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Abstract. Consider the (2 + 1)d Discrete Gaussian (Zgff, integer-valued Gaussian free field)
model in an L× L box above a hard floor. Bricmont, El-Mellouki and Fröhlich (1986) established
that, at low enough temperature, this random surface exhibits entropic repulsion: the floor propels
the average height to be poly-logarithmic in L. The second author, Martinelli and Sly (2016) showed
that, for all but exceptional values of L, the surface has a plateau whose height concentrates on an
explicit integer H(L), and fills nearly the full square. It was conjectured there that the boundary

of this plateau—the top level-line of the surface—should have random fluctuations of L1/3+o(1).
We confirm this conjecture of [LMS16] and further recover the limiting law of the top level-line:

there exists an explicit sequence N = L1−o(1) such that the distance of the top level-line from I,
the interval of length N2/3 centered along the side boundary, converges, after rescaling it by N1/3

and the width of the interval by N2/3, to a Ferrari–Spohn diffusion. In particular, the level-line
fluctuations at, say, the center of I, have a limit law involving the Airy function rescaled by N1/3.
This gives the first example of one of the (2+1)d |∇ϕ|p models (approximating 3d Ising and crystal
formation) where a Ferrari–Spohn limit law of its level-lines is confirmed (Zgff is the case p = 2).

More generally, we find the joint limit law of any finite number of top level-lines: rescaling their

distances from the side boundary, each by its (N
2/3
n , N

1/3
n ), yields a product of Ferrari–Spohn laws.

These new results extend to the full universality class of |∇ϕ|p models for any fixed p > 1.

1. Introduction

The (2 + 1)d Discrete Gaussian model, also known as the integer-valued Gaussian free field and
denoted here Zgff, is a random surface model extensively studied in the context of the roughening
transition in crystals (see the work of Chui and Weeks [15] in 1976, and the related models in [6]
dating back to the 1950’s). It is dual to the Villain XY model [41], and as such undergoes a
Kosterlitz–Thouless phase transition (see [30])—one of two models (along with Solid-On-Solid)
where this transition was established by Fröhlich and Spencer in their celebrated works [19,20].

For β > 0 (the inverse-temperature, which in our context will be taken fixed and large enough),
the (2 + 1)d Zgff model with a floor (or a hard wall) at height 0 is a probability distribution
over functions that assign nonnegative integer heights to the sites of the square grid Λ = J1, LK2.
Writing x ∼ y for the nearest-neighbor relation in Z2, the probability of ϕ : Λ → Z+ is given by

π0Λ(ϕ) ∝ exp
(
− β

∑
x∼y

|ϕx − ϕy|2
)
, (1.1)

with zero boundary conditions (ϕx = 0 for all x /∈ Λ). Define π̂0Λ as the analogue of π0Λ in the
no-floor setting (i.e., when ϕ accepts values in Z as opposed to Z+), and define the infinite-volume
measure π̂∞ as the weak limit of π̂0Λ as L → ∞. The aforementioned Zgff phase transition,
occurring in ϕ ∼ π̂∞ at a critical βr (empirically, βr ≈ 0.665), can be demonstrated at ϕo as follows:
for β ≤ βr (delocalized regime) the surface is rough, in that limL→∞Var(ϕo) = ∞, while for β > βr
(localized regime) the surface is rigid, in that Var(ϕo) = O(1) (rigidity was shown in [4] at large β,
moreover yielding exponential tails of |ϕo| in that regime; roughness at small β was established
in [19,20]; the continuity of the phase transition was recently established by Lammers [32]).

We focus on ϕ ∼ π0Λ in the regime of β large enough, where most x ∈ Λ would have ϕx = 0 under
the no-floor measure π̂0Λ, yet the floor in π0Λ induces a nontrivial surface (see Fig. 1). This entropic
repulsion effect was identified in a pioneering work of Bricmont, El-Mellouki and Fröhlich [5]:
despite the penalizing boundary conditions, the surface is propelled to height at least c

√
logL,

where it gains entropy from extra (permitted once at this height) downward fluctuations.
1
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Figure 1. Illustration of the low temperature Zgff on J1, LK2, where we look at the law
of the top level-lines in a rectangle (magnified on right) along the center of the bottom side.
On bottom right: independent Ferrari–Spohn diffusions, the limiting law of these level-lines.

The study of entropic repulsion in the paper above considered two closely-related models: the
Zgff and Solid-On-Solid (sos), where the term |ϕx − ϕy|2 in Eq. (1.1) is replaced by |ϕx − ϕy|.
Caputo et al. [12–14] made significant progress in characterizing the shape of the sos surface above
a floor at low temperature. They showed that the macroscopic level-lines form a sequence of nested
loops, with the height of the top one concentrating on one of the two values ⌊ 1

4β logL⌋−1, ⌊ 1
4β logL⌋.

These works further identified the deterministic scaling limits of the top level-lines in [0, 1]2: these
are the boundaries of the shapes formed by dilating the associated Wulff shape to explicit radii, then
taking the union of all their translations in [0, 1]2. So, the limits are curved near the corners of the
box (where the dilated Wulff shape is visible), and overlap the boundary in intervals surrounding
the center-sides (the “flat portions” of the limit), where the random fluctuations are of interest.

The top level-line in sos was shown in [14] to have random fluctuations of at most L1/3+o(1)

from the flat portions of its limit. Key to that was showing that the law of the top level-line in
the relevant region resembles that of a random walk, conditioned to be nonnegative, and penalized
exponentially in the area below it. The latter is known [28] to have L1/3 fluctuations, and moreover
its scaling limit is known to have the law of a Ferrari–Spohn diffusion [18], defined below (in fact,
the continuous analogue—a Brownian excursion tilted by its area—is equivalent via a Girsanov
transformation to Brownian motion staying above a parabolic barrier, which was studied in [18]).

It was recently established [7] that the order of the sos top level-line fluctuations is at least L1/3,
and one expects that to be the correct order, with a scaling limit that is not Ferrari–Spohn but
a variant of it, due to the interaction between the different level-lines (if the lower level-lines were
instead deterministic—achievable via suitable boundary conditions—the resulting top level-line
would yield a Ferrari–Spohn limit, as was shown in [7] via adapting the recent proof [25] of a
Ferrari–Spohn limit for the 2d Ising model with critical prewetting). Rather, the conjectured sos
limit should take after the line-ensemble of non-crossing random walks with geometric area tilts
(see, e.g., [1, 9–11, 16, 24, 39] for studies of this line-ensemble in the discrete (random walks) and
continuous (Brownian polymers) setting, which for a single curve reverts to a Ferrari–Spohn limit).

For Zgff, the second author, Martinelli and Sly [35] showed that, as in the case of sos, the
surface heights concentrate on two values H,H +1, and for “most” values of L the surface forms a
plateau of area (1− εβ)L

2 at height H (for ε arbitrarily small as β increases). In more detail, let

H(L) := max
{
h : π̂∞(ϕo = h) ≥ 5β

L

}
. (1.2)
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Further define the h level-line(s) of ϕ ∼ π0Λ, for each h ≥ 0, as the collection of loops obtained from
edges dual to nearest-neighbors x ∼ y such that ϕx < x and ϕy ≥ h (for concreteness, in case 4
dual-edges share an endpoint, one “splits” them into two loops along the northeast diagonal).
Call a loop γ macroscopic if its length is at least log2 L (or one could use a threshold of (C/β) logL).

Theorem ([35]). Fix β large, and consider the Zgff ϕ ∼ π0Λ per Eq. (1.1) and H(L) per Eq. (1.2).
Then with high probability, there is a unique macroscopic h level-line loop for each h = 0, . . . ,H,
and there are no macroscopic h level-line loops for any h ≥ H+2. This sequence of loops is nested;
the loops for h ≤ H−1 have area (1−o(1))L2, and the loop for h = H has area at least (1− εβ)L2.

As noted in [35, Remark 1.3], for all but an exceptional set1 of values of L, the area of the H
level-line line loop is in fact (1 − o(1))L2, and there are no macroscopic (H + 1) level-line loops
(making the one at height H the top level-line). An open problem left in that work (see [35, §1.5])
was to prove that this top level-line should have L1/3+o(1) fluctuations away from the corners of Λ.

Our main result identifies the correct scale of the fluctuations of the top level-line from an
interval set at the center of the side boundary—which as conjectured, is indeed L1/3+o(1), yet with
a necessary Lo(1) correction—and moreover recovers its Ferrari–Spohn limit law, defined as follows.
Let Ai(x) be the Airy function (of the first kind), i.e., the solution to y′′(x) = xy with the initial

condition y = 0 at x = ∞. For σ > 0, let φσ(x) := Ai((2/σ2)1/3x−ω1), where ω1 is the “first” zero
of Ai, that is, ω1 = min{x > 0 : Ai(−x) = 0}. The stationary Ferrari–Spohn diffusion we consider
(see [18,28]) is the diffusion FSσ on (0,∞) with Dirichlet boundary condition at 0 and generator

Lσ =
σ2

2

d2

dx2
+ σ2

φ′
σ(x)

φσ(x)

d

dx
. (1.3)

This diffusion is ergodic and reversible with respect to the probability density (2/σ2)−
1
3

Ai′(−ω1)2
φσ(x)

2
1{x>0},

where the rescaled Airy function φσ given above is also the first eigenfunction of the operator Lσ.
Our main result addresses side-lengths L excluding an explicit set B of integers of logarithmic
density zero (see Remark 1.3), about which the plateau transitions from one height to the next.

Theorem 1.1. Fix β > 0 large enough and consider ϕ ∼ π0Λ, the (2+1)d Zgff model on Λ = J1, LK2
for L ∈ Z \B (with B as in Remark 1.3) with a floor and zero boundary conditions. Set H(L) per

Eq. (1.2), and consider the bottom boundary interval I = JL2 −N2/3, L2 +N2/3K for

N :=
1

π̂∞(ϕo = H)
(= L1−o(1)) . (1.4)

Let L0 be the top macroscopic level-line of ϕ, and define its vertical distance from I via

ρ(x) = min{y ≥ 0 : (L2 + x, y) ∈ L0} for −N2/3 ≤ x ≤ N2/3 .

Then Y0(t) := N−1/3ρ(tN2/3) converges weakly to the stationary law FSσ on [−1, 1] as L→ ∞ for a

fixed σ > 0. The analogous Ȳ0(t) w.r.t. ρ̄(x) = max{y ≤ L
2 : (L2 +x, y) ∈ L0} has ∥Ȳ0−Y0∥∞

p−→ 0.
More generally, for fixed m, let L0 ⊂ . . . ⊂ Lm−1 be the top m macroscopic level-lines, and

Nn :=
1

π̂∞(ϕo = H − n)
(= L1−o(1)) (n = 0, . . . ,m− 1) . (1.5)

Let In = JL2 −N
2/3
n , L2 +N

2/3
n K, and let ρn(x) = min{y ≥ 0 : (L2 + x, y) ∈ Ln} denote the vertical

distance of Ln from In. The joint law of Yn(t) := N
−1/3
n ρn(tN

2/3
n ) (n = 0, . . . ,m − 1) converges

weakly to that ofm independent stationary Ferrari–Spohn diffusions FSσn on [−1, 1] for fixed σn > 0.

The analogous Ȳn(t) w.r.t. ρ̄n(x) = max{y ≤ L
2 : (L2 + x, y) ∈ Ln} have maxn≤m ∥Ȳn − Yn∥∞

p−→ 0.

1Precisely, for all side-lengths L outside a set B ⊂ Z of zero logarithmic density (
∑

k∈B∩J1,nK
1
k
= o(logn)).



4 JOSEPH CHEN AND EYAL LUBETZKY

1000 107 1011 1015 1019

1

2

3

4

5

H

L

Figure 2. The exceptional set B of values of L as per Remark 1.3, highlighted in orange,
which delimits the intervals JLh,

3
4Lh+1K where the top level-line concentrates on height h.

As depicted in this log-plot, the set B has zero logarithmic density.

Remark 1.2. The sequence N = N0 from Eq. (1.4) satisfies e−c
√
β logL/ log logL ≤ N/L ≤ 1/(5β),

and each of these two bounds gives the behavior of the fluctuations of L0 for infinitely many values
of L. Namely, the fluctuations of L0 are of order L1/3 for infinitely many values of L, yet they are
o(L−1/3) for infinitely many other values of L. As for N1 ≥ N2 ≥ . . . ≥ Nn from Eq. (1.5), while

these scales are all L1−o(1) for any fixed n, they are of lower order: Nn = Nn−1e
−Θ(

√
β logL/ log logL)

(in particular, the fluctuations of L1, . . . ,Ln have order N
1/3
n = L1/3−o(1) = o(L1/3)).

Remark 1.3. As one increases the side-length L of the box, once the top level-line concentrates
on height h (at some Lh), it will remain so until L further increases by a factor of exp(cβ h

log h).

Precisely, the transition marking the onset of level h+ 1 occurs at L ≈ (4 + εβ)β/π̂∞(ϕo = h+ 1).
As such, one can define the set B of exceptional values of the side-lengths L (see Fig. 2) via

B =
⋃
h≥1

J34Lh, LhK where Lh = ⌈5β/π̂∞(ϕo = h)⌉ (h = 1, 2, . . .) . (1.6)

With this choice,
∑

k∈B∩J1,nK
1
k = O(

√
log n log log n) = o(log n) (i.e., zero logarithmic density),

and the Zgff surface will concentrate on height H(L) = h for L ∈ JLh, . . . , 34Lh+1K (h = 1, 2, . . .).

Remark 1.4. Taking the intervals In = JL2 −KN
2/3
n , L2 +KN

2/3
n K for any fixed K > 0 (in lieu of

K = 1), one has convergence to independent stationary Ferrari–Spohn diffusions FSσn on [−K,K].

The new results extend to the family of |∇ϕ|p models, defined as follows. In lieu of Eq. (1.1), the
probability of ϕ : Λ → Z+ (with 0 boundary conditions and inverse-temperature β > 0) is given by

π
(p),0
Λ (ϕ) ∝ exp

(
− β

∑
x∼y

|ϕx − ϕy|p
)
, (1.7)

so that p = 2 is the Zgff and p = 1 is the sos model. It was shown in [35] that, for all p > 1,
and all “typical” values of L, the surface is typically a plateau (with microscopic fluctuations) at
a single deterministic height H (that scales differently with L for different values of p), as is the
case for sos and Zgff. As for the limit law of the top level-lines, the pictures in sos and Zgff
are different (a Ferrari–Spohn limit in the latter, vs. a conjectured variant thereof in the former).

In what follows, put π
(p)
Λ instead of π

(p),0
Λ for brevity (0 boundary conditions by default), and let

H(p)(L) := max
{
h : π̂(p)∞ (ϕo = h) ≥ 5β

L

}
, N (p)

n :=
1

π̂
(p)
∞ (ϕo = H(p) − n)

(= L1−o(1)) , (1.8)

the analogues of H and Nn defined in Eqs. (1.2) and (1.5) for the Zgff.
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p = 1 (sos)
Nn+1 ≍ Nn

p = 1.5

Nn+1 ≈ Nne−c(logL)1/3

p = 2 (Zgff)
Nn+1 ≈ Nne−c

√
logL/ log logL

p = 3

Nn+1 ≈ Nne−c
√
logL

Figure 3. Comparison of the scales N
(p)
n ≍ 1/π̂

(p)
∞ (ϕo = L) in the |∇ϕ|p-model for different

values of p. As the scaling for the level-line Ln is ((N
(p)
n )2/3, (N

(p)
n )1/3), the |∇ϕ|p models

enjoy a scale separation between the level-lines for p > 1, unlike the sos model (p = 1).

The next theorem shows that for all p > 1, the level-lines have the same limit law as for Zgff.

Theorem 1.5. Fix p > 1, and consider the setting of Theorem 1.1 with the |∇ϕ|p model π
(p)
Λ

replacing π0Λ and H(p), N
(p)
n replacing H,Nn. Then the conclusion of Theorem 1.1 holds: the law of

(Yn)
m−1
n=0 , the rescaled vertical distances of the top m level-lines from the bottom boundary intervals,

converges weakly to the law of m independent stationary Ferrari–Spohn diffusions FSσ on [−1, 1].

Remark 1.6. Analogously to Remark 1.2, for 2 < p <∞, the sequence N
(p)
0 from Eq. (1.8) satisfies

e−c
√
β logL ≤ N

(p)
0 /L ≤ 1/(5β) and N

(p)
n = N

(p)
n−1e

−Θ(
√
β logL). For 1 < p < 2, one has that N

(p)
0 from

Eq. (1.8) satisfies that e−cβ
1/p(logL)(p−1)/p ≤ N

(p)
0 /L ≤ 1/(5β) and N

(p)
n = N

(p)
n−1e

−Θ(β1/p(logL)(p−1)/p).

In both cases, as in Remark 1.2, the upper and lower bounds on N
(p)
0 /L give the correct behavior

of the fluctuations along infinitely many values of L: the fluctuations of L0 have order L1/3 in the
former case and L1/3−o(1) = o(L1/3) in the latter. The lower level-lines, L1, . . . ,Ln for any fixed n,

all have fluctuations L1/3−o(1) = o(L1/3).

Remark 1.7. Analogously to Remark 1.3, one defines the exceptional set B for the |∇ϕ|p model

in Theorem 1.5 exactly as in Eq. (1.6) but with π̂
(p)
∞ replacing π̂∞ there. The fact that B has zero

logarithmic density extends to all 1 < p < ∞, owing to the fact that the large deviation rate of

π̂
(p)
∞ is super-linear: limh→∞− 1

h log π̂
(p)
∞ (ϕo = h) = ∞ (see Remark 7.2 for more on this).

1.1. Proof ideas. Our starting point is the observation that the level-lines in the Zgff, and
more generally, in the |∇ϕ|p model for any p > 1, ought to be “separated” from one another.
Indeed, Ln, the n-th level-line from the top, is expected to behave like a random walk tilted by a

term of exp[λL,nA(Ln)], where λL,n = π̂
(p)
∞ (ϕo = H(p) − n) and A(Ln) is the area of its interior.

Consequently, as such area-tilted random walks are known to have a Ferrari–Spohn limit law after
rescaling their width and height by (λ2/3, λ1/3) respectively, one expects the distance of Ln from

(say) the bottom boundary to be of order π̂
(p)
∞ (ϕo = H(p) − n)−1/3, i.e., (N

(p)
n )−1/3 for N

(p)
n from

Eq. (1.8). In the case of sos (p = 1), the fact that π̂
(1)
∞ (ϕo = h) ≍ e−4βh would have every level-line

Ln, for n ≥ 0 fixed, be at the same scale: all would be found at Θ(L1/3) from the bottom boundary,
as seen in the top left of Fig. 3 (see Section 1.3 for more on this).
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For all p > 1, however, one has π̂
(p)
∞ (ϕo = h+1)/π̂

(p)
∞ (ϕo = h) = o(1), whence the above heuristic

implies that the scales N
(p)
n satisfy N

(p)
n+1 = o(N

(p)
n ) for all n; i.e., each level-line is at a microscopic

scale compared to the one above it (see Fig. 3). Let us focus on the Zgff model for simplicity.

There, the above ratio of π̂∞(·) terms is e−Θ(h/ log h). For h ≍ H(L), this is exp[−(logL)1/2−o(1)],

e.g., we expect the second level-line L1 to be at an exp[−(logL)1/2−o(1)] fraction of the “height”
(distance from the bottom boundary) of the top level-line L0, and similarly for the height of Ln+1

vs. Ln. Intuitively, this should mean there is no interaction between the level-lines; if these are
effectively independent area-tilted RWs, their limit would be a product of Ferrari–Spohn diffusions.

Showing this separation of the level-lines rigorously is nontrivial since the typical height of Ln+1

ought to be N
1/3
n e−(logL)1/2−o(1)

, so one needs to first control Ln and show that it is concentrated

about its height of N
1/3
n to a finer degree. However, even for the sos level-lines (p = 1), where

much more was known on {Ln}, the best-known estimates on the height of Ln had an Lo(1) error...
Moreover, we emphasize that, even after one manages to show that the level-lines are well separated,
the interactions between could still have a huge impact on their limiting laws. A notoriously
challenging obstacle in these and related models is the pinning problem, whereby a level-line might
opt to stick to its predecessor/successor (in this case, random; in other settings, it can be the
boundary of the box) due to said interactions. Handling these delicate interactions (and associated
pinning issues) is where most of our efforts in the proof are concentrated.

Our crucial idea here is to separate the analysis into two cases: one showing that Ln stochastically
dominates a Ferrari–Spohn diffusion, and another showing it is stochastically dominated by one with
the same parameters. If one were to try to show directly that Ln behaves as an area-tilted random
walk, current techniques break down due to the combined interactions (and pinning hazards) with
random level-lines below and above. For instance, the depinning result of [27] is quite delicate,
even failing when the exponential decay of interactions has rate ≤ β/2 (for us it is β, a non-issue).
Specifically, it is only valid when the boundary of the domain is flat, and it appears that extending
it to “nearly flat” domains is highly nontrivial, if at all possible using their method. In our setting,
even the top level-line L0 faces pinning issues from below (to L1) and from above (to microscopic
holes along the boundary of the mesoscopic rectangle of interest, where we wish to derive a Ferrari–
Spohn law). Luckily, the stochastic domination route allows us to employ FKG adjustments that
only go in the right direction for the respective side of the bound (upper/lower) currently studied.
This does away with the pinning issues on one of the two sides of Ln (the interactions on the
remaining side are handled differently in the upper and lower bounds, as we explain below).

Upper bound on the limit law of Ln. The upper bound is proved in three steps.

(i) We show that each Ln does not exceed height N
1/3
n (logL)C , a sufficiently fine degree of

accuracy to obtain the aforementioned separation. This is achieved via a “growth gadget,”
that is, a result showing that conditional on the fact that the level-line loop Ln exceeds a
certain area, it is likely to exceed it farther.

(ii) Then, disregarding lower level-lines via the separation established above, as well as upper

level-lines via monotonicity, we show that Ln continues to drop down from N
1/3
n (logL)C to

its equilibrium height N
1/3
n using finer random walk estimates.

(iii) Lastly, we show that the law of the level-line intersected in a small box is approximately

that of an area-tilted RW, when its initial height is O(N
1/3
n ).

(As a byproduct of Item (i), we refine the the corresponding estimate for sos; see Remark 4.6.)
In each case, one aims to estimate the law of a level-line Ln in a mesoscopic box V with boundary

conditions H − n,H − n− 1, and show it is approximately governed by exp[−β|Ln|+ λL,nA(Ln)]
where λL,n = π̂∞(ϕo = H−n). E.g., the prequel [14] on sos featured a growth gadget analogous to

Item (i) where the region V had area L4/3+o(1) (then applied to boxes of size L2/3+o(1)×L2/3+o(1)).

The paper [7] on sos had an analysis analogous to Item (iii) in a box of size (CL2/3)× (CL2/3).
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Unfortunately, for the Zgff, we can afford to obtain such estimates at regions of area L(logL)c.
The culprit is the two point probability π̂∞(ϕx ≥ h, ϕy ≥ h) for a pair of nearest-neighbors x ∼ y.

In sos, this probability is ≈ e−6βh, so when π̂∞(ϕx ≥ h) ≈ e−4βh is 1/L, the two point probability is

L−3/2. This translates to a domain restriction of |V | ≪ L3/2, a computation made rigorous in [14].

In the Zgff model, the two point probability turns out to be L−1−o(1), since the large deviation
event ϕx ≥ h is dominated by ϕ which climbs to h in the shape of a harmonic pinnacle [35], whereby
its neighbors are already at height h− O(h/ log h). The consequence is that we can only work on

domains of size |V | ≤ L1+o(1), which forces us to take boxes of say L2/3(logL)c × L1/3(logL)c.

This is a serious restriction, due to the pinning issues. When the height of V is only L1/3+o(1),
even though the probability of a random walk reaching height L1/3+o(1) on an L2/3 interval is only

e−L
o(1)

, the interactions between Ln and ∂V could potentially tilt the measure by a factor of eεβL
2/3

.
As we mentioned, the case of a flat boundary was handled in [27]; however, our V is a perturbation
of a rectangle with wiggly boundaries, for which that proof method breaks down.

In the direction of showing an upper bound on Ln, we circumvent these pinning issues by using
FKG to forget the floor constraint on a subset of V , picking up an area tilt only on a set F ⊂ V
instead. This effectively removes the size restriction from V , allowing us to use L2/3+o(1)×L2/3+o(1)

rectangles, where the top boundary is too far to induce pinning issues. We handle interactions with
the bottom boundary of V by conditioning Ln to stay sufficiently far away from it (again by FKG).

As evident from this strategy, we moreover have that with high probability, if we condition on
Ln+1,Ln+2, . . ., then the conditional limit law of Ln is stochastically dominated by a Ferrari–Spohn
diffusion. One can view this as an induction revealing level-lines from exterior to interior, ultimately
showing that the joint limit law of L0, . . . ,Lm−1 is dominated by independent Ferrari–Spohn laws.

Lower bound on the limit law of Ln. For the lower bound on the top level-line L0, we first remove the
lower level-lines by FKG (intuitively, they only push L0 upwards). Then, we study the restriction of

L0 to a domain V which is a perturbation of an N
2/3
0 ×N1/3

0 (logL) rectangle, with a flat boundary
at the bottom and wiggly boundary on the other three sides. All the monotonicity workarounds
from the upper bound now no longer apply, being in the wrong direction. In particular, the top
boundary of V cannot be placed far away anymore. Instead, we condition L0 to stay away from
the top boundary, and handle the (now flat) bottom boundary by extending the depinning results
of [27] to our setting. Once we establish the depinning, we can reduce the problem to the area-
tilted 2d random walk setting of prior works [7,25] which show convergence to Ferrari–Spohn. This

proves a lower bound for L0, which in particular shows that its typical height is O(N
1/3
0 ).

Turning to the next level-line, L1, we look at its restriction to a domain V which is a perturbation

of a N
2/3
1 × N

1/3
1 logL rectangle. Since N

1/3
1 logL = o(N

1/3
0 ), the behavior of L0 can be isolated

from the analysis of L1, and as before the lower level-lines L2,L3, . . . can be removed by FKG. This
then allows us to show the desired lower bound for L1, and we can proceed inductively for Ln.

As in the upper bound on Ln (but with a reverse order of which level-lines are revealed, where
here the induction reveals them from interior to exterior), one obtains that with high probability,
conditional on L0, . . . ,Ln−1, the limit law of Ln stochastically dominates a Ferrari–Spohn diffusion.
Consequently, the joint limit law of L0, . . . ,Lm−1 dominates independent Ferrari–Spohn laws.

Remark 1.8. Note that the upper bound had to reveal the level-lines from exterior to interior
(revealing Ln−1 would introduce a non-flat interacting boundary at distance L1/3+o(1) above Ln)
whereas the lower bound had to reveal the level-lines from interior to exterior (revealing Ln+1 would

introduce a non-flat interacting boundary at distance L1/3+o(1) below Ln).

1.2. Proof outline and organization. The paper is organized as follows.
In Section 2, we establish a polymer representation for the law of a level-line L using classical

cluster expansion techniques. This requires some refinements of large deviation results of [35]. It
turns out that the natural object to study here is not L, but the entire component of bonds γ dual to
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height disagreement edges containing L, which we call a disagreement polymer. Thus, the polymer
model of interest no longer falls under the family of “Ising polymers” for which much has been
proven (e.g., the existence of a surface tension [17] and the depinning from a flat boundary [27]).
Instead, the geometry of γ is allowed to be more complex than that of a contour, and its law has
an additional term capturing the area tilt of finite components surrounded by γ.

In Section 3, we prove several foundational results for the aforementioned class of disagreement
polymers, which are already known for “Ising polymers.” We begin by defining animals, cone-
points, and irreducible components in order to establish a product structure to the polymer law,
via Ornstein–Zernike analysis. Next, we extend results of [17, Sec. 4] to our model, proving the
existence and key properties of the surface tension, as well as elementary depinning results. We
then define the Wulff shape corresponding to the surface tension, and continue the Ornstein–Zernike
theory to show the proper renormalization needed to turn the product structure into a random walk.

In Section 4, we show one side (growth of a droplet) of the macroscopic scaling limit of the
(H −n) level-line Ln, which should be given by a translation of Wulff shapes. (Hereafter, we prove
results on Ln, but remember that the object we work with is γ.) The behavior in the Zgff is
markedly different from that in the sos model: here the Wulff shape is only visible on the O(L)
scale for select values of L, and only for the top level-line L0 (see Remark 4.5). A direct implication

of this scaling limit is that Ln has a maximum deviation of N
1/3
n (logL)C from the boundary of ΛL,

away from the corners. Following the strategy employed for the sos model in [14], we look at the
region D known to be contained inside Ln and iteratively grow this region. The key is to show that
in a rectangle V with H − n,H − n− 1 boundary conditions, Ln drops to a lower height. Then we
can place such rectangles all around the boundary of the contained region D to expand D in every
direction. A similar dropping lemma is needed in Section 5, but the difference is that here we need
to handle boundary conditions at an angle. The lattice effect makes this a nontrivial change (being
the reason there is even a Wulff shape to begin with), leading to a different analysis.

In Section 5, once we show that the height of Ln above the bottom side of ∂ΛL is at most

N
1/3
n (logL)C , we prove that inside an N

2/3
n (logL)C × 2N

2/3
n (logL)C rectangle, the curve of Ln is

stochastically dominated by an area tilted random walk in the middle N
2/3
n interval. As mentioned

above, this requires another dropping lemma, this time showing the stronger result that Ln drops

from height N
1/3
n (logL)C to O(N

1/3
n ). (In turn, we must assume that the endpoints of Ln are at

an angle of ≈ 0.) Then, combining monotonicity considerations with previous results on area tilted
random walks, we prove the sought upper bound on the limit law in Theorem 1.1.

In Section 6, we prove that inside a TN
2/3
n ×N

1/3
n (logL)C rectangle, the curve Ln stochastically

dominates an area tilted random walk in the middle N
2/3
n interval. Since this random walk has

the same increment law as the one studied in Section 5, it converges to the same Ferrari–Spohn
diffusion, proving the lower bound on the limit law in Theorem 1.1.

In Section 7, we prove Theorem 1.5, extending our results to the |∇ϕ|p model for 1 < p < ∞.

To that end, we prove a lower bound on the ratio π̂
(p)
∞ (ϕo = h)/π̂

(p)
∞ (ϕo = h − 1), which was not

addressed as part of the large deviation results from [35] when p ̸= 2. This was not needed in that
work, which only concerned the height histogram of those model, but is imperative here to obtain
an asymptotically sharp bound on the law of the disagreement polymer.

1.3. Open problems and related works. In this work, we showed that the scaling limit of the
m top level-lines, L0, . . . ,Lm−1, in the Zgff above a floor at large enough β, is m independent
Ferrari–Spohn diffusions. Moreover, this holds for the |∇ϕ|p model for any fixed p > 1, which
captures the complete universality class when varying p, as the behavior for p = 1 (sos) is expected
to be different. It remains an open problem to establish the limit law for the countably many
level-lines L0,L1, . . . in sos, conjectured to be a Brownian line ensemble with a geometric area tilt;
see [1, 9–11,16,24,39] for a plethora of works studying this object.
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For p > 1, several notable problems remain open. Theorems 1.1 and 1.5 address the law of the
level-lines away from the corners. It is expected that at the corners, the level-lines should have
fluctuations of L1/2−o(1) (as opposed to L1/3−o(1)), with an associated scaling limit of independent
Brownian motions. (This is open for all p ≥ 1, i.e., including sos.) In addition, our results exclude
an exceptional set B of values of L (whereas the sos analysis of level-lines in [14] only needed to
avoid a critical point of transition between top level-lines). It would interesting to investigate the
critical and near-critical behavior of the model for values of L marking the onset of a new level-line.

