 x2 > x∗
2 .

(5.1)
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Here µ and x∗
2 are parameters that we may choose freely. Notice in particular that

U ′′
+ = −µδx∗

2
.

Clearly the value

U∗ := U+(x∗
2 ) = µx∗

2

will play an important role.

Proposition 5.1. Fix a wave speed k. Let σ = 0, and take h± = ∞. There exists
U ∈ C0,1(R) of the form (5.1) that are unstable in the sense that, for all 0 < ε ≪ 1,
there exists (y, c) solving (3.4)–(3.6) with

0 < Im c = O(
√

ε).

Moreover, for this profile, U∗ − √
g/k has a positive lower bound uniform in ε,

hence the critical layer occurs at an inflection point of U away from x∗
2 .

It is worth pointing out that the exponential growth rate O(
√

ε) of the instability
here is much greater than O(ε) predicted by the critical layer theory.

Proof. TakingU as in (5.1), it is possible to explicitly solve the Rayleigh equation
(3.4) for y. In general, we find

y =
{
A1e−kx2 x2 > x∗

2
A2e−kx2 + A3ekx2 0 " x2 " x∗

2
(5.2)

where A1, A2, A3 are given by the following linear system:
⎧
⎪⎪⎨

⎪⎪⎩

A2 + A3 = 1
A1 − A2 − A3e2kx

∗
2 = 0(

µ

U∗ − c
− k
)
A1 + k A2 − k A3e2kx

∗
2 = 0.

The first of these is from the boundary condition at x2 = 0, the second is to ensure
continuity across x∗

2 , and the third arises from the jump condition for y′ across x∗
2 .

Solving the system yields

A1 = 2k(U∗ − c)

2k(U∗ − c)+ µ(e−2kx∗
2 − 1)

A2 = 2k(U∗ − c) − µ

2k(U∗ − c)+ µ(e−2kx∗
2 − 1)

, A3 =
µe−2kx∗

2

2k(U∗ − c)+ µ(e−2kx∗
2 − 1)

.

Inserting these computations into (5.2), we see that

y′(0) = k(A3 − A2) = −k
c − α

c − β
,

where

α := U∗ − µ

2k
(1+ e−2kx∗

2 ), β = U∗ − µ

2k
(1 − e−2kx∗

2 ). (5.3)
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With this in hand, the dispersion relation (3.6) becomes

g(1 − ε) = εkc2
c − α

c − β
+ c2k − εcµ.

Note that, by (5.3),

β = U∗

[
1 − 1

2kx∗
2
(1 − e−2kx∗

2 )

]
.

The quantity in square brackets on the right-hand side above has range (0, 1), with
1 and 0 being the limits as x∗

2 is taken to +∞ and 0+, respectively. It is therefore
easy to see that there exist many choices of the parameters x∗

2 and µ for which

β =
√
g
k
< U∗ and µ > 0.

The dispersion relation can then be simplified into the following polynomial:

0 = f (c, ε) :=
(
c −

√
g
k

)(
c2 − ε

µ

k
c − g

k
(1 − ε)

)
+ εc2(c − α). (5.4)

Notice that c = √
g/k is a double root of f (·, 0). Indeed,

f
(√

g
k
, 0
)
= (∂c f )

(√
g
k
, 0
)
= 0, (∂2c f )

(√
g
k
, 0
)
= 4

√
g
k
> 0,

(∂ε f )
(√

g
k
, 0
)
= g

k

(√
g
k

− α

)
= gµ

k2
e−2kx∗

2 > 0.

Since f is a polynomial of c, these facts imply that, for 0 < ε ≪ 1, there exist a
complex conjugate pair c± of solutions to f (c, ε) = 0 with

Re c± =
√
g
k
+ O(ε), 0 < ± Im c± = O(

√
ε).

⊓4
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