Lastly, we mention recent developments on the rough phase of the |∇ϕ|p model (with no floor).
At high enough temperature with uniform boundary conditions, convergence of the Zgff to the
Gaussian Free Field (gff) was shown in [2,3]; this is expected, but remains open for all other p ≥ 1.
When the boundary conditions are tilted, e.g., taking the value ⌊θ1x+θ2y⌋ at every boundary point
(x, y) for some slope θ = (θ1, θ2) ̸= 0, then, as long as at least one of the θi’s is irrational, the surface
is known [40] to delocalize at some unknown rate (“qualitative delocalization”) for all β and p ≥ 1.
At high enough temperature, this was extended also to rational slopes in [33] for sos. More recently,
logarithmic delocalization at high enough temperature was established for all 0 < p ≤ 2 in [37].
It is further believed that the rough phase induced by the slope should have a gff scaling limit,
mirroring the high temperature regime with flat boundary conditions. However, this remains a
formidable open problem at large β, where even logarithmic fluctuations are not yet established.
One recent result in this direction is for sos tilted by an added long range potential [34], which
indeed has a gff scaling limit (for any slope with θ1, θ2 > 0 including when both are rational; this
is in contrast to |∇ϕ|p for all p > 1, including Zgff, which are rigid at large β when θ1, θ2 ∈ Z).

2. Law of disagreement polymers

The goal of this section is to formulate the cluster expansion framework for the level-lines of the
Zgff configuration ϕ. In what follows, we will typically refer to dual-edges (in (Z2)∗) as bonds,
to help distinguish them from the edges of Z2. We say u, v ∈ Z2 are ∗-adjacent if their L∞(R2)
distance is 1 (i.e., they are either adjacent in Z2, or their bounding cells share a single corner). For
any point u ∈ R2, we will denote the x and y coordinates by u1, u2 respectively. Further let ∂U be
the boundary bonds of U , i.e., the set of bonds dual to uv with u ∈ U and v /∈ U , and let ∂vU be
the external vertex boundary of U , i.e., every vertex v /∈ U adjacent to some u ∈ U .

Definition 2.1 (Disagreement polymer). Let ϕ be a Z-valued height function on the vertices of a
connected domain V ⊂ Z2. Associate to each bond e ∈ (Z2)∗, dual to some edge (x, y) ∈ Z2, the
gradient (∇ϕ)e := ϕx − ϕy, where x is taken to be the north vertex if (x, y) is vertical and the
west vertex if (x, y) is horizontal. We say the bond e is a disagreement bond of ϕ if (∇ϕ)e ̸= 0
(including when ϕx or ϕy are specified by the boundary conditions). A disagreement polymer γ
is a (maximal) connected component of the disagreement bonds of ϕ, and we let Pϕ denote the
disagreement polymers in ϕ. For such a polymer, let Di be the connected components of V \ γ,
noting that by the maximality of γ, within each Di, all the vertices that are ∗-adjacent to V \Di

must have the same height hi in ϕ. Call the triple (γ, {Di}, {hi}) a labeled disagreement polymer.
For brevity, we denote labeled disagreement polymers by γ (omitting the {hi} from the notation).

NB. In the graph on (Z2)∗ whose edges are γ, no vertex can have degree 1 (degrees 0, 2, 3, 4 are
possible), hence the restriction that all v ∈ Di that are ∗-adjacent to V \Di have the same height.
See the example in Fig. 4 illustrating this.

Definition 2.2 (Energy, length and decorations of a disagreement polymer). Let (γ, {Di}, {hi})
be a labeled disagreement polymer. Its length N (γ) and energy Eβ(γ) are defined as

N (γ) =
∑
e∈γ

|(∇ϕ)e| , Eβ(γ) := β
∑
e∈γ

|(∇ϕ)e|2 .
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Figure 4. Left: A height function ϕ on a rectangle with h, h − 1 boundary conditions at
h = 10, with all disagreement bonds in blue. The disagreement polymer γ is highlighted.
Right: The corresponding labeled disagreement polymer (γ, {Di}, {hi}). Each region Di is
assigned a single height hi which can be read off from ϕ on the left (its interior boundary).

To describe the law of the disagreement polymer, we will use a family of decoration functions Φ
on subsets W ⊂ Z2—each referred to as a cluster if it is also connected— satisfying the following
properties (see the more general family of decoration functions in Definition 3.1).

(i) If W is not connected, then Φ(W) = 0.
(ii) The function Φ is translation invariant, as well as invariant under a rotation by π/2 or

reflection with respect to one of the axes.
(iii) There exists a constant C > 0 such that for everyW, we have |Φ(W)| ≤ exp(−(β−C)d(W)),

where d(W) is the size of the smallest connected set of bonds in (Z2)∗ containing all the
boundary bonds of W.

The main result of this section is the following, where here and in what follows, we use the
notation D◦

i = D◦
i (γ) to denote Di \∆γ where

∆γ := {u ∈ V : dist(u, γ) ≤ 1/
√
2} ,

as the value of ϕ on Di ∩∆γ (and elsewhere on ∂vD
◦
i ) are specified to be the corresponding hi.

Proposition 2.3 (Cluster expansion with a floor). Fix n ≥ 0. Let V ⊂ Z2 be a connected domain,

and consider the Zgff model πξV ;F with a floor at 0 imposed only on a subset F ⊂ V , and boundary
conditions ξ that are H−n on a ∗-connected path in ∂vV and H−n−1 elsewhere so that they induce
a unique disagreement polymer (γ, {Di}, {hi}) in V ∪ ∂vV that contains boundary disagreements2.
Then for β ≥ β0, the law of this unique disagreement polymer γ is given by

πξV ;F (γ) =
1

ZξV ;F

exp

(
− Eβ(γ) +

∑
W⊂V

W∩∆γ ̸=∅

Φ(W)

)∏
i≥0

π̂hiD◦
i

(
ϕx ≥ 0, ∀x ∈ D◦

i ∩ F
)
, (2.1)

for ZξV ;F = ZξV ;F (β, n) and a decoration function Φ(W) as per Definition 2.2.

Moreover, if we further have |F | ≤ L(logL)κ and |∂F | ≤ L1−δ for fixed κ > 0 and 0 < δ < 1
3 ,

denote by D0 and D1 the regions of γ containing the boundary vertices of V at heights H − n and
H − n− 1, respectively, and let

E :=
{
|γ| ≤ L1−δ , |F | − |D0 ∩ F | − |D1 ∩ F | ≤ L1−δ

}
,

2We say the disagreement polymer contains boundary disagreements if it contains a bond dual to uv for u, v /∈ V .
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then the following holds for all β ≥ β0 (not depending on κ, δ). The probability distribution given by

pξV ;F (γ) :=
1

Z̃ξV ;F

exp

(
− Eβ(γ) +

|D0 ∩ F |
Nn

+
∑
W⊂V

W∩∆γ ̸=∅

Φ(W)

)∏
i≥2

π̂hiD◦
i
(ϕx ≥ 0, ∀x ∈ D◦

i ∩ F )

for γ ∈ E, with Nn from Eq. (1.5) and Z̃ξV ;F a normalizer, satisfies that for every γ ∈ E,

πξV ;F (γ | E) = (1 + o(1))pξV ;F (γ) . (2.2)

We prove this result in Section 2.2, after we establish some properties of the measure π̂∞.

2.1. Large deviations without a floor. The following was established in [35, Eq. (3.1)–(3.4)])
for the infinite volume Zgff measure π̂∞: for every fixed large enough β and every h ≥ 2,

e−c0βh/ log h ≤ π̂∞(ϕo = h)

π̂∞(ϕo = h− 1)
≤ e−c1βh/ log h , (2.3)

π̂∞(ϕo = h) = exp

[
− 2πβ

h2

log h
+O

( h2

log2 h

)]
, (2.4)

π̂∞(ϕz = h | ϕo = h) ≤ e−c2βh/ log h , (2.5)

where c0, c1, c2 > 0 are absolute constants.

Remark 2.4. A stronger upper bound of exp(−c2h2/ log2 h) was stated in [35, Eq. (3.3)], even
though the bound in Eq. (2.5) was the one later proved in [35, §3.3]. The weaker bound still suffices
for the proof of the main theorem there: one needs only to modify the hypothesis in [35, Prop. 4.4]
(where this result is used) from h ≥ log logL to h ≥ (log logL)2, which would reproduce the same
estimates needed in that proof from the weaker Eq. (2.5). The proof applied [35, Prop. 4.4] in a box

Λℓ with h = (log ℓ)1/2+o(1), and hence the stronger hypothesis h ≥ (log log ℓ)2 would be valid. NB.
In [35], the aim was to show π̂0V (minx∈V ϕx ≥ −h) ≤ exp[−(1+o(1))I(h)] for the correct I(h), while
our analysis of the level-lines requires a much more precise bound of the form (1+o(1)) exp[−I(h)].

For our proofs, it will be crucial to have the stronger upper bound of exp(−ch2/ log2 h) on the
probability appearing in the left hand of Eq. (2.5); we adapt the argument of [35] to obtain it, as
well as estimates in an arbitrary region V containing a ball of a certain radius around the origin o.

Theorem 2.5 (adapting [35, Thm. 3.1]). There exist constants β0 > 0 and c > c′ > 0 so that the
following holds for every β ≥ β0 and integer h ≥ 2. Let V ⊂ Z2 be a region containing Br(o), the
ball of radius r = ⌈2ch/ log h⌉ centered at the origin o, as well as Br+1(z) for a site z ∈ V . Then

exp
(
− cβ

h

log h

)
≤

π̂0V (ϕo = h)

π̂0V (ϕo = h− 1)
≤ exp

(
− c′β

h

log h

)
, (2.6)

exp
(
− 2πβ

h2

log h
− cβ

h2

log2 h

)
≤ π̂0V (ϕo = h) ≤ exp

(
− 2πβ

h2

log h
+ cβ

h2

log2 h

)
, (2.7)

π̂0V (ϕz = h | ϕo = h) ≤ exp
(
− cβ

h2

log2 h

)
. (2.8)

Proof. The arguments of Eqs. (2.3) and (2.4) extend more or less verbatim to the setting given here
of a more general domain V in Eqs. (2.6) and (2.7), provided that V ⊃ Br(o) for the given r, and
we begin by explaining this point. Let R = ⌊h/ log h⌋.

The lower bound given in [35] on Eq. (2.3) was stated for π̂∞(ϕo = h)/π̂∞(ϕo = h− 1), carried
out on V = BL(o) for L≫ R, but in fact holds for π̂V for any domain V ⊃ BR(o)3.
3The proof of this bound in [35] is concluded immediately after [35, Claim 3.5], using nothing only that V ⊃ BR(o)
until that point; it does appeal to [35, Claim 3.6], but the latter is already phrased for a general domain V .
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Remark 2.6. To see why the requirement V ⊃ BR(o) is the only one needed for the lower bound
on Eq. (2.6), we briefly summarize that argument. The proof first reduced the lower bound to
showing that all x neighbors of o would have ϕx ≥ h− cR, for a large enough c, as expected given
that the (harmonic) optimum ϕ∗ for the R-valued Dirichlet problem has h− ϕ∗x ≍ h/ log h at those
sites: this step is valid in any domain V . Next, factoring out the contribution of ϕ∗, the problem
was reduced, sequentially, to

(i) the configuration σ := ϕ− ϕ∗ on V \ {o} (already here the assumption BR(o) ⊂ V is used,
as one defines ϕ∗ as the R-valued solution on BR(o), and 0 outside);

(ii) then to its integer part σ̄ := ⌊σ⌋ in V \ {o};
(iii) and finally to σ̄ in a Zgff model on V \ {o} where the interaction strength in the interior

BR(o) is modified to 1/2 vs. 1 in its exterior.

(This second series of reductions incurs a cost that is absorbed by further increasing c.) The
dominant term in the lower bound is exp(−cβR), yielding the sought bound that appears here, for
the more general V , in the left-hand of Eq. (2.6).

The upper bound of [35] on Eq. (2.3) holds for every V ⊃ BR(o) as follows: arguing very similarly
to the proof there4, if one chooses r = δR for a small enough δ > 0 (fixed independently of β), then

π̂V (ϕo = h)

π̂V (ϕo = h− 1)
≤ e−

3
4
βr + eεβr

π̂Br(o)(ϕo = h)

π̂V (ϕo = h− 1)
≤ e−

3
4
βδR + e−c0β log( 1

δ
)R2 π̂V (ϕo = h)

π̂V (ϕo = h− 1)
,

using that π̂Br(o)(ϕo = h) ≤ e−c0β log( 1
δ
)R2

π̂BR(o)(ϕo = h) and that π̂BR(o)(ϕo = h) ≤ eεβRπ̂V (ϕo = h)

using [35, Lem. 3.6] for the first inequality and [35, Cor. 3.9] for the second one5. Rearranging the
above equation yields the sought upper bound on π̂V (ϕo = h)/π̂V (ϕo = h− 1) in Eq. (2.6).

It is for Eq. (2.4) where one needs to extend the radius of the ball contained in V from R to cR;
more precisely, one has the following more general form of [35, Cor. 3.9], via the exact same proof6:

Claim 2.7 (extension of [35, Cor. 3.9] via the same proof). Let c0 > 0 be an absolute constant
satisfying, for all h ≥ 1 and V ⊃ BR(o), that π̂V (ϕo = h)/π̂V (ϕo = h − 1) ≥ exp(−c0βh/ log h).
Setting r = ⌈2c0h/ log h⌉, for every V ⊃ Br(o) one has

e−εβr ≤ π̂V (ϕo = h)

π̂Br(o)(ϕo = h)
≤ eεβr .

The required bound in Eq. (2.7) now follows from [35, Lem. 3.10], which showed that∣∣∣∣log π̂Br(o)(ϕo = h)− 2π̂β
h2

log r

∣∣∣∣ ≤ cβ
h2

log2 r
+ cβr2 ,

where c > 0 is some absolute constant7.
It remains to establish Eq. (2.8), via a small modification of the argument of [35]. Letting

X = max
x∼z

ϕx , Y := min
x∼z

ϕx ,

the proof of Eq. (2.5) in [35] considered the events {X ≤ h} and {Y ≥ h − δ
√
h/ log h} to derive

the sought estimate. Here we will instead consider {X ≤ δ1h/ log h} and {Y ≥ h − δ2h/ log h}.
Specifically, let c′ > 0 be the constant in the upper bound form Eq. (2.6), and let

E1 := {X ≤ h+∆} , E2 := {Y ≥ h− 5∆} for ∆ :=
⌊
(c′/200)

h

log h

⌋
.

4See the argument that appears immediately after [35, Lem. 3.10].
5Here one appeals only to the first part of [35, Cor. 3.9], which is valid for any V ⊃ BR(o).
6The upper bound in that result used the fact r ≥ 2c0R to replace π̂V (ϕo = h− 1) in [35, Eq. (3.12)] by π̂V (ϕo = h);
the lower bound holds for all r.
7As seen in the short proof of [35, Lem. 3.10], the constant c′ associated with the error term ec

′r2 in its statement is
of the form c′ = cβ for some absolute constant c > 0.
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By iterating the upper bound in Eq. (2.6), using here that Br(x) ⊂ V for each x ∼ z, one has that

π̂0V (E
c
1 | ϕo = h) ≤ 4max

x∼z

π̂0V (ϕx > h+∆)

π̂0V (ϕo = h)
≤ 4max

x∼z

π̂0V (ϕx = h)

π̂0V (ϕo = h)
exp

(
− c′β∆

h

log h

)
≤ exp

(
− (c′ − o(1))β

h∆

log h

)
, (2.9)

with the second line following from Claim 2.7 to show that π̂V (ϕx = h)/π̂V (ϕo = h) ≤ exp(εβr),

which is negligible as r ≍ h
log h = o(∆ h

log h). It thus suffices to show that, for some c > 0,

π̂0V (ϕz = h | ϕo = h, E1) ≤ exp
(
− cβ

h2

log2 h

)
. (2.10)

Next, on the events E1 ∩Ec2, we can reveal ϕ at the neighbors {xi}4i=1 of z and then increase those
values by monotonicity, to find that

π̂0V (ϕz = h | ϕo = h, E1, E
c
2) ≤ π̂0V (ϕz ≥ h | ϕx1 = h− 5∆ , ϕxi = h+∆ for 2 ≤ i ≤ 4)

≤ (1 + εβ)e
−β(3∆2+(5∆)2) = (1 + εβ)e

−28β∆2
.

Thus, bounding π̂0V (ϕz = h | ϕo = h, E1) ≤ π̂0V (ϕz = h | ϕo = h, E1, E
c
2) + π̂0V (E2 | ϕo = h, E1), in

order to show Eq. (2.10), it is enough to show that for some c > 0,

π̂0V (E2 | ϕo = h, E1) ≤ exp
(
− cβ

h2

log2 h

)
. (2.11)

Again by monotonicity,

π̂0V (ϕz ≥ h+∆ | ϕo = h, E1, E2) ≥ π̂0V (ϕz ≥ h+∆ | ϕxi = h− 5∆ for 1 ≤ i ≤ 4)

≥ (1− εβ)e
−4β(6∆)2 = (1− εβ)e

−144β∆2
. (2.12)

On the other hand,

π̂0V (ϕz ≥ h+∆ | ϕo = h, E1 , E2) ≤
π̂0V (ϕz ≥ h+∆ | ϕo = h ,E1)

π̂0V (E2 | ϕo = h ,E1)

≤
π̂0V (ϕz ≥ h+∆ | ϕo = h)

π̂0V (E2 | ϕo = h, E1)π̂0V (E1 | ϕo = h)
≤

exp(−(c′ − o(1))β h∆
log h)

π̂0V (E2 | ϕo = h, E1)
,

where the last transition used Eq. (2.9) to show that π̂0V (E1 | ϕo = h) = 1 − o(1), whereas the
numerator was bounded from above first by π̂0V (ϕz ≥ h+∆)/π̂0V (ϕo = h) and then by iterating the
upper bound in Eq. (2.6) and thereafter using Claim 2.7, as was done in Eq. (2.9). Combining this
with Eq. (2.12), we find that

π̂0V (E2 | ϕo = h , E1) ≤ (1 + εβ) exp

(
β
(
144∆− (c′ − o(1))

h

log h

)
∆

)
≤ exp

(
− (c′/4)β

h∆

log h

)
by the choice of ∆. This establishes Eq. (2.11) and completes the proof. ■

The following lemma shows that the large deviation estimate in Eq. (2.7) is also an upper bound
for all points in V , in particular at sites x near the boundary of V (whereas Theorem 2.5 was only
applicable for sites x at distance at least ch/ log h from ∂V ).

Lemma 2.8. There exists c0 > 0 such that, for β large and every V ⊂ Z2, h ≥ 2, and x ∈ V ,

π̂0V (ϕx = h) ≤ exp

(
− 2πβ

h2

log h
+ c0

h2

log2 h

)
. (2.13)
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Proof. Let r = ⌈2ch/ log h⌉ for the constant c > 0 from Theorem 2.5, and let V ′ = V ∪Br(x). Then

π̂0V ′(ϕx ≥ h) ≥ π̂0V ′(ϕx ≥ h, ϕ↾∂V \∂V ′ ≥ 0) ≥
(

inf
ξ : ξ↾∂V ′=0,
ξ↾∂V \∂V ′≥0

π̂ξV (ϕx ≥ h)

)
π̂0V ′(ϕ↾∂V \∂V ′ ≥ 0) .

By FKG, this is minimized at ξ ≡ 0; namely,

π̂0V ′(ϕx ≥ h) ≥ π̂0V (ϕx ≥ h)π̂0V ′(ϕ↾∂V \∂V ′ ≥ 0) ≥ π̂0V (ϕx ≥ h)
∏

x∈∂V \∂V ′

π̂0V ′(ϕx ≥ 0) , (2.14)

with the last inequality again following from FKG. A standard Peierls argument (see, e.g., [4])
shows that for any h ≥ 0 and any V ,

π̂0V (ϕx > h) ≤ εβπ̂
0
V (ϕx = h) ,

where εβ → 0 as β → ∞ (and similarly, π̂0V (ϕx < −h) ≤ εβπ̂
0
V (ϕx = −h) by symmetry). In

particular, conditional on ϕ ≡ 0 on a subset of ∂V \ ∂V ′, the probability that ϕx = 0 for an
additional vertex x along that boundary is at least exp(−εβ), and so∏

x∈∂V \∂V ′

π̂V ′(ϕx ≥ 0) ≥ e−εβ |∂V \∂V ′| ≥ e−εβh
2/ log2 h , (2.15)

where the last inequality holds (for a different εβ) using that, since ∂V \ ∂V ′ ⊂ Br(x), we can infer

that |∂V \ ∂V ′| ≤ πr2 ≤ O(h2/ log2 h). Combining Eqs. (2.14) and (2.15), we find that

π̂0V (ϕx = h) ≤ eεβh
2/ log2 hπ̂0V ′(ϕx = h), (2.16)

whence the proof concludes via Theorem 2.5. ■

We can now bound the probability of the floor event. Our bound will be asymptotically tight,
whereas the analogous estimate in [35, Prop. 4.4] (which considered a similar event: rather than
B =

⋂
x∈V {ϕx ≥ −h} addressed here, it pertained B intersected with another event forbidding

macroscopic nonzero paths) had a (1 + o(1)) term, not as a prefactor, but within the exponent in
that probability. It is crucial that we have this more precise estimate for our cluster expansion
expression in Section 2.2, and it comes at a cost of area and boundary constraints on the domain.
As we describe below (see Remark 2.11), these constraints are more stringent in Zgff compared

to the case of sos, where the corresponding estimate was applicable to an L2/3+ε × L2/3+ε box
(whereas we can only afford to address a L2/3(logL)c × L1/3(logL)c box in the setting of Zgff).

Lemma 2.9. Fix 0 < δ < 1
3 , κ > 0, and n ≥ 0. Let V ⊂ Z2 be a connected region, let F ⊂ V be a

subset satisfying |F | ≤ L(logL)κ and |∂F | = O(L1−δ), and set h = H − n. Then

π̂0V (ϕx ≥ −h, ∀x ∈ F ) = (1 + o(1)) exp
(
− π̂∞(ϕo < −h)|F |

)
.

Proof. We begin with the lower bound. By FKG,

π̂0V (ϕx ≥ −h, ∀x ∈ F ) ≥
∏
x∈F

π̂0V (ϕx ≥ −h) =
∏
x∈F

(
1− π̂0V (ϕx < −h)

)
≥ exp

(
−

∑
x∈F

π̂0V (ϕx < −h)−
∑
x∈F

π̂0V (ϕx < −h)2
)
, (2.17)

using 1− s ≥ exp(−s− s2) for 0 ≤ s ≤ 1
2 , applied to π̂0V (ϕx < −h) = o(1). Moreover, by Eqs. (2.3)

and (2.4) and the definition in Eq. (1.2) of H, we have π̂∞(ϕo < −h) ≤ L−1+o(1) (moving from

π̂∞(ϕo = −(h+1)) for h = H to h = H−n incurs a multiplicative cost of exp
(
nc0β

H
logH

)
= Lo(1)),

and hence by Lemma 2.8 we have that for all x,

π̂0V (ϕo < −h) ≤ L−1+o(1) , (2.18)
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as moving from the upper bound π̂∞(ϕo < −h) to π̂0V (ϕo = −h) incurs an additional multiplicative

cost of exp
(
c H2

log2H

)
= Lo(1). This implies that∑

x∈F
π̂0V (ϕx < −h)2 ≤ L−2+o(1)|F | ≤ L−1+o(1) = o(1)

using our hypothesis on |F | (with room to spare: the stringent requirement on |F | would come
from the upper bound). Equation (2.18) further implies that∑

x∈F
dist(x,∂F )≤log2 L

π̂0V (ϕx < −h) ≤ L−1+o(1)|∂F | ≤ L−δ+o(1) = o(1) (2.19)

by our assumption on |∂F |. A straightforward consequence of the Peierls argument of [4] is the
following decay of correlation property of π̂: for every x ∈ F and R such that dist(x, ∂V ) > 2R,∥∥∥π̂0V (ϕ↾BR(x) ∈ ·)− π̂∞(ϕ↾BR(o) ∈ ·)

∥∥∥
tv

≤ e−cβR . (2.20)

(To see this, note that one can couple ϕ ∼ π̂0V and ϕ′ ∼ π̂0∞ so that they agree on BR(x) and BR(o),
respectively, provided there is no ∗-connected path of sites P connecting ∂BR/2(x) to ∂V , along
which every site y has ϕy ̸= 0 or ϕ′y ̸= 0; in particular, either ϕ or ϕ′ have more than |P |/2 nonzero
sites along P . This occurs with probability at most exp(−cβR) by Peierls applied to both ϕ, ϕ′.)
Thus, if x is such that dist(x, ∂V ) ≥ log2 L} (which holds if dist(x, ∂F ) ≥ log2 L as F ⊂ V ) then∣∣π̂0V (ϕx < −h)− π̂∞(ϕo < −h)

∣∣ ≤ e−cβ log2 L ,

and hence our bound on |F | again yields∑
x∈F

dist(x,∂F )≥log2 L

π̂0V (ϕx < −h) ≤ |F |(π̂∞(ϕo < −h) + e−cβ log2 L) ≤ |F |π̂∞(ϕo < −h) + o(1) .

Overall, we conclude a lower bound of

π̂0V (ϕx ≥ −h, ∀x ∈ F ) ≥ (1− o(1)) exp
(
− π̂∞(ϕo < −h)|F |

)
. (2.21)

We proceed to the upper bound, which is where the stronger assumptions on |F | will be needed.
The proof will follow a grid partitioning argument using Bonferroni’s inequalities, as was done in
[13, Prop. 7.7] and [14, Prop. A.1] for the sos model, in [21, Prop. 6.2] for the 3d Ising model, and
in [35, Prop 4.4] for the Zgff (where it was applied more crudely, as the focus there was the height
histogram of Zgff surface as opposed to the fluctuations of its level-lines).

Let

u := δ/3 , s := δ/4 ,

and partition Z2 into squares Pi of side-length L
u + Ls, and let Qi ⊂ Pi be the concentric squares

of side-length Lu. We will refer to Pi \Qi as the shell of the square Qi. Observe that if

V1 =
⋃{

Pi : Pi ∩ F c ̸= ∅
}
,

V2 =
⋃{

(Pi \Qi) ∩ F : Pi ∩ V1 = ∅
}
,

V3 = F \ (V1 ∪ V2) ,

then |V1| ≤ |∂F |(logL)2u = O(L1−δ/3) by our assumption on ∂F and choice of u, while |V2| ≤
Ls−u|F | (each shell Pi \Qi, fully contained in F , has |Pi|Ls−u sites), which is at most L1−δ/12+o(1)

by the assumption on F (and choice of u, s). Combined, we have

π̂∞(ϕo < −h)(|V1|+ |V2|) ≤ L−δ/12+o(1) = o(1) ,
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so it suffices to show that, for the increased event that restricts its attention only to V3 we have

π̂0V

( ⋂
x∈V3

{ϕx ≥ −h}
)

≤ (1 + o(1)) exp
(
− π̂∞(ϕo < −h)|V3|

)
. (2.22)

We now aim to decrease the event under consideration via intersecting it with

Ds =
{
ϕ has a no disagreement polymers γ with diam(γ) ≥ Ls/4

}
.

Indeed, by the standard Peierls argument,

π̂0V (D
c
s) ≤ |V | exp

(
− (β − c)Ls/4

)
= o

(
exp

(
− π̂∞(ϕo < −h)|V3|

))
since π̂∞(ϕo < −h)|V3| ≤ Lo(1), and thus Eq. (2.22) will follow once we show that

π̂0V

(
Ds ∩

⋂
x∈V3

{ϕx ≥ −h}
)

≤ (1 + o(1)) exp
(
− π̂∞(ϕo < −h)|V3|

)
. (2.23)

Denoting by {ij}j≥1 the indices of the Qi’s that contribute to V3, we reveal ϕ↾Pij
in step j, and

denote the associated filtration by (Fj)j≥0. For brevity, write

Q′
ij := F ∩Qij .

We will argue that

π̂0V

(
Ds ∩

⋂
x∈Q′

ij

{ϕx ≥ −h}
∣∣∣ Fj−1

)
≤ exp

(
−
(
1− e

−cβ h2

log2 h

)
π̂∞(ϕo < −h)|Q′

ij |
)
, (2.24)

from which Eq. (2.23) will readily follow as
∑

j |Q′
ij
| = |V3| ≤ |F | ≤ L(logL)κ by assumption, so

e
−cβ h2

log2 h π̂∞(ϕo < −h)
∑
j

|Q′
ij | ≤ e

−cβ h2

log2 h
+c0βn

h
log h π̂∞(ϕo < −H)|V3|

≤ e
−(cβ−o(1)) h2

log2 h , (2.25)

using the lower bound of Eq. (2.3) (or the one in Eq. (2.6)) in the first inequality (to move from

π̂∞(ϕo < −h) to π̂∞(ϕo < −H) at a cost of e
c0βn

h
log h ) and Eq. (1.2) and the hypothesis on |F | in

the second inequality, as h2/ log2 h ≍ logL/ log logL, thus (logL)C = o(exp(ch2/ log2 h)) for any
fixed C, c > 0.

To establish Eq. (2.24), denote by C the outermost ∗-connected circuit of zeros in Pij , noting that
for every ϕ ∈ Ds, the distance of C from ∂Pij cannot exceed Ls/4. Letting U denote the interior

of C, we see that Br(x) ⊂ U for every x ∈ Qij with r ≍ Ls ≫ h
log h , our assumption in Theorem 2.5.

We now apply Bonferroni’s inequalities to infer that

π̂0U

( ⋂
x∈Q′

ij

{ϕx ≥ −h}
)

≤ 1−
∑
x∈Q′

ij

π̂0U(ϕx < −h) + 1

2

∑
x,y∈Q′

ij

x ̸=y

π̂0U(ϕx < −h , ϕy < −h) .

By the decay of correlations bound in Eq. (2.20), we can replace π̂0U with π̂∞ in each of the sums
at an additive error cost of

|Q′
ij |

2 exp(−cβLs) = χ1 |Q′
ij |π̂∞(ϕo < −h) for χ1 < exp (−(cβ − o(1))Ls) < L−100 .
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Next, we again use the decorrelation estimate in Eq. (2.20) to infer that∑
x,y∈Q′

ij

dist(x,y)≥log2 L

π̂∞(ϕx < −h, ϕy < −h) ≤
( ∑
x∈Q′

ij

π̂∞(ϕx < −h)
)2

+ |Q′
ij |

2e−cβ log2 L

≤ (χ2 + χ3)|Q′
ij |π̂∞(ϕo < −h) ,

where χ2, χ3 correspond to the two terms on the right-hand of the first line, and satisfy

χ2 < L−1+2u+o(1) < L−1+δ , χ3 < exp
(
−(cβ − o(1)) log2 L

)
< L−100 .

Finally, and this will be the dominant term in our error, we address pairs x, y ∈ Q′
ij
at distance at

most log2 L as follows. Noting that π̂∞(ϕx > h, ϕy > h) ≤ (1+ εβ)π̂∞(ϕx = h+1, ϕy = h+1) by a
standard Peierls argument (enumerating the two inner most (h+ 2)-level-line loops that surround
each of x, y (possibly this is the same loop), and subtracting 1 in each of their interiors if nonempty),
it suffices to bound the sum of said probability. This is achieved by Eq. (2.8) as follows:∑

x,y∈Q′
ij

0<dist(x,y)≤log2 L

π̂∞(ϕx = −h− 1, ϕy = −h− 1) =
∑
x∈Q′

ij

π̂∞(ϕx = −h− 1)

×
∑
y∈Q′

ij

0<dist(x,y)≤log2 L

π̂∞(ϕy = −h− 1 | ϕx = −h− 1)

≤ χ4 π̂∞(ϕo < −h)|Q′
ij | ,

where

χ4 ≤ (logL)4 exp
(
− cβ

h2

log2 h

)
.

Summing these, we see that for χ =
∑4

i=1 χi ≤ exp(−(cβ− o(1)) h2

log2 h
) (dominated by χ4), we have

π̂0U

( ⋂
x∈Q′

ij

{ϕx ≥ −h}
)

≤ 1− (1− χ)π̂0∞(ϕo < −h)|Q′
ij | ≤ exp

(
− (1− χ)π̂0∞(ϕo < −h)|Q′

ij |
)
,

thus establishing Eq. (2.24) and completing the proof. ■

Remark 2.10. The probability π̂∞(ϕy = h | ϕx = h), which we controlled through (2.8), governed
the error-term in the proof of Lemma 2.9. Had we instead used Eq. (2.5)—which features an

exponent of cβ h
log h as opposed to cβ h2

log2 h
from Eq. (2.8)—it would have competed with the exponent

c0βn
h

log h from Eq. (2.3) which appears in our estimate for π̂∞(ϕo > −h) already when considering

h = H − n for n = 1. We will need to consider n = 1, the second-from-top level-line, already to
address the law of the top level-line, as we need to establish that there ample spacing between them
(and of course, in Theorem 1.1 we proceed to further obtain the joint law of the m top level-lines).

Remark 2.11. The analysis of dist(x, y) ≤ log2 L in the final part of the upper bound generated

the term χ4|F |π̂∞(ϕo < −h) ≤ p|F |/L for p = exp(−c logL
log logL) = L−o(1) derived from Eq. (2.8).

Thus, we can only obtain an o(1) additive error in the exponent if |F | = L1+o(1), and moreover we

can handle L(logL)c but not any arbitrary L1+o(1). The analogous setting in sos had p ≤ L−1/2

(due to the different nature of the large deviation problem), resulting in a much larger applicable

domain of area L4/3+o(1) in [14, Prop. A.1] (see the hypothesis on the domain Λ in Eq. (A.2) there).
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2.2. Cluster expansion and proof of Proposition 2.3. Cluster expansion for disagreement

polymers under without a floor (i.e., under π̂ξV ) will follow from classical results, as formulated in the
next proposition. We will thereafter use it in conjunction with Lemma 2.9 to derive Proposition 2.3.

Proposition 2.12 (Cluster expansion). Let V ⊂ Z2 be a connected domain, and consider the Zgff
model π̂ξV with boundary conditions ξ that are 1 on a ∗-connected path in ∂vV and 0 elsewhere so
that they induce a unique disagreement polymer (γ, {Di}, {hi}) in V ∪ ∂vV that contains boundary
disagreements. Then for β ≥ β0, the law of this unique disagreement polymer is given by

π̂ξV (γ) =
1

ẐξV
exp

(
− Eβ(γ) +

∑
W⊂V

W∩∆γ ̸=∅

Φ(W; γ)

)
(2.26)

for ẐξV = ẐξV (β) and a decoration function Φ(W) as per Definition 2.2.

Proof. The proof will be a standard application of the framework of the Kotecký–Preiss [31] cluster
expansion. Observe that, by Definitions 2.1 and 2.2, for any connected domain V we have

π̂0V (ϕ) =
1

Ẑ0
V

exp
(
−

∑
γ∈Pϕ

Eβ(γ)
)
,

where the sum goes over the disagreement polymers arising from ϕ, each of the form (γ, {Di}, {hi}).
Equivalently, letting PV be the set of all disagreement polymers that can arise in ϕ ∼ π̂0V (or,

equivalently, arising from any ϕ ∼ π̂kV for boundary conditions all-k), we put

Ẑ0
PV

=
∑

{γj}⊂PV

γj pairwise disjoint

∏
j

e−Eβ(γj) ,

so that the partition function Ẑ0
V from above is synonymous with Ẑ0

PV
. Since Eβ(γ) ≥ βN (γ),∑

γ : γ∩γ0 ̸=∅

e(β−C0)N (γ)e−Eβ(γ) ≤ |γ0|
∑
γ∋e0

e−C0N (γ) ≤ N (γ0)

for a large enough C0, satisfying the criterion of the main theorem of [31] for a(γ) = N (γ) and
dist(γ) = (β − C0 − 1)N (γ) in their notation. By that theorem, one has

log Ẑ0
PV

=
∑

P⊂PV

Φ0(P) where Φ0(P) =
∑
P′⊂P

(−1)|P|−|P′| log Ẑ0
P′ ,

and the function Φ0 satisfies Φ0({γj}) = 0 if the graph formed by the edges of {γj} is not connected,

and
∑

P:P∩γ0 ̸=∅ |Φ0(P)|e(β−C0−1)N (P) ≤ N (γ0), where N (P) :=
∑

j N (γj) for P = {γj}. It

follows that |Φ0(P)| ≤ exp
(
− (β − C1)N (P)

)
. One can then, as done in [17, Sec. 3.9] (see

also [13, §A.2]), define for any subset of vertices W ⊂ Z2,

Φ(W) =
∑{

Φ0(P) : P =
{
(γj , {Dj,i}, {hj,i})

}
such that

⋃
Dj,i = W}

}
,

whence (not just under 0 boundary conditions, but for any all-k boundary conditions)

log Ẑ0
V =

∑
W⊂V

Φ(W) , (2.27)

and the aforementioned bound on Φ0(P) implies that (after summing it over all possible {hj,i} to
get a decay of exp(−(β−C)

∑
|γj |) and noting that the boundary bonds ∂W are a subset of

⋃
j γj),

|Φ(W)| ≤ exp (−(β − C)d(W)) ,

recalling that d(W) is the size of the smallest connected set of bonds containing all boundary
bonds of W. The fact that Φ is invariant under translation (Φ(W) = Φ(W + x)) as well as
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under rotation by π/2 or reflection with respect to one of the axes is apparent from its com-
binatorial construction (as the graphs formed by the γj ’s are isomorphic to the corresponding
translations/rotations/reflections).

Finally, let ϕ ∼ π̂ξV with ξ consisting of an interval of 0 and an interval of 1 as per Proposition 2.12.
We will move from Eq. (2.27) to Eq. (2.26) via observing that, by definition, if (γ, {Di}, {hi}) ∈ Pϕ,
then

π̂ξV (γ) = exp
(
− Eβ(γ))

∏
i Ẑ

hi
D◦

i

Ẑ0
V

.

We combine this with the fact that, by Eq. (2.27),∏
i Ẑ

hi
D◦

i

Ẑ0
V

= exp
(
−

∑
W⊂V

Φ(W) +
∑
i

∑
W⊂D◦

i

Φ(W)
)
= exp

( ∑
W⊂V

W∩∆γ ̸=∅

Φ(W)
)
, (2.28)

to conclude the proof. ■

Proof of Proposition 2.3. We begin with the standard identity (see the proof of Proposition 2.12)

πξV ;F (γ) = exp(−Eβ(γ))
1

ZξV ;F

∏
i

ZhiD◦
i ;F

=
Ẑ0
V

ZξV ;F

exp(−Eβ(γ))
1

Ẑ0
V

∏
i

ẐhiD◦
i ;F

π̂hiD◦
i
(ϕx ≥ 0, ∀x ∈ D◦

i ∩ F ) .

Absorbing Ẑ0
V /Z

ξ
V ;F into the partition function, then applying Eq. (2.28) to rewrite (

∏
i Ẑ

hi
D◦

i
)/Ẑ0

V

in terms of the decoration function Φ, establishes Eq. (2.1).

To derive Eq. (2.2), we let γ ∈ E, and wish to apply Lemma 2.9 to π̂hiD◦
i
(ϕx ≥ 0, ∀x ∈ D◦

i ∩ F ).
Our hypothesis on F gives |D◦

i ∩F | ≤ |F | ≤ L(logL)κ. Next, |∂(D◦
i ∩F )| ≤ |∂(Di ∩F )|+O(|∆γ |),

which is at most |∂(Di ∩ F )|+O(|γ|). We further claim that

∂(Di ∩ F ) ⊂ γ ∪ ∂F ;

indeed, every bond b in the left-hand is dual to some edge uv for u ∈ Di∩F and v /∈ Di∩F , which,
if v ∈ F c, is counted in ∂F , and otherwise v ∈ Dc

i and must have b ∈ γ (as all other bonds of ∂Di

have v ∈ V c ⊂ F c). Altogether, we conclude that

|∂(D◦
i ∩ F )| ≤ |∂F |+O(|γ|) = O(L1−δ)

by the definition of E, satisfying the hypothesis of Lemma 2.9. Applying that lemma we obtain
that, for i = 0, 1,

π̂H−n−i
D◦

i

(
ϕx ≥ 0, ∀x ∈ D◦

i ∩ F
)
= π̂0D◦

i

(
ϕx ≥ −(H − n− i), ∀x ∈ D◦

i ∩ F
)

= (1 + o(1)) exp
(
− π̂∞(ϕo < −(H − n− i))|Di ∩ F |

)
,

using here that

π̂∞(ϕo < −(H − n− 1))|(Di \D◦
i ) ∩ F | ≤ π̂∞(ϕo < −(H − n− 1))O(|γ|) = L−δ+o(1) = o(1) .

Recalling that |F | ≤ |D0 ∩ F |+ |D1 ∩ F |+ L1−δ, we see that

π̂∞(ϕo < −(H − n− 1)
)
|D1 ∩ F | = π̂∞(ϕo < −(H − n− 1)

)(
|F | − |D0 ∩ F |+O(L1−δ)

)
,
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whereby we again have π̂∞(ϕo < −(H − n− 1))L1−δ = L−δ+o(1) = o(1), and(
π̂∞

(
ϕo < −(H − n)

)
− π̂∞

(
ϕo < −(H − n− 1)

))
|D0 ∩ F | = π̂∞

(
ϕo = −(H − n)

)
|D0 ∩ F |

=
|D0 ∩ F |
Nn

by the definition in Eq. (1.5). Thus, absorbing exp[−π̂∞(ϕo < −(H −n− 1))|F |] into the partition
function (being independent of γ), we find that

πξV ;F (γ) ∝ (1 + o(1)) exp

(
− Eβ(γ) +

|D0 ∩ F |
Nn

+
∑
W⊂V

W∩∆γ ̸=∅

Φ(W)

)∏
i≥2

π̂hiD◦
i
(ϕx ≥ 0, ∀x ∈ D◦

i ∩ F ) ,

as required. ■

3. Geometry of the disagreement polymers

Our eventual goal is to show that γ behaves like an area tilted random walk. Hence, we would

like to show that upon removing the main area tilt |D0|
Nn

from Eq. (2.2), γ falls under the Ornstein–
Zernike setup. We will prove this in a more general polymer model setting.

To begin, we need to define the set of legal polymers from A to B. Fix any two vertices
A,B ∈ (Z2)∗ and a simply connected domain V such that A,B are on ∂V . As ∂V is the boundary
in R2 of a simply connected domain, consider any conformal map that sends ∂V to the unit circle
centered at the origin, mapping A to the point (0,−1) and B to the point (0, 1). Let ξ be the
boundary condition which is h along the interval of ∂V that maps to the arc of the unit circle in
the upper half plane, and h− 1 along the rest of ∂V , where h can be chosen as desired. For every
height function on V with boundary condition ξ, there is a unique labeled disagreement polymer
γ which contains the boundary disagreements. Define PV (A,B) as the set of all such possible
disagreement polymers in this setting (note that the choice of h is irrelevant in defining this set, all
that matters here is that the boundary heights differ by 1). We can then extend this definition to
domains V with infinite volume by defining PV (A,B) =

⋃
V ′⊂V PV ′(A,B), where the union is over

all simply connected V ′ ⊂ V which have finite volume.
Next we will define the polymer weights with respect to interaction functions Φ(W; γ).

Definition 3.1. Let Φ(W; γ) denote a function on subsets W of Z2 and disagreement polymers γ,
which satisfies the following properties:

(i) If W is not connected, then Φ(W; γ) = 0 for all γ.
(ii) For every γ, the function W 7→ Φ(W; γ) depends only on W ∩∆γ .
(iii) For every W, γ and x ∈ Z2, one has Φ(W; γ) = Φ(W + x; γ + x). Moreover, Φ(W, γ) is

invariant under a rotation of (W, γ) by a multiple of π/2 or reflection with respect to one
of the axes.

(iv) There exists a constant C > 0 such that for every W, γ, we have |Φ(W; γ)| ≤ exp(−(β −
C)d(W)), where d(W) is the size of the smallest connected set of bonds in (Z2)∗ containing
all the boundary bonds of W.

Note that the above describes a more general class of functions compared to Definition 2.2, so
that modifications of Φ(W; γ) (denoted as ΦU (W; γ) and Φ′

U (W; γ) in this section) also satisfy the
above properties. With this in mind, we define the weight of γ interacting with a domain U with
boundary conditions at height H − n and H − n− 1 as

q̂nU (γ) = exp
(
− Eβ(γ) +

∑
W∩∆γ ̸=∅

Φ(W; γ)1{W⊂U}
)∏
i≥2

π̂hiD◦
i
(ϕx ≥ 0, ∀x ∈ D◦

i ) . (3.1)
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For brevity, define the shorthand notation

ΦU (W; γ) = Φ(W; γ)1{W⊂U}.

Remark 3.2. It is clear that if Φ(W; γ) satisfies the properties of Definition 3.1, then so does
ΦU (W; γ). As usual, the results of this paper hold more generally for any choice of ΦU that satisfies
the decay condition Item (iv) above and such that ΦU (W; γ) = Φ(W; γ) for any W ⊂ U .

Note that the weight q̂nU (γ) makes sense even when γ is the disagreement polymer for a domain
V ̸= U . Moreover, the definition of q̂nU (γ) does not depend on this reference domain V , as {Di}i≥2

are the finite areas encapsulated by γ. Hence, it makes sense to consider polymer partition functions
of the form

ẐnV,U (A,B) :=
∑

γ∈PV (A,B)

q̂nU (γ) .

If E is an event about γ, then we define

ẐnV,U (A,B | E) :=
∑

γ∈PV (A,B)∩E

q̂nU (γ) .

When the points A,B are clear from context, we will drop them from the notation so we instead

have ẐnV,U and ẐnV,U (E).

3.1. Non-negative decoration functions and product structure.
Following standard treatment, we now adjust Eβ(γ) to make the decoration functions ΦU (W; γ)

non-negative (see, e.g., [27, Sec. 3.1] or [7, Sec. 2.4]). Let ∇γ =
⋃
b=(y,y+ei)∈γ{b, b+ei, b−ei}. Then

we can consider the decoration functions given by

Φ′
U (W; γ) = |W ∩∇γ |e−(β−C)d(W) +ΦU (W; γ) , (3.2)

for the constant C from Item (iv) from Definition 3.1 above. It is again clear that if Φ(W; γ) satisfies
the properties in Definition 3.1, then so does Φ′

U (W; γ). Moreover, by the decay bound in Item (iv)

applied to ΦU (W; γ), we have that Φ′
U (W; γ) ≥ 0. Let c(β) =

∑
W∩b̸=∅ e

−(β−C)d(W), noting that

c(β) → 0 as β → ∞. Then, we obtain that
∑

W∩∆γ ̸=∅ΦU (W; γ) = −3c(β)|γ|+
∑

W∩∇γ ̸=∅Φ
′
U (W; γ).

Hence, we can write

q̂nU (γ) = exp
(
− Eβ(γ)− 3c(β)|γ|+

∑
W∩∇γ ̸=∅

Φ′
U (W; γ)

) ∏
i≥1

hi<j−1

π̂hiD◦
i
(ϕx ≥ 0, ∀x ∈ D◦

i ) .

For simplicity of notation, we now define

E ∗
β (γ) = Eβ(γ) + 3c(β)|γ| − log

( ∏
i≥1

hi<j−1

π̂hiD◦
i
(ϕx ≥ 0, ∀x ∈ D◦

i )
)
, (3.3)

so that

q̂nU (γ) = exp
(
− E ∗

β (γ) +
∑

W∩∇γ ̸=∅

Φ′
U (W; γ)

)
. (3.4)

In many parts of the paper, we will only care about the total interaction. For simplicity, we define
as shorthand the notation

IU (γ) =
∑

W∩∇γ ̸=∅

Φ′
U (W; γ) , (3.5)

so that we can equivalently write

q̂nU (γ) = exp
(
− E ∗

β (γ) + IU (γ)
)
.
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Recall that the boundary condition n is needed to determine either the heights hi, if viewing γ as
labeled disagreement bonds, or the energy Eβ(γ), if viewing γ as a triple (γ, {Di}, {hi}), so that
the term E ∗

β implicitly depends on n. It will also be convenient to define

β′ = β − c(β) .

Now define ΨU (W, γ) = (exp(Φ′
U ((W; γ))−1)1{W∩∇γ ̸=∅}. We have now ensured that ΨU (W, γ) ≥ 0,

so that the weights can eventually be interpreted as probabilities. For this, observe that we can
write

exp

( ∑
W∩∇γ ̸=∅

Φ′
U (W; γ)

)
=

∏
W∩∇γ ̸=∅

(
(eΦ

′
U (W;γ) − 1) + 1

)
=

∑
W={Wi}

∏
i

ΨU (Wi; γ) ,

where the final sum is over all possible finite collections of components W.

Definition 3.3. Define an animal as a pair Γ = [γ,W], where γ is a disagreement polymer of a
height function in some domain V , and W is a finite collection of connected components of vertices.
We can assign each animal with the weight

q̂nU (Γ) = exp(−E ∗
β (γ))

∏
W∈W

ΨU (W; γ) .

Observe that we can again sum over all possible finite collections W to write

q̂nU (γ) =
∑

Γ=[γ,W]

q̂nU (Γ) . (3.6)

Hence, we will apply the previous notation of PV (A,B) and ẐnV,U (A,B) to animals. More precisely,

we say Γ ∈ PV (A,B) to mean that Γ = [γ,W] for some γ ∈ PV (A,B) and any finite collection of

components W, and ẐnV,U (A,B) is also a partition function for animals through Eq. (3.6).

Definition 3.4. We say a point m = (m1,m2) is a cut-point of Γ if m ∈ Γ and the intersection
of Γ and the vertical line x = m1 is the point m. That is, γ only crosses the line once, and so in
particular no components of W or finite regions Di cross the line.

Suppose Γ = Γ1 ◦Γ2 is the decomposition of Γ before and after a cut point m. More precisely, if
Γ = [γ,W], then we can write Γ1 = [γ1,W1] and Γ2 = [γ2,W2] where γ = γ1 ◦ γ2 for γ1 ∈ PV (A,m)
and γ2 ∈ PV (m,B), and W = W1 ∪ W2 where all components of W1 lie to the left of m and all
components of W2 lie to the right of m. By the definition of the law q̂nU , we immediately have

q̂nU (Γ) = q̂nU (Γ1)q̂
n
U (Γ2) . (3.7)

Remark 3.5. The only property of E ∗
β (γ) that will be used is that

E ∗
β (γ) ≥ (β − c(β))N (γ) =: β′N (γ) . (3.8)

(Recall from Definition 2.2 that N (γ) is the number of bonds in γ, counting the absolute value
of the gradient along the bonds.) Moreover, in bounding the number of disagreement polymers γ
that satisfy some criterion, we will only use the fact that each γ is a connected set of dual bonds,
where each bond is labeled with an integer whose absolute value represents the multiplicity of that
bond. In particular, we will not use any of the additional geometric restrictions that come with the
fact that γ is the disagreement polymer of a height function ϕ; this is only needed to ensure that
the regions Di and heights hi are well-defined. However, to keep notation consistent, we will still
denote the integer label on a bond e by (∇ϕ)e.
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Figure 5. An animal Γ = [γ,W], with cone-points in green. The forward and backward
cones emanating from the cone-points form diamonds which encapsulate Γ. The disagree-
ment polymer γ is in blue, and the components W are in pink.

3.2. Cone-points and irreducible components.
We now define cone-points as a subset of the cut-points. See Fig. 5 for an illustration of the

diamonds formed by the cone-points.

Definition 3.6 (Cone-points). The δ-forward cone from u is the set Y◀
δ (u) := u + {(x, y) ∈ Z2 :

|y| ≤ δx}. Similarly, the backward cone from u is the set Y▶
δ (u) = u − {(x, y) ∈ Z2 : |y| ≤ δx}.

When δ is omitted from the notation, we assume δ = 1. When u is omitted from the notation, we
assume u = (0, 0). For a disagreement polymer γ, u is a cone-point of γ if γ ⊂ Y▶(u) ∩ Y◀(u).
Similarly, for an animal Γ = [γ,W], u is a cone-point for Γ if Γ ⊂ Y▶(u) ∩ Y◀(u).

Definition 3.7 (Irreducible components). An animal Γ ∈ PV (u, v) is called left-irreducible if it
has no cone-points, and Γ ⊂ Y▶(v). Similarly, Γ is right-irreducible if it has no cone-points and
Γ ⊂ Y◀(u). We say Γ is irreducible if it is both right and left irreducible. The set of all left-
irreducible, right-irreducible, and irreducible animals with starting point at o∗ is denoted AL,AR,A
respectively. (So each of these sets consist of Γ in

⋃
B PV (o∗, B).)

A few remarks are in order. First note that the only difference between A being a cone-point
for γ vs. Γ is the additional criteria on the clusters in W. Note also that by definition, every cone-
point is a cut-point. Suppose now that Γ has at least two cone-points. Then, we can decompose Γ
according to all of its cone-points, so that

Γ = Γ(L) ◦ Γ(1) ◦ . . . ◦ Γ(k) ◦ Γ(R)

where Γ(L) ∈ AL, each Γ(i) ∈ A, and Γ(R) ∈ AR. Repeatedly applying Eq. (3.7), we obtain the
product structure of the weights:

q̂nU (Γ) = q̂nU (Γ
(L))q̂nU (Γ

(R))
k∏
i=1

q̂nU (Γ
(i)) . (3.9)

We will now show that a typical animal Γ has lots of cone-points. First, suppose S is a simple
(non self-intersecting) path of dual bonds, and is given the weight e−β|S|. Define also the partition
function

ZSW
V (A,B) =

∑
S:A 7→B
S∈V

e−β|S| ,

where the sum is over all simple paths from A to B which stay inside V . We will focus our attention
on domains for which a typical simple path S drawn from the measure given by the above weights
will have linear length and number of cone-points.
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Definition 3.8. Fix ε, δ ∈ (0, 1), and A,B with B ∈ Y◀
δ (A) \ {A}. We call V an ε-nice domain

with respect to A,B if there exists β0, v0, δ0, c > 0 such that uniformly over β ≥ β0 and r ≥ 1 + ε,
we have

ZSW
V (A,B | |S| ≥ r∥A−B∥1) ≤ ce−v0βr∥A−B∥1ZSW

V (A,B) , (3.10)

ZSW
V (A,B | |Cpts(S)| < 2δ0∥A−B∥1) ≤ ce−v0β∥A−B∥1ZSW

V (A,B) . (3.11)

Throughout this paper, we will refer back to the following cigar shape.

Definition 3.9 (Cigar shape). Fix A,B with angle denoted θA,B and B1 − A1 = MA,B. Define

the curves C±
A,B by

C±(t) = tan(θA,B)(t−A1) +

(
(t−A1)(MA,B − t+A1)

MA,B

)1/2

(logL)2 .

Define the cigar shape C = C (AB) as the region in between the curves C+
A,B and C−

A,B.

Remark. The domains that we will consider in this paper include Z2, the upper half plane H+,
and domains containing C (AB) or C (AB) ∩ H+. In each setting, Eq. (3.10) is easily satisfied by
a Peierls argument mapping S to a minimal length path from A to B. The existence of a linear
number of cone-points was established on the domain Z2 in [8, Section 2.7], but the proof method
is robust and has since been applied to reach the same conclusion for other domains, such as H+ in
[27, Lemma 3]. By the product structure of Eq. (3.7), this implies that for the domains Z2 and H+,
the simple paths behave like random walks. As C (AB) is defined to contain a typical random walk
from A to B, it is then easy to extend the results to domains containing C (AB) or C (AB) ∩ H+

as well.

To go from simple paths to disagreement polymers, it will be useful to define the upper and
lower envelopes of a disagreement polymer.

Definition 3.10. Suppose γ ∈ PV (A,B). The upper envelope UE(γ) is the highest (by lexico-
graphical ordering) simple path from A to B that is a subset of the bonds of γ (so in particular,
the labels of the bonds are ignored). We can analogously define the lower envelope LE(γ).

The next lemma states that for nice domains, a typical animal Γ has linear length and number
of cone-points.

Lemma 3.11. Fix ε, δ ∈ (0, 1), and A,B with B ∈ Y◀
δ (A) \ {A}. Let V be an ε-nice domain, and

U any domain. There exists β0, v0, δ0, c > 0 such that uniformly over n, β ≥ β0, and r ≥ 1 + 2ε,
we have

ẐnV,U (A,B | |γ| ≥ r∥A−B∥1) ≤ ce−v0βr∥A−B∥1ẐnV,U (A,B) , (3.12)

ẐnV,U (A,B | |Cpts(Γ)| < 2δ0∥A−B∥1) ≤ ce−v0β∥A−B∥1ẐnV,U (A,B) . (3.13)

Proof. The proof of Eq. (3.12) is standard, we simply compare γ to γ0, a shortest path from 0 to y
where all the edge labels are 1. Note that since V is ε-nice, the length of γ0 is at most (1+ε)∥A−B∥.
We have by Eq. (3.4) and Item (iv) of Definition 3.1 that

q̂nU (γ) ≤ q̂nU (γ0) exp(−E ∗
β (γ) + β′|γ0|+ e−(β′−C)(|γ|+ |γ0|)) . (3.14)

Now, the number of rooted connected sets of bonds of size k is at most Ck. For each such set of
bonds γ, we then obtain the following upper bound by allowing each (∇ϕ)e to take on any value
in Z \ {0}, and applying Eq. (3.8):∑

γ∈PV (A,B),
|γ|=k

exp(−E ∗
β (γ)) ≤ Ck

∏
e∈γ

∞∑
j=1

2 exp(−β′j) ≤ Cke−β
′k . (3.15)
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Hence, we have

ẐnV,U (A,B | |γ| ≥ r∥A−B∥1) ≤
∑

k≥r∥A−B∥1

∑
γ∈PV (A,B),

|γ|=k

q̂nU (γ)

≤ q̂nU (γ0)
∑

k≥r∥A−B∥1

exp(−β′k + β′(1 + ε)∥A−B∥1 + Ck)

≤ q̂nU (γ0)C exp(−(β′ − C)r∥A−B∥1 + β′(1 + ε)∥A−B∥1)

≤ Ce−v0β
′r∥A−B∥1ẐnV,U (A,B)

as long as v0 < 1− 1+ε
r − C

β′ .

To show Eq. (3.13), we will first show the same inequality holds when considering cone-points of
γ instead of Γ. First note that by Item (iv) we have∣∣∣∣∣log exp

(
− E ∗

β (γ) + IU (γ))

exp
(
− E ∗

β (γ))

∣∣∣∣∣ ≤ e−(β−C)|γ| . (3.16)

As e−(β−C)|γ| is smaller than v0β for sufficiently large β, it suffices to prove the bound replacing

q̂nU (γ) with q̃n(γ) := e−E ∗
β (γ). That is, if we define Z̃nV,U (A,B) =

∑
γ∈PV (A,B) q̃

n(γ), we will show

that

Z̃nV,U (A,B | |Cpts(γ)| < 2δ0∥A−B∥1) ≤ ce−v0β∥A−B∥1Z̃nV,U (A,B) . (3.17)

Now, for every γ ∈ PV (A,B), let S = UE(γ). Observe that since each S is a simple path, the
energy E ∗

β (γ) is simply β times the length of the path, β|γ|. (In particular, there are no domains
Di enclosed by γ that contribute an area term to the energy, and so there is no dependence on n
anymore). Hence, we have ∑

S:S=UE(γ),γ∈PV (A,B)

q̃n(S) = ZSW
V (A,B) . (3.18)

Moreover, for each γ such that UE(γ) = S, we can view the set of bonds in γ as a collection
{S, (Be)e∈S} where Be are connected components of dual bonds indexed by the first bond e ∈ S
that the component is connected to. For every S, denote by PV (S) the set of labeled disagreement
polymers γ such that UE(γ) = S. Using Eq. (3.8), we can upper bound the sum over γ ∈ PV (S) by
enumerating over collections {S, (Be)e∈S} and then enumerating over adding integer labels on γ:∑

γ∈PV (S)

q̃n(γ) ≤
∏
e∈S

(1 +
∑
k≥2

e−β
′(k−1) +

∑
k≤−1

e−β
′(|k|−1))

(
1 +

∞∑
l=1

C l(

∞∑
j=1

2e−β
′j)l

)
q̃n(S)

≤ (1 + Ce−β)|S|q̃n(S)

≤ exp(Ce−β|S|)q̃n(S) .

The sums over k captures the possibilities that at each bond e ∈ γ, the gradient (∇ϕ)e is either ≥ 2
or ≤ −1 instead of 1. The sum over l includes the possible sizes of the connected component Be,
and there are C l possible components of size l for some constant C. For each such component Be,
each bond of Be can also have a height disagreement of j along that edge for |j| ≥ 1. The above
with Eq. (3.18) implies that if E is measurable with respect to UE(γ), then

Z̃nV,U (A,B | E , |UE(γ)| ≤ 1.1∥A−B∥1) ≤ exp(Ce−β∥A−B∥1)ZSW
V (A,B | E , |UE(γ)| ≤ 1.1∥A−B∥1) .

(3.19)
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Combining Eqs. (3.11) and (3.19) thus implies that

Z̃nV,U (A,B | Cpts(UE(γ)) < 2δ0∥A−B∥1, |UE(γ)| ≤ 1.1∥A−B∥1)

≤ e−cβ∥A−B∥1ZSW
V (A,B) ≤ e−cβ∥A−B∥1Z̃nV,U (A,B) ,

where the last inequality follows as ZSW
V (A,B) is just a restriction of Z̃nV,U (A,B) to simple paths.

Moreover, since |UE(γ)| ≤ |γ|, we can also bound the event that UE(γ) is too long. We have
from Eq. (3.12) and Eq. (3.16) that

Z̃nV,U (A,B | |UE(γ)| > 1.1∥A−B∥1) ≤ e−cβ∥A−B∥1Z̃nV,U (A,B) . (3.20)

Hence, to prove Eq. (3.17), it suffices to show

Z̃nV,U (A,B | Cpts(γ) < 3
2δ0∥A−B∥1,Cpts(UE(γ)) ≥ 2δ0∥A−B∥1,|UE(γ)| ≤ 1.1∥A−B∥1)

≤ e−cβ∥A−B∥1Z̃nV,U (A,B) .
(3.21)

However, observe that in the computation above Eq. (3.19), each component Be adds on a multi-

plicative factor of O(e−β|Be|) to the weight of q̃n(S) (more precisely, this factor is in the interval

[e−β|Ce|, (
∑∞

j=1 2e
−βj)|Ce|], depending on the admissible assignments of height differences along the

edges of Be). In [7, Propositions 2.12], it was proved that for an animal Γ = [γ,W], many cone-
points of γ are also cone-points of the whole animal Γ, precisely in the sense of Eq. (3.21). The
proof was a combinatorial computation using the fact that each cluster W of the animal contributes
a factor of e−(β−C)d(W) to the weight, and hence the exact same computation proves Eq. (3.21) with
components Be taking the role of clusters. This finally establishes Eq. (3.17). From here we can
show that many cone-points of γ imply many cone-points of Γ to conclude Eq. (3.13) again using
the computation of [7, Propositions 2.12] (this time actually using it to enumerate over clusters in
the animal), as it did not matter there that γ had the simpler geometry of a simple path. ■

3.3. Surface tension existence and properties. Fix n (which determines the heights hi in the

weight q̂nU (γ)), and fix a unit vector n⃗ with angle θ. Recall the definitions of PZ2 and ẐnZ2,Z2 from

the beginning of Section 3. Let N be such that the point N n⃗ lies on the lattice. Define the surface
tension as

τβ,n(θ) := τβ,n(⃗n) := − lim
N→∞

1

∥N n⃗∥1
log ẐnZ2,Z2(o

∗, N n⃗) (3.22)

where the limit is over N such that N n⃗ lies on the lattice. We will use both the notation of n⃗ and θ.
As usual, if the above limit exists, we can extend τβ,n to a function over all of R2 by homogeneity.
We will show the following proposition about the surface tension.

Proposition 3.12. The above limit exists and satisfies the following properties:

(i) The convergence of the limit is uniform over all unit vectors n⃗.
(ii) τβ,n is analytic as a function from R2 to R2

(iii) τβ,n is strictly convex, i.e., for any two vectors u, v pointing in different directions,

τβ,n(u) + τβ,n(v) > τβ,n(u+ v) .

(iv) τβ,n is symmetric under rotations by π/4, reflections across the x and y axis and the diag-
onals y = ±x.

The statement of Item (iv) follows by construction: it is clear that each listed symmetry de-
fines a bijection from PZ2(0, N n⃗) to PZ2(0, N n⃗′), where n⃗′ is the image of n⃗ under the symmetry.
The energy, E ∗

β (γ), is preserved under the symmetry, since N (γ) remain unchanged, the encapsu-

lated domains Di are just rotated/reflected so that their corresponding area terms are unchanged,
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and finally the functions Φ(W; γ) are also preserved under symmetries as stated in Item (iii) of
Definition 3.1.

The statements of Items (i) to (iii) (and many more properties) regarding the surface tension of
a polymer model have been well studied in [17, Ch. 4] in the case where the shape of γ is a contour
and E ∗

β (γ) = β′|γ|. (See [17, Sec. 4.12] for analyticity and uniform convergence, and [17, Sec. 4.21]

for strict convexity.) We provide a brief review of the beginning proof ideas there in order to show
what adjustments need to be made in our setting. (The careful reader will notice slight differences
due to conventional inconsistencies, such as a choice of β vs. 2β in the law of γ — these are
inconsequential and hence ignored.)

Remark 3.13. The key point is that the polymer model in [17] is shown to be a perturbation
of minimal length paths between the start and end points. Even though our model has more
complicated features — γ is allowed to be any connected component of bonds, and there is also an
additional penalty in the area term for finite regions enclosed by γ — any portion of γ that is not
locally behaving like a minimal length path is sufficiently penalized due to Eq. (3.8), so that our
setting is also a perturbation of minimal length paths.

We begin by recalling [17, Secs. 4.1–4.4], which set up the following definitions.8 Define the
point-to-line polymers

PZ2(N) :=
⋃
n⃗

PZ2(o∗, tn⃗N ) .

Let h(γ) be the difference in height between the start and end of γ. That is, if γ ∈ PV (A,B), then
h(γ) := B2 − A2, the difference between the y-coordinates of B and A. Define also the partition
function with a complex parameter z as

ẐnZ2,Z2(N, z) =
∑

γ∈PZ2 (N)

exp
(
− E ∗

β (γ) +
1
2β

′h(γ)z +
∑

W∩∇γ ̸=∅

Φ′
Z2(W; γ)

)
(Ultimately, we only care about z = 0, but including this parameter is needed for studying the
characteristic polynomial of a random variable in later sections of [17].) Recalling the defini-
tions of cut-points and animals Γ = [γ,W] from Section 3.1 as well as the notation Ψ(W; γ) =
(exp(Φ′((W; γ))− 1)1{W∩∇γ ̸=∅}, we can define the animal weights q̂nz (Γ) for Γ = [γ,W]

q̂nz (Γ) := exp(−E ∗
β (γ) +

1
2β

′h(γ)z)
∏
W∈W

Ψ(W) .

As before, we can then obtain a product structure for the weights,

ẐnZ2,Z2(N, z) =
∑

Γ0,...,Γl

l∏
i=1

q̂nz (Γ) ,

where {Γi}li=1 is the decomposition by cut points of some animal whose polymer γ is in PZ2(N).
We assume that each resulting Γi cannot be further decomposed by cut points, and we call such
a Γi as wild (not to be confused with the previously defined irreducible components, which refer
specifically to cone-points).

Next, in [17, Sec. 4.5], the authors consider only Γ capturing the β → ∞ behavior. That is,
they consider restricting to the set of Γ = [γ,W] where γ has minimal length in the sense that
there are no two horizontal bonds with the same x-coordinate, and W = ∅. This is denoted by
I∞
N,⃗n, a notation that we will leave unchanged to emphasize that even though we start with a more

complicated set of polymers γ than in [17], once we impose the above restrictions, we are reduced

8Dictionary between the notation of this paper and [17], modulo that this paper considers a more general set of

polymers: PZ2(o∗, tn⃗N ) = IN,⃗n, PZ2(N) = IN , the complex parameter z is denoted H, q̂nz (Γi) = ΨH(ξ̂i), Ẑ
n
Z2,Z2(N, z) =

Ξ(N,H).
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to the same set of Γ considered there (and with the same weight as well). The case of no fixed
endpoint is also considered, with I∞

N :=
⋃

n⃗ I∞
N,n⃗

. The partition function summing over just animals

in I∞
N is then directly computed ([17, Eq. 4.5.7-8]) as∑

Γ∈I∞
N

q̂nz (Γ) =

(
sinh(β′)

cosh(β′)− cosh(zβ′)

)N
=: (Qz)

N .

Now for each wild animal Γi in the decomposition of some Γ, define J(Γi) as the projection onto
the x-coordinate of the starting and ending cut-points of Γi. In [17, Sections 4.6–4.7], the focus is
on the sum over all possible wild animals projecting onto a fixed interval I,∑

Γi:J(Γi)=I

q̂nz (Γi) .

To be precise, the sum should be interpreted either as restricting to Γi rooted at the origin, since
q̂nz (Γi) is invariant under vertical shifts of Γi. The key bound in [17, Lemma 4.7] shows that this
decays exponentially with (β − C)|I| relative to the total weight of (not necessarily wild) animals
with J(Γ) = I and Γ ∈ I∞

N . This is a mathematical statement of the perturbation described in
Remark 3.13. The proof there relies on the fact that the polymers are contours, and thus will need
to be modified to fit our setting. We do this in Lemma 3.14.

In [17, Sec. 4.8], the key bound is used with the cluster expansion machinery of [31] to obtain a

formula for log ẐnZ2,Z2(N, z) as a sum of some abstract functions Φ(I) over all intervals I ⊂ [0, N ].

From here onwards, the authors work primarily with the functions Φ and the properties of Φ proven
in [31], which otherwise loses the information of the original polymer model. The first exception
is in [17, Sec. 4.14] where the polymer weights are reintroduced to add extra parameters to the
weights. However, the same cluster expansion machinery is immediately used, justified also by
Lemma 3.14 (see the equation below [17, Eq. 4.14.18]), after which the authors work with the
resulting Φ(I) functions again. The second exception is in the proof of the sharp triangle inequality
[17, Sec. 4.21]. It is straightforward to check that the proof there requires only the results proved
previously in the chapter, and is not impacted by our different polymer setting. Hence, to obtain
the results of [17, Chapter 4] in our setting, it suffices to reprove the key bound given in [17, Lemma
4.7], which we now state more explicitly.

Lemma 3.14. Fix δ > 0. Let z, zr for r = 1, . . . , N be complex numbers such that |ℜz| < 2− δ/β′.
Let s be a real number in [0, δ/3]. For any interval I ⊂ [0, N ] with integer endpoints, define

X̂N,s(I) := (
∏
r∈I

Qzr)
−1

∑
Γ:J(Γ)=I

q̂nz (Γ) exp(s|I|) .

Then, there exists some β0 and constant c such that for all N , β ≥ β0, z, zr, and all such intervals
I, we have

|X̂N,s(I)| ≤ exp(−(β − β0)(|I| − 1)) .

Proof. Let Γ = (γ,W1, . . . ,Wi), and let J(Γ) = I = [m′,m′′]. We can write N (γ) = Nh(γ)+Nv(γ)
where Nh(γ),Nv(γ) denote the contribution to N (γ) from horizontal and vertical bonds of γ,
respectively. Moreover, we define N ′

h (γ) := Nh(γ) − (|I| − 1) and N ′
v (γ) := Nv(γ) − h(γ). We

begin with the observation that for every integer m′ < m < m′′, either γ intersects the vertical line
x = m more than once, or there is some cluster W that intersects the line x = m. This implies that

|J(γ)| − 1 ≤ N ′
h (γ) +

∑
W∈Γ

d(W) . (3.23)

(Note that this is off from [17, Eq. 4.7.6] by a factor of 1/2, because if γ is required to be a contour,
then the only way γ can intersect a vertical line more than once is to intersect it three times. The
only impact is that the decay bound in the lemma is off by a factor of 2, which is of no consequence.)
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By the assumption in Eq. (3.8), for an upper bound we can replace E ∗
β (γ) with β

′N (γ) in q̂nz (Γ).

With this simplification we can now follow the calculations exactly as up to [17, Eq. 4.7.18] to
obtain

|X̂N,γ(I)| ≤ e−(β−β1)(|I|−1)
∑

γ:J(γ)=I

exp(−δ
2
|h(γ)| − β′(Nv(γ)− |h(γ)|)− β2Nh(γ)) , (3.24)

where β1, β2 are just constants that can be taken arbitrarily large depending on δ, but not dependent
on β′. (Note that above [17, Eq. 4.7.13], the additional bound |h(γ)| ≤ Nv(γ) is used to upper
bound − δ

2 |h(γ)|−β
′(Nv(γ)−|h(γ)|) ≤ − δ

2Nv(γ), which is in the final expression obtained in [17, Eq.
4.7.18], the analog of Eq. (3.24) above. We will need the sharper bound as we have written.)

It now remains to show that the sum

Ξ :=
∑

γ:J(γ)=I

exp(−δ
2
|h(γ)| − β′(Nv(γ)− |h(γ)|)− β2Nh(γ))

is bounded by a constant independent of β′. First observe that in order for γ to climb height h(γ),
we need at least |h(γ)| vertical bonds e such that sgn((∇ϕ)e) = sgn(h(γ)). Hence, we partition the
bonds of γ into the three sets

B1 = {e ∈ γ : sgn((∇ϕ)e) = sgn(h(γ)), e is horizontal}
B2 = {e ∈ γ : sgn((∇ϕ)e) ̸= sgn(h(γ)), e is horizontal}
B3 = {e ∈ γ : e is vertical} ,

and obtain the upper bound

Ξ ≤
∑

γ:J(γ)=I

∏
e∈B1

e−
δ
2
−β′(|(∇ϕ)e|−1)

∏
e∈B2

e−β
′|(∇ϕ)e|

∏
e∈B3

e−β2|(∇ϕ)e| . (3.25)

We next enumerate over the bonds by partitioning γ into fragments. For every γ such that
J(γ) = I, we consider slicing γ at all vertical lines x = xi for integer xi, so that we are cutting all
horizontal bonds in half. We end up with a collection of fragments F , each consisting of a (possibly
empty) vertical segment γ, and at least one (but possibly more) horizontal half-bond attached to
it. Each bond (or half-bond) also inherits the label (∇ϕ)e from γ.

For a fragment F , we can denote its height by h(F ), and the number of vertical and horizontal
bonds by Nv(F ) and Nh(F ) respectively (accounting for the labels as in Definition 2.2) where
now Nh(F ) may be a half integer. We additionally define a marked fragment as a pair (F, e) of
a fragment and one of its horizontal half-bonds. The marked half-bonds will tell us later how to
reconstruct γ given these fragments. Finally, if R is any connected (in R2) set of vertical bonds
and horizontal half bonds, we call a horizontal half-bond of R open if it is not part of a whole
horizontal bond in R. We will consider an ordering of open half-bonds of R by associating to each
open half-bond its point at which another half-bond could join to it to create a whole bond, and
then applying a lexicographic ordering to such points.

We now construct an injection from γ to a list of marked fragments F = F(γ), to be indexed as
F[i]. Starting at i = 1, set F[1] to be (F, ∅) where F is the fragment containing the unique half-bond
of γ intersecting the left-most vertical line x = m′ (we allow e = ∅ for this starting fragment only).
At each step i, define Ri to be the subset of γ consisting of the fragments which have been added
to F by the end of step i, so that R1 is the fragment F[1] (rooted at the origin, where γ is assumed
to be rooted). Now let i = 2. Let e be the minimal open horizontal half-bond of Ri−1. Let F be
the fragment in γ \Ri−1 that contains the half-bond e′ such that e′ and e combine to make a whole
bond in γ. Set F[i] = (F, e′). Then define Ri as instructed above, set i = i+1, and repeat until we
have reached RN = γ, where N is the number of fragments in γ.

Now we show that this map is injective. Suppose we start with F and we know that F = F(γ)
for some γ, and that F was built through a sequence of Ri as described above (but of course we do
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not know what γ or the Ri are). We know the number of fragments in γ is N := |F|. We start by
placing the fragment of F[1] so that its leftmost horizontal bond starts at the origin, and call this
T1. By construction, T1 = R1. Now set i = 2. We know Ti−1 = Ri−1. Let e be the minimal open
half-bond of Ti−1. Calling F[i] = (F, e′), let Ti be the result of adding F to Ti−1 so that e′ and e
join together to make a whole vertical bond. By construction, Ri also results from attaching (F, e′)
to the minimal open half-bond of Ri−1 via e′. Since Ri−1 = Ti−1, then Ri = Ti. Now set i = i+ 1
and repeat until we have exhausted the whole list F, so we have reached TN . Since TN = RN = γ,
we are done as we have constructed γ only from knowing F.

Thus, we can upper bound the sum over γ by a sum over marked fragments. Consider F with
height h(F ) = k. We next bound the contribution to Eq. (3.25) of the bonds in such a fragment.
We begin with the horizontal half-bonds. There are 2k + 2 choices of where to put the marked
half-bond. Accounting for the possible label of this half bond, its total contribution to the weight
is at most

(2k + 2)
∞∑
j=1

2e−jβ2/2 .

Similarly, each of the other 2k + 1 locations can either have a labeled half-bond or not, for a total
contribution of

(1 +
∞∑
j=1

2e−jβ2/2)2k+1 .

For the k vertical bonds, we split up into the two cases of B1 and B2. Assume without loss of
generality that sgn(h(γ)) = 1, as the −1 case is analogous and the result is the same. For e ∈ B1,

we get a contribution of
∑

j≥1 e
− δ

2
−β′(j−1). For e ∈ B2, we get a contribution of

∑
j≤−1 e

−β′|j|.
Hence, we get a total contribution of

(
∑
j≥1

e−
δ
2
−β′(j−1) +

∑
j≤−1

e−β
′|j|)k .

Altogether, we have that

∞∑
k=0

∑
F :h(F )=k

∏
e∈B1∩F

e−
δ
2
−β′(|(∇ϕ)e|−1)

∏
e∈B2∩F

e−β
′|(∇ϕ)e|

∏
e∈B3∩F

e−β2|(∇ϕ)e| (3.26)

≤
∞∑
k=0

(
(2k + 2)

∞∑
j=1

2e−jβ2/2
)(

1 +

∞∑
j=1

2e−jβ2/2
)2k+1(∑

j≥1

e−
δ
2
−β′(j−1) +

∑
j≤−1

e−β
′|j|

)k
≤

∞∑
k=0

Ce−β2/2kecke
−β2/2

e−kδ/3

for sufficiently large β′ compared to δ. We can then choose β2 = β2(δ) and a constant C = C(δ) so

that ke−kδ/3+cke
−β2/2 < Ce−kδ/4 for all k ≥ 0. Then the above sum is upper bounded by

∞∑
k=0

Ce−β2/2kecke
−β2/2

e−kδ/3 ≤ C ′e−β2/2
1

1− e−δ/4
≤ C ′′e−β2 . (3.27)

Finally, enumerating over γ as a collection of marked fragments (and ignoring any other compat-
ibility conditions) and noting that there must be at least |I| fragments, we have by Eqs. (3.25)
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to (3.27) that

Ξ ≤
∑
N≥|I|

∑
F:|F|=N

N∏
i=1

∏
e∈B1∩F[i]

e−
δ
2
−β′(|(∇ϕ)e|−1)

∏
e∈B2∩F[i]

e−β
′|(∇ϕ)e|

∏
e∈B3∩F[i]

e−β2|(∇ϕ)e|

≤
∑
N≥|I|

(∑
F

∏
e∈B1∩F

e−
δ
2
−β′(|(∇ϕ)e|−1)

∏
e∈B2∩F

e−β
′|(∇ϕ)e|

∏
e∈B3∩F

e−β2|(∇ϕ)e|
)N

≤
∑
N≥|I|

(C ′′e−β2)N

≤ e−(β2−C)|I|,

which is a β independent constant. ■

As a result of the above discussion, we can now conclude the remaining properties of Proposi-
tion 3.12, as well as the following results from [17, Chapter 4]:

Proposition 3.15. The following statements hold for any finite n and sufficiently large β. Let
A = (A1, A2), B = (B1, B2) be any two points, and assume that A is to the left of B. Let θA,B,

MA,B, ℓA,B denote the angle, horizontal length, and length of the line segment AB respectively, and
assume that |θA,B| is bounded away from π/2. Let S = S(A,B) denote the infinite vertical strip
with A,B on its boundary, and let W ⊃ S.

(i) [17, Eq. 4.15.4] Let ht(γ) be the maximum height of γ above AB at the line x = A1 + t.
There exist constants C, c > 0 such that for any A,B as above,

ẐnW,Z2(A,B | ht(γ) ≥ j) ≤ C
√
MA,Be

−c(j∧j2/t)ẐnW,Z2(A,B) .

Let ℓt(γ) be the number of bonds in γ to the left of x = A1+ t. For some constant K(θA,B),
we have

ẐnW,Z2(A,B | ℓt(γ) ≥ j +K(θA,B)t) ≤ C
√
MA,Be

−c(j∧j2/t)ẐnW,Z2(A,B) .

(ii) [17, §4.12.3] There exists C > 0 such that for any A,B as above,∣∣∣log ẐnZ2,Z2(A,B) + τβ,nℓA,B + 1
2 logMA,B

∣∣∣ ≤ C , and∣∣∣log ẐnS,Z2(A,B) + τβ,nℓA,B + 1
2 logMA,B

∣∣∣ ≤ C .

Remark. Note that Item (i) above was originally written only forW = Z2. However, an immediate
consequence of Item (ii) is that for any W ⊃ S,∣∣∣log ẐnZ2,Z2(A,B)− log ẐnW,Z2(A,B)

∣∣∣ ≤ C , (3.28)

and this implies the generalization.

Now assume additionally that 1 ≤ ℓA,B ≪ L. We next prove two useful lemmas that allow us to
switch between domains and modify interactions, as long as we contain the cigar shape capturing
typical random walk fluctuations (recall Definition 3.9).

Lemma 3.16. Let V ⊃ C (AB). Then,

| log ẐnV,Z2(A,B)− log ẐnZ2,Z2(A,B)| ≤ C .

Consequently, both the large deviation bounds in Item (i) and the surface tension result in Item (ii)

of Proposition 3.15 hold for ẐnV,Z2(A,B).
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Proof. It suffices to consider V = C (AB). It is clear that Ẑn
C (AB),Z2(A,B) ≤ ẐnZ2,Z2(A,B). To

show the other side, we take a union bound over Item (i) of Proposition 3.15 to obtain

ẐnS,Z2(A,B | γ ̸⊂ C (AB)) ≤MA,Be
−c(logL)2ẐnS,Z2(A,B) = o(1)ẐnS,Z2(A,B) .

This implies that

Ẑn
C (AB),Z2(A,B) ≥ (1− o(1))ẐnS,Z2 ,

and then we can apply Eq. (3.28) to conclude. ■

Lemma 3.17. Let V ⊃ C (AB). Let W contain the infinite vertical strip with sides x = A1 +
(logL)2 and x = B1 − (logL)2. Then, we have

| log ẐnV,W (A,B)− log ẐnV,Z2(A,B)| ≤ C(logL)2 .

Proof. Let TA,B be the set of points to the left of x = A1 + 2(logL)2 and to the right of x =
B1 − 2(logL)2. Since W contains the strip, we have

| log q̂nW (γ)− log q̂nZ2(γ)| ≤ Ce−β|γ ∩ TA,B|+ e−c(logL)
2 |γ ∩ TcA,B| .

Let P̂, Ê be the probability and expectation for the polymer model with weight q̂nZ2 and partition

function ẐnV,Z2 . Then we have

ẐnV,W (A,B)

Ẑn
V,Z2(A,B)

≤ Ê[exp(Ce−β|γ ∩ TA,B|+ e−c(logL)
2 |γ ∩ TcA,B|)] .

An easy Peierls argument shows that

P̂(|γ| ≥ 2ℓA,B + j) ≤ e−(β−C)j ,

while Lemma 3.16 shows that |γ ∩ TA,B| has an exponential tail past O((logL)2) that beats the

gain of exp(Ce−β|γ ∩ TA,B|) for sufficiently large β, so that we have

ẐnV,W (A,B)

Ẑn
V,Z2(A,B)

≤ eC(logL)2 .

For the lower bound, we have

ẐnV,W (A,B)

Ẑn
V,Z2(A,B)

≥ Ê[exp(−Ce−β|γ ∩ TA,B| − e−c(logL)
2 |γ ∩ TcA,B|)]

≥ e−C(logL)2P̂(|γ| ≤ 3ℓA,B, |γ ∩ TA,B| ≤ 2(logL)2)

≥ (1− o(1))e−C(logL)2 . ■

We end with a payoff of this subsection - one of the main benefits of comparing two partition
functions is the ability to show an event has low probability in one polymer model by bounding its
probability in a simpler polymer model. This is stated more generally as follows.

Lemma 3.18. Let V1, V2, U1, U2 be any domains such that V1 ⊂ V2 and U1 ⊂ U2. Suppose we have
the bounds on the partition functions∣∣∣log ẐnV1,U1

(A,B)− log ẐnV1,U2
(A,B)

∣∣∣ ≤ f1(A,B) , and (3.29)∣∣∣log ẐnV1,U2
(A,B)− log ẐnV2,U2

(A,B)
∣∣∣ ≤ f2(A,B) , (3.30)

where we allow the more general form of ΦU as in Remark 3.2. Then, for any subset E ⊂ PV1(A,B)
such that

ẐnV2,U2
(A,B | E) ≤ pẐnV2,U2

(A,B) ,
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we also have

ẐnV1,U1
(A,B | E) ≤ e2f1(A,B)+

1
2f2(A,B)√pẐnV1,U1

(A,B) .

Proof. Let Pn
V2,U2

be the probability measure given by

Pn
V2,U2

(γ) =
q̂U2(γ)

ẐnV2,U2
(A,B)

,

and let EnV2,U2
be expectation under Pn

V2,U2
. Let Pn

V1,U2
,Pn

V1,U1
be defined similarly. Define ∆I(γ) =

IU1(γ)− IU2(γ). Then, we have

EnV1,U2
[exp(∆I(γ))] =

ẐnV1,U1
(A,B)

ẐnV1,U2
(A,B)

and Pn
V1,U1

(E) =
EnV1,U2

[1E exp(∆I(γ))]

EnV1,U2
[exp(∆I(γ))]

.

The assumption Eq. (3.29) implies that EnV1,U2
[exp(∆I(γ))] ≥ e−f1(A,B). Applying the bound with

respect to Φ̃U1 := 2ΦU1 − 2ΦU2 (justified since U1 ⊂ U2), we also have EnV1,U2
[exp(2∆I(γ))] ≤

ef1(A,B). By Cauchy-Schwarz for the first inequality and Eq. (3.30) for the second, this implies that

Pn
V1,U1

(E) ≤ e2f1(A,B)
√
Pn
V1,U2

(E) ≤ e2f1(A,B)+
1
2f2(A,B)

√
Pn
V2,U2

(E) ,

concluding the proof. ■
3.4. Wulff Shape. In this subsection, we recall a few facts about the Wulff shape, which will
allow for a more fine-tuned analysis of the polymers via Proposition 3.19. For any function τ , we
can define a corresponding Wulff shape

W = W(τ) :=
⋂
y∈R2

{h ∈ R2 : h · y ≤ τ(y)} . (3.31)

Now for τ being the surface tension τβ,n defined in Eq. (3.22), by definition we have

log ẐnZ2,Z2(o
∗, y) = −τβ,n(y)(1 + o∥y∥1(1)) .

Thus, the sum
∑

y∈Z2 eh·yẐnZ2,Z2(o
∗, y) converges if and only if h ·y < τβ,n(y) for all y ∈ Z2 such that

∥y∥1 is sufficiently large. But then since τβ,n was defined by homogeneity and is also a continuous
function, this is equivalent to requiring that h · y < τβ,n(y) for all y ∈ R2. Hence, an equivalent
definition for the Wulff shape is

W :=

{
h ∈ R2 :

∑
y∈Z2

eh·yG(y) <∞
}
.

Now, for any h ∈ R2, we can define the weight

W h(Γ) = eh·X(Γ)q̂nZ2(Γ)

where X(Γ) is the difference between the ending and starting point of Γ (i.e., if Γ ∈ PZ2(A,B), then
X(Γ) := B − A). A special value of h will be hny = ∇τβ,n(y), so that by the homogeneity of τβ,n,
we have hny · y = τβ,n(y). Note that hny is only dependent on the angle of y and not the length.
We next state an important result which allows us to view the weights of irreducible components
as probabilities, when normalized by eh

n
y ·X(Γ). Recall the definitions of the sets A,AL,AR from

Definition 3.7.

Proposition 3.19. For any δ ∈ (0, 1), there exists β0 such that for all β > β0, any y ∈ Yδ(o∗)\{o∗},
we have ∑

Γ∈A
Phny (Γ) :=

∑
Γ∈A

eh
n
y ·X(Γ)q̂nZ2(Γ) = 1 .
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Moreover, the expectation is collinear to y, i.e. there exists some constant α = α(β, y) > 0 such
that

Ehny [X(Γ)] = αy .

Lastly, there exists a constant νg > 0 such that for k ≥ 1,∑
Γ∈AL∪AR

Phny (Γ)1{|Γ|>k} ≤ Ce−νgβk .

This last exponential decay property holds more generally, replacing hny with any h ∈ W, or replacing

Phny (Γ) with eh
n
y ·X(Γ)q̂nU (Γ) for any domain U .

Versions of this proposition have appeared before in slightly different settings [7, 27, 29]. The
closest to our setting is the treatment in [7], where the definition of cones is exactly the same. The
only differences are in the weights q̂nZ2(Γ) and the set of admissible Γ, both of which are irrelevant
to the proof of [7, Prop. 2.14, Eq. 5.18], which only uses the properties of the surface tension in
Eq. (3.22) and the existence of cone-points in Lemma 3.11. Hence, the result also holds in our
disagreement polymer setting.

We can now conclude by defining the variance σ2n which appears in Theorem 1.1.

Definition 3.20 (Variance of the effective 2d RW). For the particular choice of y = (1, 0), define σ2n
as the variance of the y-coordinate X(Γ)2 under the measure Phny from Proposition 3.19.

4. Initial upper bound on the displacement of a level-line

The goal of this section is to prove Theorem 4.4, stating that w.h.p., the (H−n) level-line contains
a translation of Wulff shapes, which in turn provides an initial upper bound on the displacement
of the level-lines from the sides of ΛL. We will use the following shorthand notation:

Definition 4.1. For a subset A ⊆ Z2, let En(A) be the event that the H − n level-line contains A.

We begin with some notation surrounding the Wulff shape. Recalling the definition of the Wulff
shape W(τ) from Eq. (3.31), let W1(τ) be W(τ) rescaled to have unit area. Define

w1(τ) =

∫
∂W1(τ)

τ(θs)ds ,

where θs is the direction of the normal with respect to ∂W1(τ) at s. Our target shape for the
level-lines will be a translation of Wulff shapes.

Definition 4.2. Let Ln(ℓ, r) be the set obtained by first taking the union of all translates of
ℓW1(τβ,n) inside the unit square, and then dilating the shape by a factor of (1 + r).

Fix δ as any small constant (e.g., δ = 1/10), and define

ℓn = ℓn(δ) := w1(τβ,n)Nn/2(1− δ)L ,

κn,b := N1/3
n (logL)b/L .

Remark 4.3. Observe that since N0 ≤ L/5β, then ℓ0 ≤ w1,β/10(1− δ)β. Moreover, w1,β ≈ 4β
(up to a multiplicative (1± ε)). Hence, ℓn ≤ ℓ0 ≤ 1/2.

We next state the main theorem of this section.

Theorem 4.4. Consider the Zgff on an L×L box with zero b.c. for non-exceptional values of L
(as in Theorem 1.1). Recall that H = H(L) := max{h : π̂∞(ϕo ≥ h) ≥ 5β/L} and Nn = Nn(L) :=
1/π̂∞(ϕo ≥ H − n). Then, w.h.p., we have

En(LLn(ℓn(1 + L−1/2),−(H − n)κn,15)) .

In particular, if x is a point on the bottom boundary of Λ at distance at least, say, L/10 from the
corners, then
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(a) the vertical distance of the (H − n) level-line from x is at most N
1/3
n (logL)16;

(b) by the upper bound of Eq. (2.6), the analogous distance of the (H − n − 1) level-line is at
most

N
1/3
n+1(logL)

16 ≤ N1/3
n exp

(
− c

√
β logL
log logL

)
.

Remark 4.5. The shape LLn(ℓ0(1 + L−1/2),−(H − n)κn,15)) is flat away from the corners, but
around the corners there will be an arc of the Wulff shape. When N0 = O(L), then the size
of this arc is O(L) and the Wulff shape is visible (note that the shape and hence the H level-
line will still occupy a 1 − εβ fraction of the sites however). However, for most values of L (i.e.,
with the exception of a zero logarithmic density set, similar to Remark 1.3), ℓ0 = o(1) so that

LLn(ℓ0(1 + L−1/2),−(H − n)κn,15)) is flat all the way up to distance o(L) away from the corners,
and there is no visible Wulff shape at the O(L) scale. When we consider n ≥ 1, we always have
ℓn = o(1), so the latter picture is always the case. This is in contrast with the sos picture where
the Wulff shape is always visible, even for the (H − n) level-line for finite n.

Remark 4.6. While our focus is the Zgff, and later (in Section 7) we also extend Theorem 4.4 to
the |∇ϕ|p model for all p > 1, we note that Item (a) of the theorem applies also to the case p = 1:
Using [14, Lemma 5.9] in lieu of Proposition 2.3, the proof of Theorem 4.4 extends to sos to show
that, for H = ⌊ 1

4β logL⌋ and any fixed n ≥ 0, the vertical distance of its (H − n) level-line is at

most L1/3(logL)16 with high probability (refining the Lε in [14, Thm. 6.2] into a polylog(L)).

4.1. Growth gadget. In this section, we will prove that in a region around a line segment at
the correct scale, the level-line will drop below a certain point, motivated by the treatment in
[14, Section 5.2]. This will eventually be used (see Lemma 4.20) to show that the level-line drops
far enough below where a Wulff shape would be, which will allow us to iteratively grow the region
which we know the level-line contains.

We start with a lemma stating that for a rectangle in the middle of ΛL, we can enforce the
desired H −n, H −n− 1 boundary conditions at the cost of moving from the rectangle to a wiggly
domain approximating the rectangle. The proof will be postponed to Appendix B.

Lemma 4.7. Fix n, and let R be an ℓ1×ℓ2 rectangle, where ℓ1, ℓ2 ≫ (logL)6. Let Λ9L/10 ⊂ V ⊂ ΛL,

and 0 ≤ k ≤ H − n− 1. Suppose that, w.h.p. under πkV , R is contained in the interior of Ln−1 and
that there are two points A,B on the sides of ∂R with the top arc of ∂R from A to B in the interior
of Ln, such that if d is the distance from {A,B} to the top or bottom of R, then

√
ℓ1(logL)

2 ≤ d.
Then there exists a πkV -measurable distribution on connected regions Q ⊂ R with marked boundary
conditions ξ satisfying Items 1 to 4 below, such that the following holds. If A1 is the area of the

interior of Ln intersected with Q, and A2 is the area above the (H − n) level-line in Q under πξQ,

then A2 ⊂ A1 w.h.p. under πkV .

(1) Q is simply connected,
(2) dist(∂Q, ∂R) ≤ (logL)2,
(3) There exists A′, B′ ∈ ∂Q such that C (A′B′) ⊂ Q, Y◀(A′) does not intersect the left side

of Q, Y▶(B′) does not intersect the right side of Q, and max{d(A,A′), dist(B,B′)} ≤
2(logL)5.

(4) The boundary conditions ξ assigns height H−n on the top arc from A′ to B′, and H−n−1
on the bottom arc.

The main theorem of this subsection is the following, showing that the H − n level-line drops
below a certain height. Fix a > 4 and b ≥ 3a. Motivated by the above lemma, consider a

N
2/3
n (logL)a × 2N

2/3
n (logL)a rectangle R with A,B distance at CN

1/3
n (logL)b above the bottom

of R for some C > 1. (The requirements on ℓ1, ℓ2, d are easily satisfied.) Let Q = Qa,b satisfy the
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above properties in Lemma 4.7. Assume for simplicity that the slope of AB is θ = θA,B ∈ [0, π/4]

and the midpoint of AB is the origin. For future reference, we define here also F as the intersection
of Q with the parallelogram that shares sides with R, has top and bottom sides parallel to AB,

with height N
1/3
n (logL)b and centered at the origin.

Theorem 4.8. The following holds uniformly over all possible Q as above. Let Ln be the (unique)

(H − n) level-line induced by ξ. Then, with πξQ-probability 1 − e−c(logL)
2
, Ln lies below the point

X = (0, Y + σ(logL)a + (logL)2), where

Y = − N
1/3
n (logL)2a

8(τβ,n(θ) + τ ′′β,n(θ)) cos(θ)
3
, (4.1)

σ2 =
N

2/3
n (logL)a

4(τβ,n(θ) + τ ′′β,n(θ)) cos(θ)
3
.

Remark 4.9. In Section 4.2, we will apply the above for the choice of a = 5, b = 15. As the

error probability is a e−c(logL)
2
, any union bound over a polynomial number of applications of

Theorem 4.8 will still have an error probability of the same form.

In contrast to the polymer model studied in Section 3, we now need to reintroduce the primary
area term. Let V be a finite simply connected set, and consider γ ∈ PV (A,B) for any A,B ∈ V .
Let F ⊂ V , and assume for simplicity that AB ⊂ F . Define AF (γ) as the signed area of the region
above UE(γ) with respect to the line segment AB, after restricting to F . That is, AF (γ) is equal
to |D0 ∩ F | minus the area above the line segment AB in F . (Note that although |D0| depends
on the reference domain V , the normalized area AF (γ) does not.) Define the polymer weight with
boundary conditions H − n and H − n− 1, area tilt µ on F , and domain of interaction U , by

qnU ;F,µ(γ) = exp
(
− E ∗

β (γ) +
µ

Nn
AF (γ) +

∑
W∩∇γ ̸=∅

Φ′
U (W; γ)

)
(4.2)

=: exp
(
− E ∗

β (γ) +
µ

Nn
AF (γ) + IU (γ)

)
,

where E ∗
β (γ) and Φ′

U (W; γ) are as defined in Eqs. (3.2) and (3.3). For convenience, recall that

E ∗
β (γ) = Eβ(γ) + 3c(β)|γ| − log

( ∏
i≥1

hi<j−1

π̂hiD◦
i
(ϕx ≥ 0, ∀x ∈ D◦

i )
)
.

As usual, we can define the partition function

ZnV,U ;F,µ(A,B) =
∑

γ∈PV (A,B)

qnU ;F,µ(γ) ,

with the notation ZnV,U ;F,µ(A,B | E) denoting the restriction of the sum to γ ∈ E , for any event

E . Note that when µ = 0, we recover the definitions of q̂nU and ẐnV,U from Section 3. Of course,

qnU ;F,µ(γ) is just a renormalization of the cluster expansion weight pξV ;F (γ), a fact we will frequently
apply without reference.

We next prove a few preliminary lemmas. In order to prove Theorem 4.8, we will in several
instances want to show that at a specific point, γ has the geometry of a simple path.

Definition 4.10. For a bond b ∈ γ, call Db = Db(γ) the connected component of all finite regions
in Z2 \ γ containing a region that has b as part of its boundary. If there is no such finite region
adjacent to b, then Db = ∅.
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Lemma 4.11. Fix any V,U, F , and any points A,B ∈ V . Let b(γ) be the first horizontal bond
where the upper envelope UE(γ) hits the vertical line x = m for a fixed m ∈ [A1, B1]. Then there
exists a constant C > 0 such that for any k ≥ 0, we have

ZnV,U ;F,µ(A,B | |∂Db(γ)| ≥ k) ≤ e−(β−C)k/2ZnV,U ;F,µ(A,B) .

In particular, we have

ZnV,U ;F,µ(A,B | Db(γ) = ∅) ≥ (1− εβ)Z
n
V,U ;F,µ(A,B) .

Proof. By construction, Db is the union of some Di for i ≥ 2 such that one arc of ∂Db is a subset
of UE(γ) and the remaining arc is a subset of LE(γ). Let t1, t2 be the first and last points on UE(γ)
that are intersected by ∂Db. Let ∆(Db(γ)) be the length of the shortest path from t1 to t2 that
does not exit Db(γ). In particular, we have |∂Db(γ)| ≥ 2∆(Db(γ)), and so

|∂Db(γ)| −∆(Db(γ)) ≥ 1
2 |∂Db(γ)| .

Let f be the map which replaces the portion of γ between t1 and t2 by a path attaining length
∆(Db(γ)) (which can be chosen arbitrarily — say by the minimal lexicographic one that does not
exit Db(γ)). Note that this map can only lower UE(γ) so that AF (γ) ≤ AF (f(γ)). Moreover, the
map only removes some regions Di for i ≥ 2 and does not change any others. Thus, by the definition
of E ∗

β (γ) and the decay property of ΦU , we have for some C > 0 that

qnU ;F,µ(γ) ≤ qnU ;F,µ(f(γ))e
−(β−C)

1
2 |∂Db(γ)| . (4.3)

Moreover, for a given ω in the image of f , the number of preimages γ such that f(γ) = ω and
|∂Db(γ)(γ)| = k is bounded above by the number of connected components of bonds of size k times

the number of possible points t1. The former is at most sk for some universal constant s, and the
latter of which is at most k2 (since we can look at the first intersection of ω with x = m, and t1 is
at most distance k from there). Hence, we obtain

ZnV,U ;F,µ(A,B | ∂Db(γ)| ≥ k) =
∑

γ:|∂Db(γ)|≥k

qnU ;F,µ(γ) ≤
∑
j≥k

∑
ω∈Image(f)

∑
γ∈f−1(ω):
|∂Db(γ)|=j

qnU ;F,µ(γ) (4.4)

≤
∑
j≥k

∑
ω∈Image(f)

∑
γ∈f−1(ω):
|∂Db(γ)|=j

qnU ;F,µ(f(γ))e
−(β−C)

1
2 j

≤
∑
j≥k

e−(β−C′) 1
2
jZnV,U ;F,µ(A,B)

≤ e−(β−C′′) 1
2
kZnV,U ;F,µ(A,B) . ■

Remark 4.12. Since the proof of Lemma 4.11 uses a Peierls map type argument, the results can
be strengthened if we have more information about the image of the map f . More specifically,
suppose we know that for all γ ∈ E1, we have f(γ) ∈ E2. Then, in Eq. (4.4) we can start instead
with the sum

∑
γ:|∂Db(γ)|≥k,γ∈E1 q

n
U ;F,µ(γ) and replace the sum

∑
ω∈Image(f) by

∑
ω∈Image(f)∩E2 . What

was previously an upper bound of∑
ω∈Image(f)

qnU ;F,µ(f(γ)) ≤ ZnV,U ;F,µ(A,B)

now becomes ∑
ω∈Image(f)∩E2

qnU ;F,µ(f(γ)) ≤ ZnV,U ;F,µ(A,B | E2) ,
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and hence we get

ZnV,U ;F,µ(A,B | |∂Db(γ)| ≥ k, E1) ≤ e−(β−C)k/2ZnV,U ;F,µ(A,B | E2) .

We next show that we are, with high probability, in a setting where we have cluster expansion.

Lemma 4.13. Let γ be the disagreement polymer from A to B in the setting above Theorem 4.8,
recalling also Q, ξ, F there. Let G1 be the event that |F | − |D0 ∩ F | − |D1 ∩ F | ≤ L5/6 and |γ| ≤
2N

2/3
n (logL)a. Then, πξQ;F (Gc1) ≤ e−cL

1/24
. Moreover, if G⊔ is the event that Ln stays above a given

horizontal line H above the bottom of Q, then πξQ;F (Gc1 | G⊔) ≤ e−cL
1/24

.

Proof. By Proposition 2.3 and comparing with the definition of q̂nQ, we have

πξQ;F (γ) ∝ q̂nQ(γ)
∏
i=0,1

π̂H−n−i
Do

i
(ϕx ≥ 0, ∀x ∈ Do

i ∩ F ) ,

with the same statement holding for πξQ;F (γ | G⊔) except restricting to γ ∈ G⊔. To obtain a rough
lower bound on the probabilities, a standard computation using FKG and monotonicity in the
boundary conditions obtains

π̂H−n−i
Do

i
(ϕx ≥ 0,∀x ∈ Do

i ∩ F ) ≥
1

2
exp

(
−

∑
x∈Do

i∩F
π̂0Do

i
(ϕx < −(H − n− 1))

)
.

Using that π̂0Do
i
(ϕx < −(H − n− 1)) ≤ L−1+o(1) and the fact that |F | ≤ Nn(logL)

a+b, we obtain∏
i=0,1

π̂H−n−i
Do

i
(ϕx ≥ 0,∀x ∈ Do

i ∩ F ) ≥
1

2
e−Nn(logL)a+bL−1+o(1) ≥ e−L

o(1)
.

Hence, changing the weights to q̂nQ(γ) can only tilt the measure by a multiplicative factor of eL
o(1)

,
so it suffices to prove that

ẐnQ,Q(A,B | Gc1) ≤ e−cL
1/24

ẐnQ,Q(A,B) , and (4.5)

ẐnQ,Q(A,B | Gc1,G⊔) ≤ e−cL
1/24

ẐnQ,Q(A,B | G⊔) . (4.6)

Now in the polymer model, the bound on the length

ẐnQ,Q(A,B | |γ| > 2N2/3
n (logL)a) ≤ e−cN

2/3
n (logL)aẐnQ,Q(A,B)

follows by an easy Peierls argument (take the map that sends γ to a minimal length path from A
to B). The same holds when intersecting with G⊔, as mapping to the minimal length path stays
within the set G⊔.

Bounding the area of |F | − |D0 ∩F | − |D1 ∩F | =
⋃
i≥2Di ∩F follows essentially the same proof

of Lemma 4.11 but simpler since there is no area term anymore. By the above, we can assume that

|γ| ≤ 2N
2/3
n (logL)a. Thus, if |F | − |D0 ∩ F | − |D1 ∩ F | ≥ L5/6, then by the pigeonhole principle

we must have |Db| ≥ L1/12 for some b ∈ γ which is adjacent to a vertex in F . So, we fix any bond
b adjacent to a vertex in F , and let γ be such that b ∈ γ. As in Lemma 4.11, let t1, t2 be the first
and last points on UE(γ) that are intersected by Db, and let ∆(Db) be the length of the shortest
path from t1 to t2 that does not exit Db so that

|∂Db| −∆(Db) ≥ 1
2 |∂Db| .

Let fb be the map which replaces the portion of γ between t1 and t2 by a path attaining length
∆(Db). By the definition of E∗

β(γ) and the decay property of ΦQ, we have

q̂nQ(γ) ≤ q̂nQ(fb(γ))e
−(β−C)

1
2 |∂Db| . (4.7)
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Moreover, for a given ω in the image of fb, the number of preimages γ such that fb(γ) = ω and
|∂Db(γ)| = k is bounded above by the number of connected components of bonds of size k, which
is at most sk for some universal constant s. Finally, observe that by the isoperimetric inequality,
|Db| ≥ L1/12 implies |∂Db| ≥ 4L1/24. Hence, we obtain∑

γ:b∈γ,
|Db|≥L1/12

q̂nQ(γ) ≤
∑

k≥4L1/24

∑
ω∈Image(fb)

∑
γ∈f−1

b (ω):
|∂Db(γ)|=k

q̂nQ(γ)

≤
∑

k≥4L1/24

∑
ω∈Image(fb)

∑
γ∈f−1

b (ω):
|∂Db(γ)|=k

q̂nQ(fb(γ))e
−(β−C)

1
2k

≤
∑

k≥4L1/24

e−(β−C′) 1
2
kẐnQ,Q(A,B)

≤ e−(β−C′′)2L1/24
ẐnQ,Q(A,B) .

We can then take a union bound over the at most O(Nn(logL)
a+b) bonds adjacent to a vertex in

F to conclude the proof of Eq. (4.5).
By the logic in Remark 4.12, we also obtain Eq. (4.6) as long as we can show that if γ ∈ G⊔,

then fb(γ) ∈ G⊔, or equivalently that for every Db, there exists a shortest path from t1 to t2
that stays above H. Without loss of generality, assume H is at a half-integer height, and suppose
for contradiction that there is no such path. Then, take a shortest path P , and let u, v be two
consecutive points of P on H which mark a drop of P below H (i.e., in between u, v, P lies strictly
below H). Observe that the region sandwiched between P and the arc of UE(γ) between t1, t2 is
contained in Db. Since γ ∈ G⊔, UE(γ) must be at or above H, and in particular at or above the
line segment uv. Moreover, the arc of P from u to v must be strictly below uv. Hence, uv is in the
sandwiched region, and is therefore in Db. This means that the path P ′ which replaces the arc of
P between u and v by uv is in Db. Since |P ′| < |P |, this is a contradiction. ■

The above lemma shows we can restrict our attention to a set of “good” γ for which we have
cluster expansion on. We will also want to then consider the partition function with respect to
these cluster expansion weights, and it will be convenient to have the partition function sum over
all possible γ ⊂ Q, and not just the “good” γ from Lemma 4.13. For the same reason as above, this
difference is negligible. That is, for Q,F,A,B as above Theorem 4.8 and for any constant µ > 0,
we claim that

ZnQ,Q;F,µ(A,B | Gc1) ≤ e−cL
1/24

ZnQ,Q;F,µ(A,B) , and (4.8)

ZnQ,Q;F,µ(A,B | Gc1,G⊔) ≤ e−cL
1/24

ZnQ,Q;F,µ(A,B | G⊔) . (4.9)

Indeed, the effect of the area term can only tilt the measure by a factor of O(exp(−(logL)a+b)).
Without the area term however, we reduce to showing that

ẐnQ,Q(A,B | Gc1) ≤ e−cL
1/24

ẐnQ,Q(A,B) , and

ẐnQ,Q(A,B | Gc1,G⊔) ≤ e−cL
1/24

ẐnQ,Q(A,B | G⊔) ,

which were proven above in Eqs. (4.5) and (4.6).

Lemma 4.14. Let γ be the disagreement polymer from A to B in the setting above Theorem 4.8.

Let G2 be the event that for all b ∈ γ, |∂Db| ≤ (logL)2. Then, πξQ;F (Gc2) ≤ e−c(logL)
2
. Moreover,

if G⊔ is the event that Ln stays above a given horizontal line H above the bottom of Q, then

πξQ;F (Gc2 | G⊔) ≤ e−c(logL)
2
.
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Proof. By Lemma 4.13, it suffices to upper bound πξQ;F (Gc2,G1). This in turn is upper bounded by

πξQ;F (Gc2 | G1), whence we can use Proposition 2.3 for the equality and Eq. (4.8) for the inequality
to write

πξQ;F (G
c
2 | G1) = (1 + o(1))

ZnQ,Q;F,1(A,B | Gc2,G1)

ZnQ,Q;F,1(A,B | G1)
≤ (1 + o(1))

ZnQ,Q;F,1(A,B | Gc2)
ZnQ,Q;F,1(A,B)

.

For a fixed bond b ∈ Q, we have

ZnQ,Q;F,1(A,B | |∂Db| > (logL)2) ≤ e−c(logL)
2
ZnQ,Q;F,1(A,B)

by applying yet another map argument which is a minor modification of the ones in Lemmas 4.11
and 4.13 (in particular, we would apply the map fb from Lemma 4.13, but use the bound Eq. (4.3)
from Lemma 4.11 since there is an area term). The proof now concludes after taking a union bound
over all b ∈ Q. The case conditioning on G⊔ follows similarly as fb preserves the event G⊔, just
intersect every partition function above with the event G⊔ and use Eq. (4.9) instead of Eq. (4.8).
We record for later use the end result that

ZnQ,Q;F,1(A,B | Gc2,G⊔) ≤ e−c(logL)
2
ZnQ,Q;F,1(A,B | G⊔) . (4.10)

■
Our last item before the proving the theorem is to provide a bound on partition functions in

terms of the functions G n
µ (ℓ, θ), defined as

G n
µ (ℓ, θ) = −τβ,n(θ)ℓ+

ℓ3µ2

24(τβ,n(θ) + τ ′′β,n(θ))N
2
n

. (4.11)

Let δ = 1/10. Let Rk be the set of pairs of points (A′, B′) in Q with distance ℓA′,B′ ≤ 2k(1−δ)N
2/3
n ,

angle θA′,B′ , and horizontal distance MA′,B′ . Without loss of generality, assume A′ is to the left of
B′. Finally, let TA′,B′ be the set of points either to the left of the vertical line x = A′

1 + 2(logL)2

or to the right of the vertical line x = B′
1 − 2(logL)2. Fix any µ ≥ 0, and define the weights

wn(γ) = exp
(
− E ∗

β (γ) + IZ2(γ) + e−β|γ ∩ TA′,B′ |+ µ

Nn
AF (γ)

)
,

where the energy E ∗
β (γ) is defined as in Eq. (3.3) with respect to boundary conditions H − n and

H−n− 1. The new term e−β|γ ∩TA′,B′ | in the weight wn(γ) should be thought of as a buffer term
that allows us to switch between different interaction functions IU (γ) (see Corollary 4.16). It will
also be important for later use to note that the exact dimensions of Q and F (in particular, the
choice of a, b above Theorem 4.8) play no role in the following proposition.

Proposition 4.15. Let ZnA′,B′ =
∑

γ∈PZ2 (A
′,B′)w

n(γ). Then, for all k ≤ a
1−δ log2 logL, uniformly

over all A′, B′ ∈ Rk, we have

ZnA′,B′ ≤ zke
G n
µ (ℓA′,B′ ,θA′,B′ )

where z1 = ec(logL)
2
, zk = z2

k−1

1 .

Proof. Following [14, Section 5.3], this will be a proof by induction. Let P̂A′,B′ denote the proba-
bility measure on γ given by

P̂A′,B′(γ) =
q̂nZ2(γ)

ẐnZ2,Z2(A′, B′)
,

and let ÊA′,B′ denote the expectation. We begin with the base case taking k = 1. Fix A′, B′

distance ℓA′,B′ ≤ 2N
2/3
n apart. Let hmax(γ) be the maximum height reached by γ with respect to

the line segment A′B′. By a union bound over Item (i) of Proposition 3.15, we obtain

P̂A′,B′(hmax(γ) ≥ j) ≤ CM
3/2
A′,B′e

−c(j∧j2/MA′,B′ ) . (4.12)



THE LIMITING LAW OF THE DISCRETE GAUSSIAN LEVEL-LINES 41

By an easy Peierls argument mapping γ to a minimal length path from A′ to B′, we also have

P̂A′,B′(|γ| ≥ 2ℓA′,B′ + j) ≤ e−(β−C)j .

Now, by Cauchy–Schwarz, we write

ZnA′,B′ = ẐnZ2,Z2(A
′, B′)ÊA′,B′

[
e
µ
Nn

AF (γ)+e−β |γ∩TA′,B′ |
]

≤ ẐnZ2,Z2(A
′, B′)ÊA′,B′

[
e
2µ
Nn

AF (γ)
]
ÊA′,B′

[
e2e

−β |γ∩TA′,B′ |
]
.

By the fact that AF (γ) ≤ |γ|
(
hmax(γ) ∧N1/3

n (logL)b
)
, we have

ÊA′,B′

[
e
2µ
Nn

AF (γ)
]
≤ ÊA′,B′

[
e|γ|o(1)1|γ|≥5N

2/3
n

]
+ ÊA′,B′

[
e

10µ

N
1/3
n

hmax(γ)
]
.

The first term on the right can then be bounded by a constant by the tail bound on |γ|. The second
term can be bounded by CM

1/2
A′,B′ by the tail bound on hmax(γ).

Similarly, the tail bound on |γ ∩ TA′,B′ | given by Item (i) of Proposition 3.15 implies that

ÊA′,B′
[
e2e

−β |γ∩TA′,B′ |] ≤ ec(logL)
2
. Moreover, by Item (ii) of Proposition 3.15, we have

ẐnZ2,Z2(A
′, B′) ≤ Ce−τβ,n(θA′,B′ )ℓA′,B′ .

Putting the above together implies the claim for k = 1.
Now we show the induction step. Let (A′, B′) ∈ Rk+1. Let b(γ) be the first horizontal bond

where UE(γ) hits the middle vertical line between A′ and B′. Let C = (C1, C2) be the left endpoint

of b(γ). Define ∆C2 = C2 −
A′

2+B
′
2

2 , and first consider the case where |∆C2| ≥ N
1/3
n (logL)3a. We

have

ZnA′,B′(|∆C2| ≥ N1/3
n (logL)3a) = ẐnZ2,Z2(A

′, B′)ÊA′,B′

[
1|∆C2|≥N1/3

n (logL)3a
e
µ
Nn

AF (γ)+e−β |γ∩TA′,B′ |
]
.

Hence, by another application of Cauchy-Schwarz, it suffices to bound the P̂A′,B′ probability that

|∆C2| ≥ N
1/3
n (logL)3a, which is at most e−c(logL)

5a
by Eq. (4.12). Hence, we altogether have

ZnA′,B′(|∆C2| ≥ N1/3
n (logL)3a) ≤ e−τβ,n(θA′,B′ )ℓA′,B′−c(logL)5a . (4.13)

For the case that |∆C2| ≤ N
1/3
n (logL)3a, we recall the event Db(γ) from Lemma 4.11 where we

have (noting Remark 4.12)

ZnA′,B′(Db(γ) = ∅, |∆C2| ≤ N1/3
n (logL)3a) ≥ (1− εβ)Z

n
A′,B′(|∆C2| ≤ N1/3

n (logL)3a) .

On the event Db(γ) = ∅, we can split up γ = γ1 ◦ γ2 as the segments of γ before and after C. Write

AF (γ) = A0
F +AF (γ1) +AF (γ2) ,

where AF (γ1) is the signed area above γ1 w.r.t. the line segment A′C, AF (γ2) is the signed area
above γ2 w.r.t. the line segment CB′, and A0

F is the signed area of the triangle A′CB′ intersected

with F (signed negative when C is above A′B′). Note that |A0
F | ≤

ℓA′,B′
2 |∆C2| cos(θA′,B′). Now,

define the correction term

∆IZ2(γ1, γ2) := IZ2(γ1) + IZ2(γ2)− IZ2(γ) . (4.14)

By the decay properties of Φ in Definition 3.1, we have that |∆IZ2(γ1, γ2)| ≤ e−(β−C)|γ2 ∩ TC,B′ |.
Hence, we have the bound

ZnA′,B′(Db(γ) = ∅, |∆C2| ≤ N1/3
n (logL)3a) ≤

∑
γ:|∆C2|≤N1/3

n (logL)3a

e
1

Nn
|A0

F |wn(γ1)w
n(γ2) .
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Since both (A′, C) and (C,B′) are in Rk, by the induction hypothesis, the above display is bounded
by

z2k
∑

|∆C2|≤N1/3
n (logL)3a

exp

(
µℓA′,B′

2Nn
|∆C2| cos(θA′,B′) + G n

µ (ℓA′,C , θA′,C) + G n
µ (ℓC,B′ , θC,B′)

)
.

By a Taylor expansion in θ followed by a Gaussian summation and the convexity of τβ,n (see
[14, Prop. 5.11] for details), this is in turn bounded above by

C(β)
√
ℓA′,B′z2k exp(G

n
µ (ℓA′,B′ , θA′,B′))

for some constant C(β). In total, we have proved that

ZnA′,B′(|∆C2| ≤ N1/3
n (logL)3a) ≤ (1 + εβ)C(β)

√
ℓA′,B′z2k exp(G

n
µ (ℓA′,B′ , θA′,B′)) ,

which together with Eq. (4.13), after increasing the constant c in the definition of z1 to absorb the
C(β)

√
ℓA′,B′ term above, concludes the induction step. ■

Corollary 4.16. For any A′, B′ in Q, we have

ZnQ,Z2;F,µ(A
′, B′) =

∑
γ∈PQ(A′,B′)

qnZ2;F,µ(γ) ≤ exp(G n
µ (ℓA′,B′ , θA′,B′) +O((logL)2a)).

Let W be any region containing the infinite vertical strip between the lines x = A′
1 + (logL)2 and

x = B′
1− (logL)2. The same bound holds if we replace the weight qnZ2;F,µ(γ) with q

n
W ;F,µ(γ), or with

exp
(
− E ∗

β (γ) +
µ

Nn
AF (γ) + IW (γ)−∆IW (γ, γleft)

)
uniformly over all γleft ∈ PQ(A,A′), with ∆IW (γ, γleft) defined as in Eq. (4.14).

Proof. Note that because of the decay properties of the interaction terms, switching the weights from
IZ2(γ) to IW (γ) or to IW (γ) −∆IW (γ, γleft) comes with a factor of at most e−(β−C)|γ ∩ TA′,B′ |.
Thus, the corollary follows from Proposition 4.15 at k = a

1−δ log2 logL and the trivial bound

Q ⊂ Z2. ■

We are now finally ready to prove Theorem 4.8.

Proof of Theorem 4.8. For simplicity, we may assume that in the construction of Q we have A′ = A
and B′ = B, as the shift by (logL)5 is negligible compared to the margin of error provided in the
proof of the theorem. Define the event U as the event that Ln intersects the line x = 0 at a point
higher than X = (0, Y + σ(logL)a + (logL)2) (recall the definitions of Y, σ from Eq. (4.1)). Recall

the goal of the theorem is to upper bound πξQ,Q(U). Since U is a decreasing event in ϕ, by FKG we

have πξQ,Q(U) ≤ πξQ;F (U). Then by FKG again we can condition on the decreasing event G⊔ that

Ln stays above a horizontal line H distanced 2(logL)2 above the highest point on the bottom of

Q, so that πξQ;F (U) ≤ πξQ;F (U | G⊔).

By Lemmas 4.13 and 4.14, we have πξQ;F (Gc1 | G⊔) ≤ e−cL
1/24

and πξQ;F (Gc2 | G⊔) ≤ e−c(logL)
2
. We

are then left with πξQ;F (U,G1,G2 | G⊔), which we upper bound by πξQ;F (U | G1,G2,G⊔). Since we are

now conditioning on the event G1, and also since L and hence U,G⊔ can be read from γ, we can
use Proposition 2.3 to write the above as the ratio

πξQ;F (U | G1,G2,G⊔) = (1 + o(1))
ZnQ,Q;F,1(A,B | U,G1,G2,G⊔)

ZnQ,Q;F,1(A,B | G1,G2,G⊔)
. (4.15)

We first upper bound the numerator of Eq. (4.15). Let S be an infinite vertical strip with sides
containing the sides of Q. Let W be the extension of Q to S at the top and bottom of Q. (As we
will see, the exact choice of S and point of extension are irrelevant.) We show we can move from Q
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interactions to W interactions. Indeed, G1 implies γ stays a distance (logL)2 from the top of Q (as

such an excursion would force γ to have length 3N
2/3
n (logL)a, coming from 2N

2/3
n (logL)a vertical

bonds and N
1/3
n (logL)a horizontal bonds). Moreover, G2 ∩ G⊔ implies γ stays distance (logL)2

away from the bottom of Q. Hence, by the decay properties of Φ and the polynomial bound on the
length of γ, we can replace the weights qnQ;F,1(γ) with q

n
W ;F,1(γ) at the cost of (1 + o(1)) and then

disregard the events G1,G⊔ so that

ZnQ,Q;F,1(A,B | U,G1,G2,G⊔) = (1 + o(1))ZnQ,W ;F,1(A,B | U,G1,G2,G⊔) ≤ ZnQ,W ;F,1(A,B | U,G2) .
(4.16)

Next, let b(γ) be the first horizontal bond where UE(γ) hits the line x = 0. Let U be that Ln
intersects x = 0 above X − (0, (logL)2). Then, for the map f in Lemma 4.11, we have γ ∈ U ∩ G2

implies f(γ) ∈ U ∩Db(γ) = ∅, so that Remark 4.12 gives us

ZnQ,W ;F,1(A,B | |∂Db(γ)| > 0,U,G2) < εβZ
n
Q,W ;F,1(A,B | Db(γ) = ∅,U) .

The implies that

ZnQ,W ;F,1(A,B | U,G2) ≤ ZnQ,W ;F,1(A,B | Db(γ) = ∅,U) + εβZ
n
Q,W ;F,1(A,B | Db(γ) = ∅,U)

≤ (1 + εβ)Z
n
Q,W ;F,1(A,B | Db(γ) = ∅,U) , (4.17)

where the first inequality uses the previous display, and the second inequality is because U ⊂ U.
Now let C = (−1

2 , C2) be the left endpoint of b(γ). Consider the disjoint union {Db(γ) = ∅}∩U =
U1 ∪ U2, where U1,U2 additionally intersect with the events that C2 is smaller or bigger than

Ŷ = Y + 1
2σ(logL)

a, respectively.
We first bound ZnQ,W ;F,1(A,B | U1). Let Eµ,Pµ be the expectation and probability defined for

the polymer measure with weights qnW ;F,µ and partition function ZnQ,W ;F,µ(A,B). Then, we have

ZnQ,W ;F,1(A,B | U1) = ẐnQ,W (A,B)E0[1U1
exp( 1

Nn
AF (Γ))]

≤ Ce−τβ,n(θ)ℓ+O((logL)2a)
√
ZnQ,W ;F,2(A,B)/ẐnQ,W (A,B)

√
P0(U1) ,

where the equality is by definition, and then we use Cauchy-Schwarz and Corollary 4.16 at µ = 0 to
get the inequality. We can also use Corollary 4.16 to upper bound ZnQ,W ;F,2(A,B) and Lemma 3.17

to lower bound ẐnQ,W (A,B), obtaining

ZnQ,W ;F,2(A,B)/ẐnQ,W (A,B) ≤ eC(logL)3a+C(logL)2 .

Moreover, the event U1 implies that γ hits the line x = 0 once below Ŷ and once above Y , which

means there are two points on the vertical line distanced 1
2σ(logL)

a ≥ C(β, θ)N
1/3
n (logL)3a/2 apart.

In the ẐnZ2,Z2 measure, this has probability e−cN
1/3
n by Item (i) of Proposition 3.15. By Lemma 3.18

with Lemmas 3.16 and 3.17 as the inputs, we have the same for our P0 measure:

P0(U1) ≤ e−cN
1/3
n .

Altogether, we obtain the upper bound

ZnQ,W ;F,1(A,B | U1) ≤ Ce−τβ,n(θ)ℓe−cN
1/3
n . (4.18)

Next we bound ZnQ,W ;F,1(A,B | U2). We will sum over possible C2 ≥ Ŷ . Let γ = γ1 ◦ γ2
be the decomposition of γ into components before and after C. Note that this decomposition is
now well-defined because we are on the event Db(γ) = ∅. Note also that even though C is not
necessarily a cut-point, the fact that Db(γ) = ∅ still implies that the energy naturally decomposes
as E ∗

β (γ) = E ∗
β (γ1) + E ∗

β (γ2). As in the proof of Proposition 4.15, we will need the correction term

∆IW (γ1, γ2) = IW (γ1) + IW (γ2)− IW (γ1 ◦ γ2) .
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We can also write AF (γ) = A0
F +AF (γ1)+AF (γ2), where AF (γ1) is the signed area above γ1 with

respect to the line segment AC, AF (γ2) is defined analogously with respect to CB, and A0
F is the

signed area of the triangle ACB intersected with F (signed as positive when C is below AB and
negative when C is above it). We obtain

ZnQ,W ;F,1(A,B | U2) ≤
∑
y≥Ŷ

∑
γ : C2=y

e
A0
F

Nn e−E ∗
β (γ1)+IW (γ1)+

AF (γ1)

Nn e−E ∗
β (γ2)+IW (γ2)−∆IW (γ1,γ2)+

AF (γ2)

Nn

=:
∑
y≤Ŷ

e
1

Nn
A0

F

∑
γ1:C2=y

e−E ∗
β (γ1)+IW (γ1)+

1
Nn

AF (γ1)Zγ1,y .

But now we can apply Corollary 4.16 twice to bound the above by

eC(logL)2a
∑
y≤Ŷ

exp
( 1

Nn
A0
F + G n

1 (ℓAC , θAC) + G n
2 (ℓCB, θCB)

)
.

We can further decompose this sum into Σ1 +Σ2, where Σ1 sums over values of y ≥ N
1/3
n (logL)3a

and Σ2 sums over the remaining values of N
1/3
n (logL)3a ≥ y ≥ Ŷ . The case of Σ1 is easy to bound

since we have a large negative signed area from A0
F . Indeed, by definition we have

G n
µ (ℓ, θ) = −τβ,n(θ)ℓ+O((logL)3a) . (4.19)

However, the area term is 1
Nn

A0
F ≤ −c(logL)4a for some c > 0, using here that b ≥ 3a so that the

triangle ACB is contained in F when y = N
1/3
n (logL)3a. Hence, by the convexity of τ in Item (iii)

of Proposition 3.12, and Eq. (4.19), we have

Σ1 ≤ exp(−τβ,n(θ)ℓ− c(logL)4a) = exp(G n
1 (ℓ, θ)− c(logL)4a) . (4.20)

To bound Σ2, we wish to do a Taylor expansion on the angles in all the surface tension terms.

Through such a computation, combined with the fact that A0
F = 1

2N
2/3
n (logL)ay (since in this

regime of y, the triangle ACB is contained in F ) and ℓ cos(θ) = N
2/3
n (logL)a, we eventually obtain

Σ2 ≤ (1 + o(1))eG
n
1 (ℓ,θ)

∑
y∈[Ŷ ,N1/3

n (logL)3a]

e−
(y−Y )2

2σ2 , (4.21)

where we recall the definitions of Y and σ in Eq. (4.1). (See the computations leading up to
[14, Eq. 5.11], where the same computation was done, for details. A further elaboration of the
steps there can be found in, e.g., [22, Sec. 3.1].) We can now interpret the sum as the probability

that a Gaussian with mean Y and variance σ2 lies in the interval [Ŷ , N
1/3
n (logL)3a]. Recall we have

defined Ŷ = Y + 1
2σ(logL)

a, so that this probability is exp(−c(logL)2a) for some c > 0, resulting
in the upper bound

Σ2 ≤ exp(G n
1 (ℓ, θ)− c(logL)2a) . (4.22)

Combining Eqs. (4.16) to (4.18), (4.20) and (4.22), we obtain as our final upper bound for the
numerator of Eq. (4.15)

ZnQ,Q;F,1(A,B | U,G2) ≤ exp(G n
1 (ℓ, θ)− c′(logL)2a) . (4.23)

We now turn to getting a lower bound for the denominator, which we recall is

ZnQ,Q;F,1(A,B | G1,G2,G⊔) .

First note that by Eqs. (4.9) and (4.10), we have

ZnQ,Q;F,1(A,B | G1,G2,G⊔) ≥ (1− o(1))ZnQ,Q;F,1(A,B | G⊔) . (4.24)
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The lower bound in [14] consisted mostly of using the proof of [36, Lemma A.6]. We summarize
these ideas together here and show the crucial modification needed in our setting (though for details
that are unchanged, we will refer the reader to [36]). Begin by defining the optimal curve

γopt(x) = AB(x) +
(x−A1)(B1 − x)

2Nn(τβ,n(θ) + τ ′′β,n(θ)) cos
3(θ)

. (4.25)

Then, we can take a linear approximation L of γopt consisting of logL many line segments. This

linear approximation is such that the width of the line segments start at O(N
2/3
n (logL)a) for the

segment containing the middle of γopt, and decreases by a factor of two with each segment going
left/right from there (as was done, e.g., in [36, Lemma A.6]9; we reproduce that argument here for
completeness). Now let T be any line segment. Denote its endpoints by AT , BT , its length by ℓT ,
its angle by θT , and its horizontal length by MT . Recall the definition of the cigar shape C (T )
from Definition 3.9. For brevity, define the union of the cigars as

C =
⋃
T∈L

C (T ) .

Note that the cigars are constructed such that all γ contained in C are automatically in G⊔. We can
then lower bound Eq. (4.24) by restricting to polymers which lie inside the union of these cigars,∑
γ∈PQ(A,B)∩G⊔

exp(−E ∗
β (γ) + IQ(γ) +

1

Nn
AF (γ)) ≥

∑
γ∈PQ(A,B)∩C

exp(−E ∗
β (γ) + IQ(γ) +

1

Nn
AF (γ)) .

(4.26)
Now forget about the main area term AF (γ) for now. The shapes of the cigars imply that we can

ignore interactions between the cigars at a cost of eC(logL)2 . Having done so, we can approximate
by a product of polymer partition functions:∑

γ∈PQ(A,B)∩C

exp(−E ∗
β (γ) + IQ(γ)) ≥ e−C(logL)2

∏
T∈L

∑
γT∈PC(T )(AT ,BT )

exp(−E ∗
β (γT ) + IQ(γT ))

(4.27)

= e−C(logL)2
∏
T∈L

ẐnC (T ),Q(AT , BT ) .

Now with the exception of the first and last few cigars close to the sides of Q, all of C (T ) will be
distance ≥ (logL)2 from ∂Q so that

| log ẐnC (T ),Q(AT , BT )− log ẐnC (T ),Z2 | ≤ o(1) .

For the cigars within distance O((logL)2) from the sides of Q, we can still switch Q interactions to

Z2 interactions at a total cost of another eC(logL)2 . By Lemma 3.16, we have

log ẐnC (T ),Z2(AT , BT ) ≥ −τβ,n(θT )ℓT − 1
2 logMT .

This implies that∏
T∈L

ẐnC (T ),Q(AT , BT ) ≥ exp(−
∑
T∈L

τβ,n(θT )ℓT −
∑
T∈L

1
2 logMT − C(logL)2) . (4.28)

The sum of the logMT terms will be at most O((logL)2), as there are logLmany terms contributing
at most O(logL). Finally, as in [14] we can exchange the sum

∑
T∈L τβ,n(θT )ℓT by an integral at

9The proof of [36, Lemma A.6] refers to [17, Thm. 4.16]. The upper bound stated in that theorem was later found
to be erroneous, but only the lower bound is required for that proof.
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a cost of O(logL) (it will be a constant cost for each T ), resulting in the bound

exp

(
−

∑
T∈L

τβ,n(θT )ℓT −
∑
T∈L

C logMT

)
≥ exp

(
−
∫
γopt

τβ,n(θs)ds−O((logL)2)

)
. (4.29)

To summarize, by combining Eqs. (4.27) to (4.29), we get∑
γ∈PQ(A,B)∩C

exp(−E ∗
β (γ) + IQ(γ)) ≥ exp

(
−
∫
γopt

τβ,n(θs)ds−O((logL)2)
)
.

Now to handle the area term 1
Nn

AF (γ) which we removed from the above analysis, note that for
every γ ⊂ C , we have

AF (γ) = AF (γopt) +O(N2/3
n (logL)a(N2/3

n (logL)a)1/2(logL)2) = AF (γopt) +O(Nn(logL)
3a/2+2) .

Thus, we get∑
γ∈PQ(A,B)∩C

exp
(
−E ∗

β (γ)+IQ(γ)+
AF (γ)

Nn

)
≥ e(logL)

3a/2+2
e

AF (γopt)

Nn exp
(
−
∫
γopt

τ(θs)ds−O((logL)2)
)
.

(4.30)

We now use the fact that γopt deviates at most O(N
1/3
n (logL)2a from AB, so since b > 2a it never

leaves the region F . Thus, it is the same as if AF (γopt) were defined with no area restriction to F ,
and as remarked in [14, Eq (5.17)], we also have

−
∫
γopt

τ(θs)ds+
1

Nn
AF (γopt) = G n

1 (ℓ, θ) + o(1) .

We can now plug this into Eq. (4.30) to obtain∑
γ∈PQ(A,B)∩C

exp(−E ∗
β (γ)+IQ(γ)+

1

Nn
AF (γ)) ≥ exp

(
G n
1 (ℓ, θ)+O((logL)3a/2+2+(logL)2)

)
, (4.31)

which together with Eqs. (4.24) and (4.26) provides the final lower bound on the denominator.
By combining the lower bound on the denominator in Eq. (4.31) with the upper bound on the

numerator in Eq. (4.23), we obtain that for the choice of a > 4 (so that the (logL)2a term in
Eq. (4.23) dominates), the fraction in Eq. (4.15) is upper bounded by

ZnQ,Q;F,1(A,B | U,G1,G2,G⊔)

ZnQ,Q;F,1(A,B | G1,G2,G⊔)
≤ exp

(
− c(logL)2a

)
(4.32)

for some c > 0. ■

4.2. Level-lines contain translated Wulff shapes. In this subsection, we will use Theorem 4.8
to prove Theorem 4.4. The strategy will be to begin with a small Wulff shape, and use Theorem 4.8
to “grow” it to a large Wulff shape (one argues that if a small Wulff shape is present, then w.h.p.
a larger one is also present). The smallest starting Wulff shape we need has diameter ≤ 1

2 (see
Remark 4.3). In order to jump-start this growth process, we use the following consequence of the
analysis of [35].

Claim 4.17. For every 0 < ε < 1
10 there exists β0 such that, for every β > β0, if V is a domain

such that Λ(1−ε)L ⊂ V ⊂ ΛL, then w.h.p., ϕ ∼ π0V satisfies the event E0(Λ(1−2ε)L).

Indeed, in [35, Sec 4.4] the authors argue (as part of the event denoted there RH−1) that ϕ ∼ π0ΛL

contains a ∗-adjacent circuit C of sites at height at least H − 1 encapsulating ΛL−(H−1)ℓ where

ℓ ≤ L exp[−c0(β logL/ log logL)1/2]. This is obtained inductively, establishing such a circuit Cj for
heights j = 0, . . . ,H − 1, each time applying [35, Prop 4.5] (the main growth tool in that work)
to every box Λℓ at distance at least log2 ℓ from the previously found Cj−1; that tool shows the
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Figure 6. The growth procedure used to prove Proposition 4.19. Left: Fix x such that
the Wulff shape Wn(x, ℓn) (colored blue) is contained in LℓnW1(τβ,n). We start with the
event En(Wn(x, ℓ)) that Ln encapsulates Wn(x, ℓ). Middle: By Lemma 4.20, we can grow
this Wulff shape until it reaches a o(L) distance from the boundary. Right: Repeat with all
possible starting x from the left picture to obtain D. We can then start again from the left,
now allowing x such that Wn(x, ℓn) is contained in D, and iterate this process.

existence of a circuit at height at least j and distance at most εℓ from ∂Λℓ, and “stitching” these
circuits together gives Cj . For the final L0, one chooses ℓ

′ that may be of order L (still ℓ′ ≥ L1−o(1)

yet it can be as large as 4
5L, hence the upper bound on ε in our assumptions), and proceeds as

before, yielding a circuit CH encapsulating Λ(1−ε)L. As this argument is based on applications of the

growth tool on small boxes Λℓ at distance at least log2 ℓ from Cj−1 (and in the first iteration ∂V ),
all that is needed is to have V ⊃ Λ(1−ε)L. Thus, in our setting we obtain Cj , for each j ≥ H − 1,
encapsulating Λ(1−ε)L−jℓ, and finally CH that encapsulates Λ(1−2ε)L.

We will also need the following deterministic fact about the Wulff shape (see e.g., [14, Lemma
3.9] for the proof).

Lemma 4.18. Fix θ ∈ [0, π/4] and any τ satisfying the properties of Proposition 3.12. Let AB
be a line segment of length d and angle θ such that A,B are on ∂W1(τ). Recall that w1(τ) is the
value of the Wulff functional on ∂W1(τ). Let ∆(d, θ) be the vertical distance between the midpoint
X = A+B

2 and ∂W1. Then we have that for d≪ 1,

∆(d, θ) =
w1(τ)d

2(1 +O(d2))

16(τ(θ) + τ ′′(θ)) cos(θ)
.

The next proposition is the key growth result that shows we can go from the Wulff shape to its
translates, to be proven over Lemmas 4.20 to 4.22. (See Fig. 6 for a visualization of the proof.)
Fix 1 ≤ m ≤ logL. Recall the definitions of ℓn and κn,b stated above Theorem 4.4. As a result of

Remark 4.9, we will take b = 15 in what follows, and let ℓ̂n,m := ℓn/(1−mκn,15).

Proposition 4.19. Let n be any fixed integer. Let 1 ≤ m ≤ logL. Let Λ′ be any region containing
LLn(ℓ̂n,m,−(m − 1)κn,15). Under πH−n−1

Λ′ , given that w.h.p. En(LℓnW1(τβ,n)) holds, then w.h.p.

we have En(LLn(ℓ̂n,m+1,−mκn,15)).

For shorthand, define R := LLn(ℓ̂n,m,−(m − 1)κn,15). Let Wn(x, ℓ) denote the scaled Wulff
shape LℓW1(τβ,n) centered at x. Let ℓx be the largest value before Wn(x, ℓ) gets within distance

N
1/3
n (logL)2 from Rc.

Lemma 4.20. Fix x ∈ R and ℓ such that ℓn ≤ ℓ < ℓx. Under πH−n−1
Λ′ , given that w.h.p.

En(Wn(x, ℓ)) holds, then w.h.p. we have En(Wn(x, ℓx)).

Proof. We show that if En(Wn(x, ℓ)) holds, then w.h.p. so does En(Wn(x, ℓ(1 + L−3/4)). Pick an

angle θ ∈ [0, π/4]. Let AB be the line segment such that its horizontal distance is N
2/3
n (logL)5,

AB has angle θ, and A,B lie on the bottom right quarter of Wn(x, ℓ). Assume that B is to the
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right of A. Let R be the rectangle with width N
2/3
n (logL)5 and height 2N

2/3
n (logL)5 such that

A,B are on the sides of R, and the distance from A to the bottom of R is N
1/3
n (logL)15. Let

Z = (Z1, Z2) be the midpoint of A and B. By Lemma 4.7 and the fact that Theorem 4.8 holds for
any Q satisfying the conditions in Lemma 4.7, we have that w.h.p. the interior of Ln contains the
point W = (Z1,W2) where

W2 = Z2 −
N

1/3
n (logL)10

8(τ(θ) + τ ′′(θ)) cos(θ)3
+ c(β, θ)N1/3

n (logL)15/2 .

By rescaling the result of Lemma 4.18, we obtain that Z lies a vertical distance of ∆′ above
∂Wn(x, ℓ), where

∆′ = ℓL∆

(
N

2/3
n (logL)5

ℓL cos θ
, θ

)
=

w1(τβ,n)N
4/3
n (logL)10

16(τ(θ) + τ ′′(θ))ℓL cos(θ)3
+ o(1) .

Hence, as long as, say,

1−
w1(τβ,n)Nn

2ℓL
≥ (logL)−1/4 , (4.33)

then W is at a height at least O(N
1/3
n (logL)10−1/4) below ∂Wn(x, ℓ), whereas the enlarged Wulff

shape Wn(x, ℓ(1 + L−3/4)) is only distance O(L1/4) below ∂Wn(x, ℓ). It is easy to check that
Eq. (4.33) is satisfied by the assumption ℓ ≥ ℓn. By repeating this O(L) times to cover all angles

θ ∈ [0, π/4] and (using symmetry to conclude for other angles), we obtain En(Wn(x, ℓ(1 + L−3/4)).

We can then repeat this at most o(L3/4 logL) times to obtain En(Wn(x, ℓx)). ■

Now we can define (deterministic) sets Dn
k as part of the enlargement/translation procedure. Fix

ℓ such that ℓn ≤ ℓ < ℓx. We start with Dn
0 defined as the largest rescaling of W1(τβ,n) that is

contained in the unit square S. Now given Dn
k (ℓ), define Dn

k+1(ℓ) as follows. For any ζ ∈ Dn
k (ℓ),

define
tζ = max{t ≥ 1 : tℓW1(τβ,n) + ζ ⊂ S} ,

with tζ = 0 if there is no such t. Then, define

Dn
k+1(ℓ) =

⋃
ζ∈Dn

k

{tζℓW1(τβ,n) + ζ} .

Note that by construction, Dn
k (ℓ) ⊂ Dn

k+1(ℓ) ⊂ S for each k ≥ 0, and there is no dependence of Dn
0

on ℓ. The following lemma showing convergence of the Dn
k (ℓ) to Ln(ℓ, 0) was proved in [14].

Lemma 4.21 ([14, Lemma 6.8]). The sequence Dn
k (ℓ) converges to Dn

∞ := Ln(ℓ, 0), and the Haus-

dorff distance between Dn
k and Dn

∞ is bounded by ck for some constant c ∈ (0, 1).

We can now apply Lemma 4.20 in the iterative procedure of the Dn
k sets.

Lemma 4.22. Let x0 be the center of R. Under πH−n−1
Λ′ , given that w.h.p. En(Wn(x0, ℓx0)) holds,

then w.h.p. we have En(LLn(ℓ̂n,m,−mκn,15)).

Proof. By definition, we have L(1−(m−1)κn,15)Dn
0 ⊂ R. Hence, by adding another factor of κn,15,

we get L(1−mκn,15)Dn
0 ⊂ Wn(x0, ℓx0). We show that with high probability,

En(L(1−mκn,15)Dn
k (

ℓn
1−mκn,15

)) =⇒ En(L(1−mκn,15)Dn
k+1(

ℓn
1−mκn,15

))) . (4.34)

Indeed, for any Wn(x, ℓn) ⊂ L(1 − mκn,15)Dn
k (

ℓn
1−mκn,15

), we can apply Lemma 4.20 to conclude

that
En(Wn(x, ℓn)) =⇒ En(Wn(x, ℓx)) .

Suppose that we could grow Wn(x, ℓ) to Wn(x, ℓ̃x), defined as the largest scaling of Wn(x, ℓ)

contained in ΛL(1−mκn,15) as long as ℓ̃x ≥ ℓ. Then we could apply the above display to all x such
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that Wn(x, ℓn) ⊂ L(1−mκn,15)Dn
k (

ℓn
1−mκn,15

) to obtain Eq. (4.34). However, it is a-priori possible

that ℓ̃x > ℓx. That is, the additional restriction that we need to consider is that by definition of

ℓx, we can only grow each Wulff shape until we reach distance N
1/3
n (logL)2 from Rc. But, since

Dn
k ⊂ Dn

∞, the ending shape L(1 − mκn,15)Dn
k+1(

ℓn
1−mκn,15

) is already at a distance N
1/3
n (logL)2

away from Rc, so this additional restriction does not change anything. Note also that we only need
to repeat this up to k = O(logL) times to get Dn

k within distance 1/L of Dn
∞ by the bound given

in Lemma 4.21, which is all that is needed due to the discretization of the lattice. As noted in
Remark 4.9, we can afford this many iterations. ■

The observation that LLn(ℓ̂n,m+1,−mκn,15) ⊂ LLn(ℓ̂n,m,−mκn,15) together with Lemmas 4.20
and 4.22 concludes the proof of Proposition 4.19. Now we prove the main theorem of this section.

Proof of Theorem 4.4. First, additionally assume that we have

En+1(LLn(ℓ̂n,H−n,−(H − n− 1)κn,15)) .

We reveal the H − n − 1 level-line in this case. This reveals an interior region that contains
LLn(ℓ̂n,H−n,−(H−n−1)κn,15) with a boundary of sites with height ≥ H−n−1. By monotonicity,
we can drop this boundary condition down to exactlyH−n−1. Then, we can apply Proposition 4.19
to conclude that with high probability we have En(LLn(ℓ̂n,H−n,−(H −n)κn,15)), which implies the

theorem as ℓ̂n,H−n ≤ ℓn(1 + L−1/2).
It thus suffices to justify the above assumption. We again use monotonicity, this time dropping

the floor to −(H − n − 1). This allows us to control L1, the 1-level-line with a floor at 0 by the
1-level-line with a floor at height −(H − n − 1), which is then the same as the (H − n) level-line
when the floor is at 0 and boundary conditions are at height H−n−1. By Proposition 4.19 (whose
application is justified by Claim 4.17 and Remark 4.3) with m = 1, this level-line (and hence

L1) contains LLn(ℓ̂n,2,−κn,15). On this event, we can reveal L1, and by monotonicity drop the
induced ≥ 1 boundary conditions to be equal to 1. Then we can repeat, studying the k level-line,
Lk, for 2 ≤ k ≤ H − n by dropping the floor to −(H − n − k), and concluding that Lk contains

LLn(ℓ̂n,k+1,−kκn,15). ■

5. Upper bound

Our goal in this section is the following bound on the distance of Ln from the bottom side of ΛL.

Theorem 5.1. In the setting of Theorem 1.1, fix n ≥ 0 and K > 0, let ρn(x) be the maximum

vertical distance of Ln above x+(L2 , 0) for −N
2/3
n ≤ x ≤ N

2/3
n , and set σ2n > 0 as per Definition 3.20.

Then every weak limit point Yn(t) of the process Yn(t) := N
−1/3
n ρn(tN

2/3
n ) (t ∈ [−K,K]), as

L→ ∞, satisfies
Yn ⪯ FSσn .

Moreover, for every fixed m, every weak limit point (Yn(t))n≤m of the processes (Yn(t))n≤m satisfies

(Yn)n≤m ⪯
⊗
n≤m

FSσn .

Observe that ρn(x) is a decreasing function of ϕ. Hence, en route to proving Theorem 5.1 in this
section we may apply monotonicity arguments that are decreasing (e.g., decreasing individual floor
constraints or heights of boundary vertices; see Claim A.1).

Let R be the rectangle of size N
2/3
n (logL)25 × 2N

2/3
n (logL)25 centered at the x = 0 such that

the bottom side of R is at distance 2N
1/3
n exp(−cβ

√
logL/ log logL) above the bottom side of

ΛL, for c as in Theorem 4.4. Let A,B be on the sides of ∂R such that the distance from A,B

to the bottom of R is N
1/3
n (logL)16. The dimensions of R and the location of A,B satisfy the
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N
2
3
n (logL)a

N
1
3
n (logL)b

N
2
3
n (logL)a

H − n

H − n− 1

Figure 7. An instantiation of the domain Q used in the proof of the upper bound on Ln.
The orange line is the lower level-line Ln+1, and the floor (the constraint that ϕx ≥ 0) is
only present in the green region. The two gray points on the boundary mark where the
boundary conditions change from H − n− 1 to H − n.

requirements of Lemma 4.7. So, let Q, ξ be any domain and boundary condition satisfying the
properties of Lemma 4.7 with respect to this R,A,B (see Fig. 7). By Theorem 4.4 and Lemma 4.7,
for the stochastic domination of a single Yn, it suffices to prove Theorem 5.1 where Ln is the H−n
level-line in πξQ.

Next, by FKG, we can first remove the floor in some parts of Q, and condition on decreasing

events. Let F be the portion of Q below the line y = 2N
1/3
n (logL)16. Let G⊔ be the event that Ln

stays above the horizontal line H distance 2(logL)2 above the highest point on the bottom side of

Q. Then, πξQ ⪰ πξQ;F (· | G⊔). Note that the distance between H and the bottom of ΛL is o(N
1/3
n ),

and goes to 0 under the rescaling of Yn. For simplicity, in the rest of this section we will refer to
the y-coordinate of H as 0, and use “height” to denote the vertical distance of a point above H (as
opposed to referencing ϕ as a height function).

From here, we can follow the same preliminary steps done in the proof of Theorem 4.8 to move
to a polymer model. By Lemma 4.13, we can condition further on the event G1 defined there, which
says that we have the cluster expansion form of the measure given by Proposition 2.3. That is,
(recalling Eq. (3.4) and the notation in Eq. (4.2)) we have

πξQ;F (γ | G⊔,G1) ∝ exp

(
− E ∗

β (γ) +
AF (γ)

Nn
+ IQ(γ)

)
= qnQ;F,1(γ) . (5.1)

Hence, by Eq. (4.9) we can now move to the polymer model with weights qnQ;F,1(γ) and partition
function

ZnQ,Q;F,1(A,B | G⊔) =
∑

γ∈PQ(A,B)∩G⊔

qnQ;F,1(γ) .

Recalling the animal decomposition from Definition 3.3 and the notational comment following
it, we extend the above definitions to weights and sums over animals Γ. Now define W as “Q with
no top or bottom”, i.e. the extension of Q to an infinite vertical strip containing it at the top and
bottom sides of Q. (Both the choice of the strip and exact point of extension are irrelevant.) By
the event G⊔ and the construction of Q, we first argue that except for a bad set of γ making up a
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o(1) fraction of ZnQ,Q;F,1(· | G⊔) and of ZnQ,W ;F,1(· | G⊔), we have

qnQ;F,1(γ) = (1 + o(1))qnW ;F,1(γ) ,

and we can instead study the polymer model with weights qnW ;F,1 and partition function ZnQ,W ;F,1(· |
G⊔). By the decay properties of I, it suffices to show that γ stays distance at least (logL)2 away
from the top and bottom of Q, besides an exceptional set of γ. If γ approaches the top of Q then

it must have length greater than 1.1N
1/3
n (logL)16, which can be ruled out via a Peierls argument

mapping to a minimal length path from A to B. In particular, the distance from γ to the top of Q
is at least (logL)2. Regarding interactions with the bottom of Q, in the proof of Lemma 4.14 (see
Eq. (4.10)) it is shown that

ZnQ,Q;F,1(A,B | max
b∈γ

|∂Db| ≤ (logL)2 ,G⊔) ≥ (1− o(1))ZnQ,Q;F,1(A,B | G⊔) ,

and the same proof also holds when replacing the interaction domain with W . For γ in the left
side of the inequality, the distance between γ and the bottom side of Q is at least (logL)2.

Random walk preliminaries and notation. Let P̃ denote the polymer measure on Γ with

weight qnW ;F,1 and partition function ZnQ,W ;F,1(A,B), so our starting point is P̃(· | G⊔). First observe

that in Eq. (5.1), we could have replaced AF (γ) with −|D1 ∩F |, the area below γ intersected with

F , by just a renormalization which does not change the measure P̃ (in fact we only started with

AF (γ) to keep the same notation as Section 4). Now define A↓
F (Γ) as the area of the region below

the linear interpolation of the cone-points of Γ intersected with F . Similarly for an irreducible

component Γ(i) between cone-points u, v, we define A↓
F (Γ

(i)) as the area below uv intersected with

F . In Lemma 5.2 and Remark 5.3, we show that except for a bad set of Γ occurring with P̃(· | G⊔)-

probability o(1), we can replace |D1 ∩ F | with |A↓
F (Γ)| at the multiplicative cost of (1 + o(1)) to

the weight of Γ. We will make this change and call the new measures P and P(· | G⊔).

Now observe that every diamond in Γ is fully contained in W , and hence IW (Γ(i)) = IZ2(Γ(i))

for irreducible components Γ(i). For P, recall from Proposition 3.19 that, after renormalizing the

weights by e
hn
(1,0)

·(B−A)
, every irreducible component Γ(i) in Γ has weight given by the probability

Phn
(1,0)(Γ(i))e−

1
Nn

A↓
F (Γ(i)). By the product structure of the weights (Eq. (3.7)), this implies that the

law of Γ in between any two cone-points u, v is an area tilted random walk bridge with increments
taking values in the set of irreducible components, independent of the portion of Γ before u and
after v. This random walk measure will be denoted by Pu,v(Γ) := P(Γ | u, v ∈ Cpts(Γ)), where it
is implicit that the measure is on the restriction of Γ in between u and v. It will be useful also to
define the one ended random walk measure Pu that starts at u, so that Pu,v = Pu(· | v ∈ Cpts(Γ)).

We can also define the above notation for the case when there is no area term, replacing P by P̂.
Finally, the notation for the expectation with respect to the above measures will be to replace P
with E.

Proof strategy. The strategy for proving Theorem 5.1 is as follows:

Step 1: We show in Lemma 5.2 that w.h.p. we have the event Bdd, informally stating that the
first and last cone-points of Γ are not far away from A and B, and the maximum distance between
any adjacent cone-points of Γ is suitably small. This moreover allows us to modify the area tilt
so that it only depends on the cone-points of Γ, and not the full path. Calling the first and last
cone-points A′, B′, we move to the measure PA′,B′(· | G⊔,Bdd) for the next step.

Step 2: We next show in Lemma 5.4 that w.h.p. in the first and last quadrant of the interval

[A′
1, B

′
1], we can find points with height at most 1000N

1/3
n . Denoting these points ū, v̄, we proceed

to the next step with the measure Pu,v(· | G⊔,Bdd).
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Step 3: Moving inwards, we show in Lemma 5.8 that for any ε > 0, with probability 1 − ε,

the cone-points with x-coordinates −(log logL)N
2/3
n and (log logL)N

2/3
n , call them ū′, v̄′, are at

height at most KεN
1/3
n . Calling these points ū′, v̄′, we move to the next step with the measure

Pu′,v′(· | G⊔,Bdd).

Step 4: In Lemma 5.12 we show that with high probability, we have the event Repel that Cpts(Γ)
stays above N δ in the interval J that is N8δ away from the endpoints ū′ and v̄′. Call the first and
last cone-points in J by ū′′, v̄′′ and consider the measure Pū′′,v̄′′(· | G⊔,Bdd,Repel). Since Bdd∩Repel
implies G⊔, the conditioning on G⊔ can be removed. The resulting measure Pū′′,v̄′′(· | Bdd,Repel) is
such that the marginal on Cpts(Γ) is a 2d area-tilted random walk, as (recalling also Remark 5.3)
we have removed everything not measurable with respect to Cpts(Γ). The convergence of such a
random walk to the Ferrari–Spohn diffusion was proven in [25].

Reducing to a 2D RW with an area-tilt. We begin with establishing the boundedness of
irreducible components.

Lemma 5.2. Let Bdd be the set of Γ such that |Cpts(Γ)| ≥ 2, and the maximum displacement

maxi(|X(Γ(i))|, |X(Γ(L))|, |X(Γ(R))|) is no more than (logL)50. Then,

P̃(Bddc | G⊔) ≤ e−c(logL)
50
,

or equivalently,

ZnQ,W ;F,1(Bdd
c | G⊔) ≤ e−c(logL)

50
ZnQ,W ;F,1(G⊔) .

Proof. Since the area tilt can change the weight of events by at most a factor of e(logL)
41
, it suffices

to prove the bounds with respect to ẐnQ,W and weights q̂nW (i.e. having removed the area term). By
Lemma 3.11 we can assume we have cone-points. Now by construction of Q, all diamonds of Γ are
entirely contained in W , whence q̂nW (Γ(i)) = q̂nZ2(Γ

(i)). Ignoring the event G⊔ by an upper bound,
we can thus write

ẐnQ,W
(
A,B

∣∣ |X(Γ(L))| > (logL)50, |Cpts(Γ)| ≥ 2,G⊔)
≤

∑
u∈Y◀(A)
v∈Y▶(B)

|A−u|>(logL)50

∑
Γ(L)∈AL∩PQ(A,u)̂

qnW (Γ(L))
∑

Γ(R)∈AR∩PQ(v,B)̂

qnW (Γ(R))
∑
k≥1

Γ(1)◦...Γ(k)∈PZ2 (u,v)

k∏
i=1

q̂nZ2(Γ
(i))

=
∑

u∈Y◀(A)
v∈Y▶(B)

|A−u|>(logL)50

∑
Γ(L)∈AL∩PQ(A,u)̂

qnW (Γ(L))
∑

Γ(R)∈AR∩PQ(v,B)̂

qnW (Γ(R))ẐnZ2,Z2(u, v) .

Fixing u, every Γ(L) ∈ PQ(A, u) has length at least |A− u|, so by Proposition 3.19 we have∑
Γ(L)∈AL∩PQ(A,u)̂

qnW (Γ(L)) ≤ Ce−νgβ|A−u|e−τβ,n(A−u) ,

with an analogous bound for Γ(R). Thus, using that ẐnZ2,Z2(u, v) ≤ e−τβ,n(v−u) and the convexity of

the surface tension (Item (iii) in Proposition 3.12), we obtain an upper bound of

ẐnQ,W (A,B | |X(Γ(L))| > (logL)50,|Cpts(Γ)| ≥ 2,G⊔)

≤ Ce−τβ,n(B−A)
∑

u∈Y◀(A)
|A−u|>(logL)50

e−νgβ|A−u|
∑

v∈Y▶(B)

e−νgβ|B−v| .
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The number of points u such that |A − u| = r is O(r), so that the sum over u is bounded by

e−
νg
2 β(logL)

50

. By the same logic, the sum over v is bounded by a constant. Hence, we have

ẐnQ,W (A,B | |X(Γ(L))| > (logL)50, |Cpts(Γ)| ≥ 2,G⊔) ≤ Ce−
νg
2 β(logL)

50

e−τβ,n(B−A)

≤ Ce−cβ(logL)
50
ẐnZ2,Z2(A,B)

≤ Ce−cβ(logL)
50
ẐnQ,W (A,B) ,

where we used Item (ii) of Proposition 3.15 in the second line and Lemmas 3.16 and 3.17 in the
third.

The proof that the irreducible components |X(Γ(i)| have the same bound follows similarly, so
the details are omitted. The lemma now concludes by a union bound. ■

Remark 5.3. Given Γ, let S be the linear interpolation of Cpts(Γ). On the event Bdd, the area in
between Γ and S between two cone-points of Γ is at most O(logL)50. There are (deterministically)

at most N
2/3
n (logL)25 cone-points, so the total difference in area between Γ and S is at most

O(N
2/3
n (logL)75). After dividing this area by Nn, this is o(1). Hence, as commented in the

preliminaries of this section, we can change the area tilt term in Eq. (5.1) to −A↓
F (Γ)/Nn at the

cost of a multiplicative (1 + o(1)).

Next, we show that Γ will drop to height O(N
1/3
n ). For an easier read of the proof, we leave the

dimensions in terms of a, b but our application is for a = 25 and b = 16.

Lemma 5.4. Fix a, b > 0 such that a > 3b/2, let I := J−1
2N

2/3
n (logL)a,−1

2N
2/3
n (logL)aK, and

let u, v be such that u1 < v1 are within an additive (logL)50-term of the two endpoints of I, and

u2, v2 ∈ N
1/3
n (logL)b± (logL)50. Let Drop be the event that there exist cone-points of Γ in first and

last quarters of I which lie below height KN
1/3
n . Then for some constant K > 0,

Pu,v(Drop | G⊔,Bdd) ≥ 1− e−c(logL)
a
.

Proof. Roughly, the sought bound is achieved by forcing the 2d random walks to proceed as follows:

• In the two intervals of length N
2/3
n /(logL)b closest to u, v, drop by height N

1/3
n /(logL)b/2.

This is repeated up to (logL)3b/2 times from each side so the height drops to at most K2 N
1/3
n .

• Not exceed height KN
1/3
n throughout the remaining middle interval.

We will argue that the probability cost associated to these two items in a random walk with no
area-tilt is exp[−c(logL)3b/2] and exp[−c(logL)a] respectively, whereas the associated area of such

Γ has A↓
F (Γ) = O((logL)3b/2 + (logL)a)Nn), giving a term of the same order as above in the

probability.
By a union bound, we may as well assume that Drop only refers to the existence of such a

cone-point in the first quarter of I. Isolating the area term, we have

Pu,v(Dropc | G⊔,Bdd) =
Êu,v[e

− 1
Nn

A↓
F (Γ)

1Dropc | G⊔,Bdd]

Êu,v[e
− 1

Nn
A↓

F (Γ) | G⊔,Bdd]
.

On the event Dropc ∩Bdd, we know that Γ lies above height KN
1/3
n − (logL)50 =: K ′N

1/3
n over an

interval of length N
2/3
n (logL)a/4. Thus, we have A↓

F (Γ) ≥ K ′(logL)aNn/4, whence

Êu,v[e
− 1

Nn
A↓

F (Γ) | G⊔,Bdd] ≤ e−K
′(logL)a/4 .
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u v

u(1)

u(2)

. . .
u(m)

v(1)

v(2)

. . .

v(m
′)

w(1) w(2) . . . w(k) . . . w(k′)

N2/3
n (logL)−b

N1/3
n (logL)−b/2

N2/3
n (logL)−b

N1/3
n (logL)−b/2

N2/3
n

N2/3
n (logL)b/2

K
2 N1/3

n

N1/3
n (logL)b N1/3

n (logL)b

N2/3
n (logL)b/2

N1/3
n logL

N2/3
n (logL)a

Figure 8. The dropping points z(j) and target balls Bj around them in proving Lemma 5.4.
We lower bound the probability that Γ : u → v hits each target ball along the way. Between
w(k′) and v(m

′), the size of the balls decreases in order. It is now rare for a random walk
started from the orange ball around w(k′) to hit the much smaller blue ball around v(m

′).
Controlling this probability is easier if this transition occurs away from the bottom, hence

we first climb back up to height N
1/3
n (logL).

It suffices to now show the key lower bound, which captures the dropping behavior of Γ to the

equilibrium height of O(N
1/3
n ):

Êu,v[e
− 1

Nn
A↓

F (Γ) | G⊔,Bdd] ≥ e−c
∗(logL)a , (5.2)

whence we can take K ′ > 8c∗ to conclude.
To prove this lower bound, we break I into three intervals I = I1 ∪ I2 ∪ I3 such that |I1| =

|I3| = N
2/3
n (logL)3b/2. Let Low be the event that the maximum height of the cone-points of Γ in

the interval I2 is at most KN
1/3
n . Then, on Bdd ∩ Low, the maximum height of Γ in I2 is at most

KN
1/3
n + (logL)50, in which case

A↓
F (Γ)

Nn
≤ 1

Nn
N1/3
n (logL)b(|I1|+ |I3|) +

C

Nn
KN1/3

n |I2| ≤ (logL)3b/2 + C ′K(logL)a .

Hence,

Êu,v[e
− 1

Nn
A↓

F (Γ) | G⊔,Bdd] ≥ e−(logL)3b/2−C′K(logL)aP̂u,v

(
Low | Bdd,G⊔)

= e−(logL)3b/2−C′K(logL)aP̂u

(
Low | Bdd,G⊔, v ∈ Cpts(Γ)

)
As long as a > 3b/2, the (logL)a term dominates the prefactor, which is in the form of the desired
lower bound in Eq. (5.2). It now remains to prove a lower bound of the same form for the probability.
We trivially have

P̂u

(
Low | Bdd,G⊔, v ∈ Cpts(Γ)

)
≥ P̂u

(
Low,G⊔, v ∈ Cpts(Γ) | Bdd

)
.

First, let G⊔
∗ be the event that the minimum height of any cone-point of Γ is at least (logL)50.

Then, Bdd ∩ G⊔
∗ ⊂ G⊔, so that

P̂u

(
Low,G⊔, v ∈ Cpts(Γ) | Bdd

)
≥ P̂u

(
Low,G⊔

∗ , v ∈ Cpts(Γ) | Bdd
)
.

By this move, we have reduced to a situation where all the events in question are measurable
with respect to Cpts(Γ). Hence, we can turn to the marginal on Cpts(Γ), which has the law of a

2d random walk with increment law P(x, y) = Phn
(1,0)(X(Γ) = (x, y) | |(x, y)| ≤ (logL)50). Let S

denote this random walk started at u when the measure referred to is P̂u(· | Bdd).



THE LIMITING LAW OF THE DISCRETE GAUSSIAN LEVEL-LINES 55

Let
m := ⌊(logL)3b/2 − K

2 (logL)
b/2⌋ , m′ := ⌊(logL)3b/2 − (logL)b/2+1⌋ ,

and define the points

u(j) =
(
u1 + jN2/3

n (logL)−b, u2 − jN1/3
n (logL)−b/2

)
(j = 0, . . . ,m) ,

v(j) =
(
v1 − jN2/3

n (logL)−b, v2 − jN1/3
n (logL)−b/2

)
(j = 0, . . . ,m′) ,

so that, recalling |u2 − N
(1/3
n (logL)b| < (logL)2, we have |u(m)

2 − K
2 N

1/3
n | = O(N

1/3
n (logL)−b/2))

(accounting for integer rounding in m), and similarly |v(m
′)

2 − N
1/3
n logL| = O(N

1/3
n (logL)−b/2)).

Further set

k := ⌊(logL)a − (m+m′)(logL)−b⌋ − ⌈logL− K
2 ⌉ , k′ = ⌊(logL)a − (m+m′)(logL)−b⌋ − 1 ,

and define the points

w(j) =


(
u
(m)
1 + j⌊N2/3

n ⌋, u(m)
2

)
j = 1, . . . , k ,(

u
(m)
1 + j⌊N2/3

n ⌋, u(m)
2 + (j − k)N

1/3
n

)
j = k + 1, . . . , k′ .

so that the jump from w(k′) to v(m
′) is such that

⌊N2/3
n ⌋ ≤ v

(m′)
1 − w

(k′)
1 ≤ 2⌊N2/3

n ⌋ .
We will control the probability that in time m+m′ + k′ + 1, the random walk S passes through

appropriately sized balls around the points u(j),w(j), v(j), as illustrated in Fig. 8. That is, S will
first drop down along the points u(j) during the interval I1, then remain low at the points w(j)

along the interval I2, and finally climb back up to v along the points v(j) along the interval I3. We
defined separately the above points as u,w, v for ease of definitions and an emphasis on the above
geometric description, but it will be convenient now to just define one sequence of points z(j) such
that

z(j) =


u(j) for 0 ≤ j ≤ m

w(j−m) for m < j ≤ m+ k′

v(m+m′+k′+1−j) for m+ k′ < j ≤ m+m′ + k′ + 1 .

Now along this sequence, for 1 ≤ j ≤ m+m′+k′+1, define α = Ehn
(1,0) [X(Γ)1 | |X(Γ)| ≤ (logL)50],

the expectation in the x-coordinate of an increment. (The expectation in the y-coordinate is 0 by

the symmetry of the model.) Then define ℓj := 1
α(z

(j)
1 − z

(j−1)
1 ), noting that with the exception

of j = m + k′, we have ℓj ≤ ℓj+1. Define Bj as the ball of radius
√
ℓj centered about z(j) in Z2,

except when j = m + k′ (the index where ℓj > ℓj+1), where we set Bj to have radius
√
ℓj+1. For

convenience, define B0 = z(0). Observe now that for all j we have

|̃z(j) − z(j)| ≤
√
ℓj+1 . (5.3)

Indeed for j ̸= m+ k′, we have by construction that |̃z(j) − z(j)| ≤
√
ℓj ≤

√
ℓj+1. For j = m+ k′,

since we adjusted the radius of Bj to be
√
ℓj+1, we directly have |̃z(j) − z(j)| ≤

√
ℓj+1.

We now show that there exists C > 0 such that for any j and any z̃(j) ∈ Bj , we have∣∣∣z(j+1) − Êz̃(j) [S(ℓj+1)]
∣∣∣ ≤ C

√
ℓj+1 . (5.4)

Indeed, we have

Êz̃(j) [S(ℓj+1)] = (̃z
(j)
1 + ℓj+1α1, z̃

(j)
2 )

= (̃z
(j)
1 + z

(j+1)
1 − z

(j)
1 , z̃

(j)
2 ) .
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The bound on the x-coordinates in Eq. (5.4) now follows from Eq. (5.3). For the y-coordinates,

|̃z(j)2 − z
(j+1)
2 | ≤ |̃z(j)2 − z

(j)
2 |+ |z(j+1)

2 − z
(j)
2 | ≤ 2

√
ℓj+1 ,

using Eq. (5.3) and the fact that |z(j+1)
2 − z

(j)
2 | ≤

√
ℓj+1 by the construction of the sequence z(j).

With Eq. (5.4) in hand, we aim to prove the following claim.

Claim 5.5. If we denote, for j = 0, . . . ,m+m′ + k′,

pj(z,B) := P̂z

(
S(ℓj+1) ∈ B, S(t)2 ∈ [12z2,

3
2z2] ∀ t ≤ ℓj+1

∣∣ Bdd) ,
then there exists a constant c = c(β) > 0 such that for every 0 ≤ j ≤ m+m′+k′ except j = m+k′,
we have

min
z∈Bj

pj(z,Bj+1) ≥ c for j ∈ {0, . . . ,m+m′ + k′} \ {m+ k′ − 1} , (5.5)

min
z∈Bj

pj(z,Bj+1) ≥ c(logL)−b for j = m+ k′ − 1 . (5.6)

Furthermore, we have

min
z∈Bj

pj(z, {v}) ≥ cN−2/3
n (logL)b for j = m+m′ + k′ . (5.7)

Proof of Claim 5.5. By Eq. (5.4) and the local limit theorem for the Z2 random walk in [38], there
exists some constant c1 = c1(β) > 0 such that for every j and every z ∈ Bj ,

P̂z (S(ℓj+1) ∈ Bj+1 | Bdd) ≥ c1
|Bj+1|
ℓj+1

.

Recall that for all j ̸= m+ k′ − 1 we defined Bj+1 to be the ball of radius
√
ℓj+1 about z(j+1). For

that exceptional j = m+ k′ − 1, the radius is
√
ℓj+2 = N

1/3
n (logL)−b/2 =

√
ℓj+1(logL)

−b/2. Thus,
we can infer from the above display that there exists some constant c2 = c2(β) > 0 such that

min
z∈Bj

P̂z (S(ℓj+1) ∈ Bj+1 | Bdd) ≥ c2 for all j ̸= m+ k′ − 1 ,

and

min
z∈Bm+k′−1

P̂z (S(ℓm+k′) ∈ Bm+k′ | Bdd) ≥ c2(logL)
−b .

Similarly, at j = m+m′ + k′, we may target the singleton {v} and obtain the lower bound

min
z∈Bm+m′+k′

P̂z(S(ℓm+m′+k′+1) = v | Bdd) ≥ c2
ℓm+m′+k′+1

=
c2

N
2/3
n (logL)−b

.

Turning to establish Eq. (5.5) for j ̸= m+ k′ − 1, it suffices via a union bound to show that, for
every such j and all z ∈ Bj , we have

P̂z( max
t≤ℓj+1

|S(t)2 − z2| > 1
2z2 | Bdd) ≤ c2/2 .

Indeed, by construction, for all j and z ∈ Bj we have z2 ≥ (K/4)N
1/3
n > (K/4)

√
ℓj+1 for all j, and

said bound readily holds for our random walk S(·) by Hoeffding’s inequality (for large enough K).
To establish Eq. (5.6), we use that the location of the transition point j = m+ k′ − 1 was chosen

precisely so that z2 would then be suitably large. Namely, as Bm+k′−1 is centered at z(m+k′−1), we

have z2 = (1 + o(1))(k′ − k)N
1/3
n = (1 + o(1))N

1/3
n logL for all z ∈ Bm+k′−1. In particular, for the

exceptional j = m+ k′ − 1 we have by Hoeffding’s inequality (recall ℓj+1 = N
2/3
n for this j) that

P̂z( max
t≤ℓj+1

|S(t)2 − z2| > 1
2z2 | Bdd) < L−100 .
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Finally, the last inequality holds true also for the final j = m + m′ + k′ (in which case for all

z ∈ Bj we have z2 ≥ (1 − o(1))N
1/3
n (logL)b vs. an interval length ℓj+1 = N

2/3
n (logL)−b), thereby

establishing Eq. (5.7) and concluding the proof of Claim 5.5. ■

Equipped with the above claim, we can now apply the Domain Markov property after every ℓj
steps of the random walk, and use the fact that the intersection over j of the events of the form
S(t)2 ∈ [12z2,

3
2z2] imply Low ∩ G⊔

∗ , so that Claim 5.5 obtains that

P̂u

(
Low,G⊔

∗ , v ∈ Cpts(Γ) | Bdd
)
) ≥ e−c(m+m′+k′)N−2/3

n ≥ e−c
′(logL)a ,

for some constant c′ = c′(β) > 0 when a > 3b/2. This completes the proof of Lemma 5.4. ■

Remark 5.6. At this point, we have established that (a) w.h.p., when looking at the rectangle

delimiting an interval of length N
2/3
n (logL)a centered on the bottom boundary, the intersection of Γ

with its left and right sides, denoted ū, v̄ respectively, is at distance at most KN
1/3
n from the bottom

boundary; (b) the law of Γ in said rectangle is that of a 2d random walk S(·) (cone-points), with i.i.d.
animal decorations between every two cone-points, started at ū and conditioned (i) to hit v̄, and

(ii) that Ln, a subset of Γ stays at nonnegative heights, thereafter tilted by exp(−A↓
F (Γ)/Nn). The

subtle point is that the marginal on cone-points is not simply a 2d random walk bridge conditioned
to be nonnegative (and tilted by the area): the event that Ln is nonnegative is not measurable
w.r.t. the marginal on cone-points, and could potentially have a delicate pinning effects. Further
disruptive is the area term: without random walk estimates, we cannot control the area and rule
out the case where it pushes Γ towards the boundary. We wish to rule out these scenarios: indeed,
if this had been a standard random walk, entropic repulsion would repel it to height N δ

n, where
conditioning on Ln or Cpts(Γ) being nonnegative is basically the same. The strategy is as follows:

1. Show (in Lemma 5.8) that at ±(log logL)N
2/3
n the height of Γ is at most KεN

2/3
n with

probability at least 1 − ε. (This would have followed from [25, §6.6 and Prop. 6.2] if
we had a random walk on cone-points, but the conditioning on nonnegative Ln vs. cone-
points precludes that. Also note that the effect of Ln vs. cone-point conditioning could
have alternatively been addressed by [27, Proposition 13], but the area tilt precludes that
approach as well.)

2. Establish (Lemma 5.11) that, without an area term, in the above interval, Γ stays above
height N δ

n away from its two endpoints, except with probability O(N−δ
n ).

3. Deduce the same (Lemma 5.12) for the area-tilted Γ by showing that the area term
A↓

F (Γ)
Nn

in the above interval is O((log logL)3/2).

At the end of these steps, we arrive at a 2d random walk on the interval J (we may restrict attention

to the cone-points), with endpoints at height at most KεN
1/3
n , conditioned to be above N δ

n and
tilted by the area delimited by the random walk (rescaled by 1/Nn).

Thanks to Lemma 5.4, we move to Pū,v̄(· | G⊔,Bdd) with ū1 ∈ [−1
2N

2/3
n (logL)a,−1

4N
2/3
n (logL)a],

v̄1 ∈ [14N
2/3
n (logL)a, 12N

2/3
n (logL)a], and ū2, v̄2 ≤ KN

1/3
n . We next show that we can find two cone-

points ū′, v̄′ at the N
2/3
n scale (moving inwards from N

2/3
n (logL)a) at height at most O(N

1/3
n ).

Define first the event

G⊔
Cpts := {All cone-points of Γ have height ≥ 0} .

We start with a tightness result from [25].

Proposition 5.7 ([25, Section 6.6]). For every ε > 0, there exists a constant Kε > 0 such that

the following holds. For any u, v such that u2, v2 ≤ CN
1/3
n , and for every fixed vertical line x = m
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in between u, v, the height of (the linear interpolation between points of) S at x = m is at most

KεN
1/3
n except with probability ε under Pu,v(· | Bdd,G⊔

Cpts).

Proof. The measure Pu,v(· | Bdd,G⊔
Cpts) is exactly an area tilted 2d random walk conditioned to

stay above height 0. This tightness result was shown in [25, Section 6.6], noting Proposition 6.2

there in order to extend the result to scales larger than N
2/3
n (e.g., applying to the case when

v1 − u1 = O(N
2/3
n (logL)25)). ■

Lemma 5.8. Let E(K) be the event that at the first cone point after −(log logL)N
2/3
n and the last

cone point before (log logL)N
2/3
n , the height of γ is at most KN

1/3
n . Then, for any ε > 0, there

exists a Kε such that

Pū,v̄(E(Kε) | Bdd,G⊔) ≥ 1− ε .

Proof. It suffices to prove that under Pū,v̄, the first cone-point after −(log logL)N
2/3
n has height

≤ KεN
2/3
n except with probability ε/2. Fix any δ < 1/3, and let u(L) be the last cone-point of Γ such

that u
(L)
1 ≤ −(log logL)N

2/3
n (“to the left” of −(log logL)N

2/3
n ) and u

(L)
2 ≤ N δ. If there is no such

point, define u(L) = ū. Similarly, let v(R) be the last cone-point of Γ with v
(R)
1 ≥ −(log logL)N

2/3
n

(“to the right” of −(log logL)N
2/3
n ) such that v

(R)
2 ≤ N δ

n. If there is no such point, define v(R) = v̄.

Then, the law of the cone-points of Γ in between u(L) and v(R) under the measure P is exactly
the area tilted 2d random walk from u(L) to v(R) conditioned to stay above N δ

n (since the event
G⊔ is implied by the cone-points staying above N δ

n and Bdd, and hence can be ignored in the
conditioning). We can now conclude by Proposition 5.7 after translating vertically by N δ

n. ■

By Lemma 5.8, we can now move to Pū′,v̄′(· | G⊔,Bdd), where ū′1 = −(log logL)N
2/3
n ± (logL)50,

v̄′1 = (log logL)N
2/3
n ± (logL)50, and ū′2, v̄

′
2 ≤ KεN

1/3
n . Before we can appeal to the convergence

to Ferrari–Spohn shown in [25], we still need to handle the issue of having a floor with respect to
Ln vs. a floor with respect to Cpts(Γ). Furthermore, we want to show that even though ū′2, v̄

′
2 are

potentially lower than O(N1/3), the entropic repulsion will bring the height back to O(N1/3) on an

interval [−TN2/3, TN2/3].
Up until Lemma 5.12, we now forget the area tilt. The next proposition from [27, Proposition

13] deals with the fact that our floor condition is with respect to Ln and not Cpts(Γ) when there is
no area tilt, capturing that fact that Γ quickly repels away from the floor after which point the two
events are essentially the same. The statement in [27] assumed further that u and v are on the floor
at height 0, but as commented after [27, Theorem 3], such repulsion results are only easier when
the end-points are away from the floor. See also the comment before Proposition 6.3 regarding
Ising polymers vs. disagreement polymers.

Proposition 5.9 ([27, Proposition 13]). There exists a constant c(β) > 0 such that for all u, v with
u2, v2 ≥ 0,

P̂u,v(γ ⊂ H+ | G⊔
Cpts) ≥ c(β) .

In particular, since γ ⊂ H+ implies Ln ⊂ H+, we have

P̂u,v(G⊔ | G⊔
Cpts) ≥ c(β) .

In order to show entropic repulsion in the measure P̂ū′,v̄′(· | G⊔,Bdd), we will use the following
random walk estimates from [26], recorded here for convenience.

Theorem 5.10 ([26, Thm 5.1]). Consider the 2D effective random walk S(·). Let τG be the hitting
time of a set G ⊂ Z2. There exists a constant C > 0 such that, for every sequence δℓ that goes to 0
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arbitrarily slowly as ℓ→ ∞, and for all u, v ∈ Z such that u/
√
ℓ, v/

√
ℓ ∈ (0, δℓ),

P̂(0,u)(τ(ℓ,v) < τH− <∞ | Bdd) ∼ C
h+(u)h−(v)

ℓ3/2
,

where h± are positive harmonic (in particular, asymptotically linear) functions.

Applying the above for ℓ = N
2/3
n (log logL), we show entropic repulsion to N δ

n.

Lemma 5.11. Fix a constant 0 < δ < 1/12, and consider the event Repel that in the interval

J := [−(log logL)N
2/3
n + N8δ

n , (log logL)N
2/3
n − N8δ

n ], all cone-points of Γ lie above height N δ
n.

Then, there exists C > 0 such that

P̂ū′,v̄′(Repel | G⊔,Bdd) ≥ 1− CN δ
n .

Proof of Lemma 5.11. By Proposition 5.9 (and Lemma 5.2) it suffices to prove that

P̂ū′,v̄′(Repel
c | G⊔

Cpts,Bdd) ≤ C ′N δ
n .

Set ℓ = N
2/3
n (log logL). Since ū′2, v̄

′
2 ≤ KεN

1/3
n = o(

√
v̄′1 − ū′1), we are in the regime of Theo-

rem 5.10. We follow the computation of [26, Lemma 3.6] (except simpler in our case, as we have
already moved to the setting of the effective random walk). We can sum over the first cone-point
z below height ℓδ in the interval J and apply random walk estimates, obtaining

P̂ū′,v̄′(Repel
c | G⊔

Cpts,Bdd) ≤
ℓ−ℓ8δ∑

z1=−ℓ+ℓ8δ

ℓδ∑
z2=0

P̂ū′,v̄′(τz <∞ | G⊔
Cpts,Bdd)

=
ℓ−ℓ8δ∑

z1=−ℓ+ℓ8δ

ℓδ∑
z2=0

P̂ū′(τz < τv̄′ < τH− <∞ | Bdd)
P̂ū′(τv̄′ < τH− <∞ | Bdd)

=
ℓ−ℓ8δ∑

z1=−ℓ+ℓ8δ

ℓδ∑
z2=0

P̂ū′(τz̄ < τH− <∞ | Bdd)Pz(τv̄′ < τH− <∞ | Bdd)
Pū′(τv̄′ < τH− <∞ | Bdd)

≤ Cℓ3/2+δ
ℓ−ℓ8δ∑

z1=−ℓ+ℓ8δ

ℓδ

(z1 + ℓ)3/2
· ℓδ

(ℓ− z1)3/2

≤ 2Cℓ3δ
0∑

z1=−ℓ+ℓ8δ

1

(z1 + ℓ)3/2
· 1

(1− z1
ℓ )

3/2

≤ 2Cℓ3δ
0∑

z1=−ℓ+ℓ8δ

1

(z1 + ℓ)3/2

≤ 4Cℓ3δℓ−4δ = 4Cℓ−δ .

The first two lines follow by a union bound and conditional probability, noting that the event
τH− < ∞ occurs with probability 1 as the random walk has no drift in the y-coordinate. The
third line follows by the markov property, and the fourth line uses Theorem 5.10. The rest of the
computations are purely algebraic, requiring only that δ < 1/8. ■

We can now add back the area tilt to obtain entropic repulsion in the measure Pū′,v̄′(· | G⊔,Bdd).

Lemma 5.12. For the event Repel defined in Lemma 5.11,

Pū′,v̄′(Repel | G⊔,Bdd) ≥ 1− o(1) .
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Proof. We have

Pū′,v̄′(Repel
c | G⊔,Bdd) =

Êū′,v̄′ [e
−
A↓

F (Γ)
Nn 1Repelc | G⊔,Bdd]

Êū′,v̄′ [e
−
A↓

F (Γ)
Nn | G⊔,Bdd]

≤
Êū′,v̄′ [1Repelc | G⊔,Bdd]

Êū′,v̄′ [e
−
A↓

F (Γ)
Nn | G⊔,Bdd]

(5.8)

The numerator is ≤ CN δ
n by Lemma 5.11. To lower bound the denominator, we wish to show

that with at least constant probability in P̂ū′,v̄′(· | G⊔,Bdd), the maximum of Γ is at most

O(N
1/3
n

√
log logL), for then we will have a lower bound on the denominator by e−c(log logL)

3/2
,

which is negligible as ec(log logL)
3/2 ≪ N δ

n. By Proposition 5.9 again, we can lower bound this

probability under P̂ū′,v̄′(· | G⊔
Cpts,Bdd) instead. Yet this is now a 2d random walk whose start and

end-points are of a lower order than the square root of the horizontal distance between them. By
[26, Theorem 5.3], this converges to a Brownian excursion, where the bound on the maximum is a
well known fact. ■

Proof of Theorem 5.1. As per Steps 1 to 4 in the strategy outlined at the beginning of this section,
by Lemmas 5.2, 5.4, 5.8 and 5.12, we can move to the measure Pū′,v̄′(· | Repel,G⊔,Bdd). As noted
in the proof of Lemma 5.12, we can reveal the first and last cone-points ū′′, v̄′′ in J , and by the
linearity of the cones we have |ū′′2 − ū′2|, |v̄′′2 − v̄′2| ≤ N8δ. On the interval J in between ū′′ and v̄′′,
the event Repel∩Bdd already implies G⊔, so we have reduced to the measure Pū′′,v̄′′(· | Repel,Bdd).
At this point, we have an area-tilted 2d random walk bridge conditioned to stay above height N δ

n

with increment law P(x, y) = Phn
(1,0)(X(Γ) = (x, y) | |(x, y)| ≤ (logL)50), as we have removed every

constraint on Γ that is not measurable with respect to Cpts(Γ). By the exponential tails on the

increments in Proposition 3.19, changing the increment law to Phn
(1,0)(X(Γ) = (x, y)) only changes

the law of the random walk in total variation by e−c(logL)
50
. Moreover, the endpoints ū′′, v̄′′ satisfy

v̄′′1 − ū′′1 ≥ TN2/3 for a constant T sufficiently large depending on Kε, and ū′′2, v̄
′′
2 ≤ KεN

1/3
n . In

particular, we have reduced to the starting point of [25, Sec. 6], where it was shown that the area-

tilted 2d random walk bridge above a floor with increment law Phn
(1,0)(X(Γ) = (x, y)) converges to

FSσn (see [25, Eq. (6.55)]) in the limit L→ ∞ followed by T → ∞.
Thus far we have established that, w.h.p., for every fixed n ≥ 0, the process Yn(t) is stochastically

dominated by a process Zn(t) (the 2d random walk with an area-tilt) that weakly converges to FSσn
as L → ∞. Moreover, as the lower level-lines are w.h.p. below the randomly constructed Q, the
proof in fact showed that, w.h.p., Yn(t) ⪯ Zn(t) conditionally on Lk for k > n (and in particular,
conditionally on the rescaled portions of these level-lines, Yk(t) for k > n). Hence, the stronger
statement concerning the joint law follows from the next elementary fact.

Fact 5.13. Suppose Y1, . . . Ym, Z1, . . . Zm are Rd-valued random variables such that Yn ⪯ Zn for
each n. Suppose furthermore that for each n, conditional on {Yk, k > n}, we have Yn ⪯ Zn. Then,

the joint law satisfies (Y1, . . . Ym) ⪯ (Z ′
1, . . . , Z

′
m) where {Z ′

k}mn=1 are independent with Z ′
k

d
= Zk.

Note that here we conditioned on the lower level-lines Lk for k > n; we cannot condition on
the upper level-lines Lk for k < n (unlike the proof of Theorem 6.1, the matching lower bound for
Theorem 5.1, where we condition on the upper level-lines but cannot condition on the lower ones).

The reason for this is that, in our proof, we construct a rectangle Q of height N
2/3
n surrounding

the typical location of Ln, and while it is positioned so as not to intersect the lower level-line Ln+1,
it will impede on the support of Ln−1. (The necessity for such a rectangle, as opposed to one of

height (say) N1/3(logL)c, is that the latter entails pinning issues with the top side of Q, and the
present tools cannot resolve those when said boundary is random and wiggly.) ■

Remark 5.14. In the proof of the convergence of the area-tilted 2d random walk to FSσ in
[25, Sec. 6], the initial hypothesis that the height of the endpoints (our ū′′2, v̄

′′
2) is replaced by
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[25, Eq. (6.55)], requiring that they would belong to [cεN
1/3
n ,KεN

1/3
n ]. Said assumption qualifies

for an application of a coupling tool ([25, Prop. 6.2]). At this stage, both here and in the setting

of [25], the heights of the endpoints could potentially be o(N
1/3
n ). This is not an issue for their

argument, as the proof of [25, Prop. 6.2] remains valid even without the assumption of the cεN
1/3
n

lower bound.
Alternatively, it is not difficult to show that one can move from the assumption ū′′2, v̄

′′
2 ≤ KεN

1/3
n

to ū′′2, v̄
′′
2 ∈ [cεN

1/3
n ,KεN

1/3
n ] with probability at least 1− ε. Indeed, it suffices to consider u′′ (then

applying the same argument to v′′ by a union bound). Let gεL be the maximum integer such that

u′′2 ≥ gεL with probability at least 1 − ε. If lim infL→∞ gεLN
−1/3
n > 0 then u′′ satisfies the sought

condition (with cε as this lim inf value). Otherwise, we may apply the same logic to the “last”

cone-point u′′′ in the interval of length N
2/3
n starting at u′′ (i.e., the cone-point x with maximizing

x1 − u′′1 out of those with x1 − u′′1 < N
2/3
n ), looking at the maximum integer hεL such that u′′′2 ≥ hεL

with probability at least 1−ε. If lim infL→∞ hεLN
−1/3
n > 0, we may use u′′′ as our desired endpoint.

It remains to handle the case where u′′2, u
′′′
2 < δLN

1/3
n for δL = o(1) (for δL = (gεL ∨ hεL)N

−1/3
n ).

For such u′′, u′′′, by [26, Thm. 5.3], the 2d random walk with no area-tilt converges to a Brownian
excursion. Consequently, we claim that there exists some cε such that the cone-points at the

middle of this interval—concretely, take the first cone-point w such that w1 − u′′1 > N
2/3
n /2—are at

height at least cεN
1/3
n with probability at least 1− ε. Indeed, we may bound the complement as in

Eq. (5.8): the denominator is uniformly bounded away from zero, e.g., we may bound it from below
by 1

2 exp(−A) where A is the median of the area of a standard Brownian excursion Bt (0 < t < 1),
whereas the numerator is bounded by P(B1/2 < ε).

6. Lower bound

Our goal in this section is the following bound on the distance of Ln from the bottom side of ΛL.

Theorem 6.1. In the setting of Theorem 1.1, fix n ≥ 0 and K > 0, let ρn(x) be the maximum

vertical distance of Ln above x+(L2 , 0) for −N
2/3
n ≤ x ≤ N

2/3
n , and set σ2n > 0 as per Definition 3.20.

Then every weak limit point Yn(t) of the process Yn(t) := N
−1/3
n ρn(tN

2/3
n ) (t ∈ [−K,K]), as

L→ ∞, satisfies

Yn ⪰ FSσn .

Moreover, for every fixed m, every weak limit point (Yn(t))n≤m of the processes (Yn(t))n≤m satisfies

(Yn)n≤m ⪰
⊗
n≤m

FSσn .

Since ρn(x) is a decreasing function of ϕ, en route to proving Theorem 6.1 in this section we may
apply monotonicity arguments that are increasing (e.g., raising the heights of boundary vertices).

Fix T > K (eventually we will take T → ∞). Let R be the 3TN
2/3
n × N

1/3
n (logL) rectangle

centered at x = 0 such that the bottom side of ∂R coincides with the bottom of ∂ΛL. Let

A = (−TN2/3
n , 0) and B = (TN

2/3
n , 0). We start with a simpler analogue of Lemma 4.7, the proof

of which we also postpone to Appendix B.

Lemma 6.2. For R,A,B, as defined above, assume we know that w.h.p. under π0ΛL
, all of R lies

in the exterior of Ln−1 (for n = 0, there is no assumption). Then, there exists a π0ΛL
-measurable

distribution on connected regions Q ⊂ R with marked boundary conditions ξ satisfying Items 1 to 3
below, such that the following holds. If A1 is the area of the interior of Ln intersected with Q, and

A2 is the area above the (H − n) level-line in Q under πξQ, then A1 ⊂ A2 w.h.p. under π0ΛL
.

(1) Q is simply connected,
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N
1
3
n logL

3TN
2
3
n

2TN
2
3
n

H − n

H − n− 1

Figure 9. An instantiation of the domain Q used in the proof of the lower bound oo Ln.
The bottom boundary of Q coincides with the bottom boundary of ΛL. The two gray points
on the boundary mark the change in boundary conditions from H − n − 1 to H − n. In
contrast with Fig. 7, the conditioning on ϕx ≥ 0 is present in all of Q.

(2) dist(∂Q, ∂R) ≤ (logL)2, and the bottom side of ∂Q coincides with the bottom side of ∂R,
(3) The boundary conditions ξ assigns height H − n− 1 on the straight line between A and B,

and H − n on the remainder of ∂Q.

Let Q, ξ be any domain and boundary condition satisfying Lemma 6.2 (see Fig. 9). It now suffices

to prove Theorem 6.1 where Ln is the H −n level-line in πξQ. We start by showing the lower bound

for L0 so that w.h.p. the y-coordinate of L0 is O(N
1/3
0 ) above the interval [−3

2TN
2/3
1 , 32TN

2/3
1 ].

This justifies the assumption in Lemma 6.2 for n = 1, since N
1/3
1 ≤ N

1/3
0 e−cβ

√
logL/ log logL by

Eq. (2.3). We can then prove the lower bound for L1, and proceed inductively.
In the rest of this section, we will use “height” to refer to the vertical distance above the bottom

of ΛL. Let G⊓ be the event that Ln stays under the horizontal line H at distance 2(logL)2 below the

lowest point on the top side of Q. Then, πξQ ⪯ πξQ(· | G⊓). We can now follow the same preliminary
steps as in Section 5 to move to a polymer model. By Lemma 4.13, we can condition further on
the event G1 defined there, so that by Proposition 2.3 (and Eq. (3.4)) we have

πξQ(γ | G⊓,G1) ∝ exp

(
− E ∗

β (γ) +
AQ(γ)

Nn
+ IQ(γ)

)
= qnQ;Q,1(γ) . (6.1)

By Eq. (4.9) we can move to the polymer model with weights qnQ;Q,1 and partition function

ZnQ,Q;Q,1(A,B | G⊓) =
∑

γ∈PQ(A,B)∩G⊓

qnQ;Q,1(γ) .

Forgetting the area term for now, the first step is to control the effect of the interactions with the
bottom of Q, effectively eliminating any potential pinning effects. This was shown in the half-space
H+ in [27] for Ising polymers. However, as mentioned in the end of the introduction there, the proof
is more robust and allows for more complicated geometries in γ (e.g. our connected components of
bonds), and more complicated energies (e.g. our E∗

β(γ)), as long as the polymer model in question
features the Ornstein–Zernicke results found in Lemma 3.11 and Proposition 3.19. The particular
structure of the Ising polymer model is only used to show that the increment measure has 1 − εβ
mass on three basic irreducible components (see [27, Definition 18]), which simplifies the proof of
certain random walk estimates. The same is true for the class of polymer models considered in
this paper, for the same reason that allowed us to transfer the results of [17] in Section 3: the

assumption in Eq. (3.8) that e−E∗
β(γ) decays exponentially in βN (γ) implies that the lowest energy

disagreement polymers coincide with those of the Ising polymer setting, and the increase in entropy
of other polymers is negligible compared to their energy.
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Proposition 6.3 ([27, Theorem 2]). There exists a constant C(β) > 0 such that

1
C(β) Ẑ

n
H+,Z2(A,B) ≤ ẐnH+,H+

(A,B) ≤ C(β)ẐnH+,Z2(A,B) .

In our setting, we will need the following corollary.

Corollary 6.4. For the above defined Q and endpoints A,B, one has

ẐnQ,Q(A,B | G⊓) = (1 + o(1))ẐnH+,H+
(A,B) .

Proof. First note that by a simple Peierls argument (mapping the polymer to the straight line
between A,B), we can rule out the event that |γ| > 1.1|B − A| regardless of what the domain or
interaction with the boundary. In particular, this implies that

ẐnH+,H+
(A,B | G⊓) = (1 + o(1))ẐnQ,H+

(A,B | G⊓) ,

and by the decay of the Φ functions (since by the above Peierls argument we can assume on G⊓

that γ stays (logL)2 away from the top and sides of ∂Q, and the bottom side of ∂Q coincides with
∂H), we also have

ẐnQ,H+
(A,B | G⊓) = (1 + o(1))ẐnQ,Q(A,B | G⊓) .

Combining the last two displays results in

ẐnQ,Q(A,B | G⊓) = (1 + o(1))ẐnH+,H+
(A,B | G⊓) . (6.2)

Next, to eliminate the conditioning on G⊓, we turn to ẐnH+,Z2 and argue that

ẐnH+,Z2(A,B | G⊓) ≥ (1− o(1))ẐnH+,Z2(A,B) . (6.3)

Indeed, suppose first that the domain restriction induces only that the cone-points have nonnegative
heights (instead of also forcing all of γ to be nonnegative). Then, [26, Theorem 5.3] shows that Γ

with weight q̂nZ2 and partition function ẐnZ2,Z2(A,B | height(Cpts(Γ)) ≥ 0) converges weakly to a

Brownian excursion upon rescaling, whence the probability of reaching height N
1/3
n (logL) is o(1)

by standard estimates on the Brownian excursion. We can then use Proposition 5.9 to translate

the same result to the our setting with a partition function of ẐnH+,Z2 , proving Eq. (6.3). We now

deduce the analogue of Eq. (6.3) for interactions in H+ as opposed to Z2:

ẐnH+,H+
(A,B | G⊓) ≥ (1− o(1))ẐnH+,H+

(A,B) . (6.4)

Indeed, recall that Lemma 3.18 implies that events that have a probability of o(1) in the measure

associated to ẐnH+,H+
(A,B) also have probability o(1) in the analogue for ẐnH+,Z2(A,B) as long

as the two partition functions are up to a multiplicative constant apart; Proposition 6.3 provides

exactly that hypothesis. Since ẐnH+,H+
(A,B | G⊓) is a subset of the sum in ẐnH+,H+

(A,B | G⊓),

Eq. (6.4) yields

ẐnH+,H+
(A,B | G⊓) = (1− o(1))ẐnH+,H+

(A,B) ,

which, after combining with Eq. (6.2), completes the proof. ■

Proof of Theorem 6.1. First observe that we can replace AQ(γ) with −|D1|, the area below γ, in
Eq. (6.1) by just a renormalization. Now we are in the same setting as in [7], and we recall the proof

of [7, Theorems 7.1] to show the necessary adjustments. For convenience, let Pn
V,U , P̂

n
V,U denote

the measures on Γ associated to ZnV,U , Ẑ
n
V,U respectively. For the case of the Ising polymer model

with no area tilt P̂n
H+,H+

, the authors prove that w.h.p.,

(1) Γ has a linear length and number of cone-points ([7, Lemma 5.7], also proved here in
Lemma 3.11),
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(2) The left, right, and irreducible components of Γ have size no more than (logL)2 ([7, Lemmas
5.5, 5.8]), and

(3) The cone-points of Γ stay above height N δ
n in the interval [A1+N4δ

n , B2−N4δ
n ] ([7, Lemma

5.11]).

The proof of the above inputs relied only on results from [27] and the product structure from
the Ornstein–Zernicke theory, both of which we have in our disagreement polymer model, whence
their results translate immediately to our setting in P̂n

H+,H+
for general disagreement polymers.

We can then use Corollary 6.4 (with Lemma 3.18) to obtain that the same results hold w.h.p. in

P̂n
Q,Q(· | G⊓).

To reintroduce the area tilt, we first replaceAQ(γ) in Eq. (6.1) by−|D1| by just a renormalization,
which does not change the above measures. Then, the same argument leading to Eqs. (6.3) and (6.4)
(i.e., using convergence to Brownian excursion and then Proposition 6.3) proves that for some
constant c = c(T ) > 0,

ÊnH+,H+
[e−|D1|/Nn ] ≥ c .

(See also [7, Claim 7.4] for more details.10) Again Corollary 6.4 and Lemma 3.18 implies the same

lower bound with respect to ÊnQ,Q(· | G⊓). This in turn implies that the events in Items 1 to 3 hold

w.h.p. in Pn
Q,Q(· | G⊓), as per a computation analogous to Eq. (5.8). Finally, as in Remark 5.3,

this allows us to replace |D1| with the area below the linear interpolation of the cone-points of Γ
at the cost of a multiplicative 1 + o(1) to the weight.

The consequence of all of the above is that in Pn
Q,Q(· | G⊓), upon looking at the first and last

cone-points u, v in the interval [A1+N
4δ
n , B1−N4δ

n ], the law of Cpts(Γ) in between u, v can be coupled
to an area-tilted 2d random walk bridge conditioned to stay above height N δ

n, with increment law

given by P(x, y) = Phn
(1,0)(X(Γ) = (x, y)). The convergence to the Ferrari–Spohn diffusion FSσn in

the limit L→ ∞ followed by T → ∞ now follows by [25, Sec. 6].
Thus, we have established that w.h.p., for every fixed n ≥ 0, the process Yn(t) stochastically

dominates a process Zn(t) (the 2d random walk with an area-tilt) that weakly converges to FSσn .
As noted in the induction below Lemma 6.2, the upper level-lines are w.h.p. above the randomly
constructed Q, so the proof in fact shows that w.h.p., Yn(t) ⪰ Zn(t) conditionally on Lk for k < n
(and in particular, conditionally on the rescaled portions of these level-lines, Yk(t) for k < n). Hence,
the stronger statement concerning the joint law follows from Fact 5.13 (for the other direction of
stochastic domination, which is easily deduced by multiplying the random variables by −1).

Note that this conditioning is in the reverse direction as in the proof of Theorem 5.1, and we
cannot instead condition on the lower level-lines Lk for k > n. Indeed, revealing Ln+1 reveals a

wiggly boundary at o(N
1/3
n ) with only size (logL)2 perturbations, which appears to be no different

from the flat boundary we have in the construction of Q at the macroscopic level. However, our
proof relies strongly on the depinning proved in [27], and it is unclear how to extend those results
to the case of a wiggly boundary. ■

7. Extension to all |∇ϕ|p models

In this section we prove Theorem 1.5, extending Theorem 1.1 to |∇ϕ|p models for fixed p > 1.

10More work had to be done in [7] to show convergence to a Brownian excursion because the 2d random walk there
was not symmetric in the y-coordinate, and hence the authors could not directly apply [26, Theorem 5.3]. Our setting
does feature this symmetry, so we cite [26] for the convergence.
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7.1. Large deviations. The following analogues of Eqs. (2.3) to (2.5) for 1 < p < 2 ([35, Thm. 5.1])
and 2 < p <∞ ([35, Thm. 5.5]) are known:

π̂
(p)
∞ (ϕo = h)

π̂
(p)
∞ (ϕo = h− 1)

≤ exp
[
− cβh(p−1)∧ 1

]
, (7.1)

exp
[
− c1βh

p∧ 2
]
≤ π̂(p)∞ (ϕo = h) ≤ exp

[
− c2βh

p∧ 2
]
, (7.2)

π̂(p)∞ (ϕz = h | ϕo = h) ≤ exp
[
− cβh(p−1)∧ 1

]
. (7.3)

As was the case for p = 2, our proof will require a refined version of Eq. (7.3), namely that one
appearing below in Eq. (7.6) below. Let BR(x) be the ball of radius R centered at the site x.

Theorem 7.1. There exists a constant C = C(p) > 0 such that the following holds for any domain
V that contains BR(o), where R = Chp−1 for 1 < p < 2 and R = Ch for 2 < p <∞. Let z be such
that BR+1(z) ⊂ V . Then there exist absolute constants c0, c1, c2, c3, c4 > 0 such that

exp
[
− c0βh

(p−1)∧ 1
]
≤

π̂
(p)
V (ϕo = h)

π̂
(p)
V (ϕo = h− 1)

≤ exp
[
− c1βh

(p−1)∧ 1
]
, (7.4)

exp
[
− c2βh

p∧ 2
]
≤ π̂

(p)
V (ϕo = h) ≤ exp

[
− c3βh

p∧ 2
]
, (7.5)

π̂
(p)
V (ϕz = h | ϕo = h) ≤ exp

[
− c4βh

p∧ p
p−1

]
. (7.6)

Remark 7.2. In Remark 1.7 we defined the set B of exceptional values of L (extending Remark 1.3

for the Zgff) as
⋃
h≥1J

3
4Lh, LhK where Lh = ⌈5β/π̂(p)∞ (ϕo = h)⌉. For this choice, for every h we

have
∑

k∈B∩J1,LhK]
1
k = O(h) = o(logLh)—i.e., B has zero logarithmic density—as Eq. (7.5) shows

limh→∞− 1
h π̂

(p)
∞ (ϕo) = h) = ∞. (Precisely, 1

logn

∑
k∈B∩J1,nK

1
k = O((log n)

−( p−1
p

∧ 1
2
)
) for all p > 1.)

The extensions of the large deviation estimates in Eqs. (7.1) to (7.3) to a general domain V
containing BR(o) follow immediately from their proofs in [35], which we summarize below. Looking
at the 1 < p < 2 case, the proof begins by showing that the outermost 1 level-line loop containing
the origin (denoted Γ1, not to be confused with the notation for animals used previously) has size

at most Chp−1 except with probability e−βh
p−1

, via a Peierls map argument which holds in any
domain V . Hence we obtain

Claim 7.3 (extending [35, Lem. 5.3]). Suppose ϕo ≥ 1. Let Γ1 be the outermost 1 level-line loop
surrounding the origin o. There exists a constant C = C(p) > 0 such that for any domain V
containing o,

π̂
(p)
V (|Γ1| > Chp−1 | ϕo ≥ h) ≤ e−βh

p−1
.

This is used in [35, Lem. 5.4] to show the large deviation rate by comparing to the real-valued
energy minimizer ϕ∗ in a similar (but simpler) strategy as in the p = 2 case. The lower bound of
Eq. (7.2) is established by taking the probability of a single ϕ which is an integer valued approxima-

tion to hϕ∗, and is supported on BR−1(o), thus holding also on π̂
(p)
V . The upper bound of Eq. (7.2)

was proved by revealing Γ1 and using monotonicity to set the boundary conditions outside Γ1 to
0, and hence follows from Claim 7.3. The proof of Eq. (7.1) also uses the same revealing strategy,
combined with a map argument which holds in any domain. Thus, we will have Theorem 7.1 for
1 < p < 2 once we prove the lower bound in Eq. (7.4) (stated as Lemma 7.5) and the conditional
probability bound in Eq. (7.6)11.

11Here we mention how the proof of Eqs. (7.1) and (7.2) extend to π̂
(p)
V for 1 < p < 2; the same is valid for (7.3), but

we will need a stronger version of that inequality (namely, Eq. (7.6)) anyway.
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For the 2 < p < ∞ case, the lower bound of Eq. (7.2) was again proven by taking a single ϕ∗

with ϕ∗o = h that has probability at least e−cβh, which is already supported on BR(o). Both the
upper bound of Eq. (7.2) and the bound on the ratio of Eq. (7.1) then apply a map argument,
which holds in any domain, together with [35, Claim 5.7], which refers only to the energy of a set
of level-line loops. Thus, Theorem 7.1 for 2 < p < ∞ will be established upon proving the lower
bound in Eq. (7.4) (stated as Corollary 7.8) and Eq. (7.6). One extra ingredient which will be
needed for this is to bound the effective support of solutions to the large deviation problem (see
Lemma 7.7) in BR(o) where R = Ch for a sufficiently large absolute constant C > 0.

Remark 7.4. We emphasize that for extending the results of [35] for 2 < p < ∞, only the lower

bound of π̂
(p)
V (ϕo = h) requires a restriction on V , which is that it must contain the support of

a particular ϕ∗ defined as ϕ∗(x) = (h − ∥x∥1) ∨ 0. In particular, we can take R =
√
2h, with no

dependence on β. Then to prove the additional lower bound on Eq. (7.5) and the bound in Eq. (7.6),
we increase R to some other constant Ch, as needed to capture the outermost 1 level-line loop. If
instead R had the form Cβh, then our proof of the upper bound for points near the boundary of V
in Lemma 7.10 would fail.

Lemma 7.5. Fix 1 < p < 2, and V as in Theorem 7.1. There exists a constant c > 0 such that
for all h ≥ 1,

π̂
(p)
V (ϕo = h)

π̂
(p)
V (ϕo = h− 1)

≥ exp
[
− cβhp−1

]
.

Remark 7.6. The proof of Lemma 7.5 is valid for all p ≥ 1, though its lower bound of exp[−cβhp−1]
is weaker than the matching upper bounds of exp(−cβh/ log h) for p = 2 and exp(−cβh) for p > 2.

Proof of Lemma 7.5. It is easy to see that we have

π̂
(p)
V (min

x∼o
ϕx < 0 | ϕo = h) ≤ εβ .

Indeed, by the upper bound of Eq. (7.4), we have that π̂
(p)
V (ϕo = h) = (1 + o(1))π̂

(p)
V (ϕo ≥ h), so

it suffices to prove the bound when the conditioning is instead on ϕo ≥ h. But by FKG, we can
then forget about the conditioning entirely, whence the bound is immediate by a standard Peierls
argument.

Now we can write

π̂
(p)
V (ϕo = h− 1) ≤ (1 + εβ)π̂

(p)
V (ϕo = h− 1, min

x∼o
ϕx ≥ 0) .

On this latter event, we can raise the height of the origin by 1, mapping to the set {ϕ : ϕo = h},
and this changes the weight of ϕ by a factor of at most e4β(h

p−(h−1)p) ≤ e4βph
p−1

, so that

π̂
(p)
V (ϕo = h− 1, min

x∼o
ϕx ≥ 0) ≤ e4βph

p−1
π̂
(p)
V (ϕo = h) . ■

We now look to prove the lower bound of Eq. (7.4) for 2 < p < ∞. For each configuration ϕ
with ϕo = h, let Γi(ϕ) for 1 ≤ i ≤ h be the outermost i level-line loop surrounding the origin o,
dropping ϕ from the notation if it is clear from context. For a collection of such loops {Γi}, define
the energy of the collection by

E ({Γi}) =
∑
e

∆p
e ,

where ∆e denotes the number of Γi in the collection that contain the dual bond e. Let the weight
of Γi with respect to {Γi} be defined as

W (Γi) =
∑
e∈Γi

∆p
e/∆e =

∑
e∈Γi

∆p−1
e .
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(The weight depends on the full collection {Γi} and not just Γi, but we will omit this from the
notation for simplicity as it will be obvious from the context.) Observe that E ({Γi}) =

∑
i W (Γi),

and that |Γi| ≤ W (Γi).

Lemma 7.7. Fix p ≥ 1 and V as in Theorem 7.1. Then, there exists constants C, c > 0 such that
for all h ≥ 1, r ≥ Ch,

π̂
(p)
V (W (Γ1) ≥ r | ϕo = h) < e−(β−c)(r−Ch) .

Proof. By a standard Peierls argument (enumerate over the h level-line loops {Γi}, where a length-k
loop intersects (say) a horizontal ray from the origin at distance at most k),

π̂
(p)
V (E ({Γi}) ≥ C1h

2 , ϕo = h) = e−(C1/2)βh2 ,

and hence the lower bound on π̂
(p)
V (ϕo = h) in Eq. (7.5) implies that

π̂
(p)
V (E ({Γi}) ≥ C1h

2 | ϕo = h) = e−βh
2

(7.7)

provided that C1/2 > c2 + 1 for c2 from Eq. (7.5). Hence, we can assume that E ({Γi}) ≤ C1h
2,

whence by pigeonhole principle there exists some Γi∗ such that W (Γi∗) ≤ C1h. Now consider the
map T on the set {ϕ : ϕo = h, E ({Γi}) ≤ C1h

2} that takes the collection {Γi} in ϕ, deletes the
outermost contour Γ1, and adds a copy of Γi∗ . This map preserves the fact that the origin is at
height h. Calling this resulting collection {Γi(T (ϕ))}, we obtain that

− 1

β
log

π̂
(p)
V (T (ϕ))

π̂
(p)
V (ϕ)

= E ({Γi(T (ϕ))})− E ({Γi(ϕ)}) ≤ −W (Γ1(ϕ)) +
∑

e∈Γi∗ (ϕ)

(∆e + 1)p −∆p
e

≤ −W (Γ1(ϕ)) +
∑

e∈Γi∗ (ϕ)

p(∆e + 1)p−1

≤ −W (Γ1(ϕ)) + p2p−1C1h

=: −W (Γ1(ϕ)) + C2h .

Moreover, the multiplicity of this map is such that for any given ψ in the image of T ,

|{ϕ : T (ϕ) = ψ,W (Γ1(ϕ)) = k}| ≤ hksk ,

for some absolute constant s > 0, since given the image ψ we can read off T ({Γi(ϕ)}), and re-
construct {Γi(ϕ)} if we know what i∗ and Γ1 are. There are h choices of i∗, k choices for the
length |Γ1| = j ≤ k, and sj ≤ sk choices of loops of length j which surround the origin. Hence, if
W (Γ1) ≥ r ≥ Ch, we can apply a Peierls argument with this map to obtain that∑

ϕ:ϕo=h,
E ({Γi})≤C1h2,

W (Γ1)≥r

π̂
(p)
V (ϕ) ≤

∑
k≥r

∑
ψ∈Im(T )

∑
ϕ:ϕo=h,

E ({Γi})≤C1h2,
W (Γ1)=k,
T (ϕ)=ψ

π̂
(p)
V (ψ)e−β(k−C2h)

≤
∑
k≥r

∑
ψ∈Im(T )

π̂
(p)
V (ψ)e−β(k−C2h)hksk

≤ e−(β−C3)(r−C2h)π̂
(p)
V (ϕo = h) . (7.8)

Combining Eqs. (7.7) and (7.8) concludes the proof. ■

The constant C used for R = Ch in Theorem 7.1 should now be taken to be the maximum
between 2C from Lemma 7.7 and the constant needed previously from [35] (which was just to
ensure that the the single ϕ used to lower bound Eq. (7.2) is supported in BR(o)).
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Corollary 7.8. Fix 2 < p < ∞ and let V be as in Theorem 7.1. There exists a constant c > 0
such that for all h ≥ 1,

π̂
(p)
V (ϕo = h)

π̂
(p)
V (ϕo = h− 1)

≥ exp
[
− cβh

]
.

Proof. By Lemma 7.7, there exists C such that

π̂
(p)
V (ϕo = h− 1) = (1 + o(1))π̂

(p)
V (ϕo = h− 1, W (Γ1) ≤ Ch) .

On the latter event, consider the map T (ϕ) = ψ which raises the interior of Γ1(ϕ) by 1. Then, we
have

− 1

β
log

π̂
(p)
V (T (ϕ))

π̂
(p)
V (ϕ)

=
∑

e∈Γ1(ϕ)

(∆e + 1)p −∆p
e

≤ p2p−1W (Γ1(ϕ)) .

As this map is injective and maps into the set {ϕ : ϕo = h}, we obtain

π̂
(p)
V (ϕo = h− 1, W (Γ1) ≤ Ch) ≤ π̂

(p)
V (ϕo = h)e−βC

′h

for C ′ = p2p−1C. ■

Finally, to show the bound on the conditional probability in Eq. (7.6), we begin with a simple

lemma comparing π̂
(p)
V to π̂

(p)
BR(o).

Lemma 7.9. Let V ⊃ BR(o) be as in Theorem 7.1. Then, there exists εβ → 0 as β → ∞ such that

e−εβR ≤
π̂
(p)
V (ϕo = h)

π̂
(p)
BR(o)(ϕo = h)

≤ eεβR .

Proof. For any V1 ⊂ V2, it is a straightforward FKG argument (see [35, Eq. 3.14], or the proof of
Lemma 2.8) to show that

π̂
(p)
V2

(ϕo ≥ h) ≥ e−εβ |∂V1\∂V2|π̂
(p)
V1

(ϕo ≥ h) . (7.9)

Moreover, by a standard Peierls argument, (see, e.g., the proof of [35, Clm. 3.6]) one obtains that
for any V , h ≥ 0,

π̂
(p)
V (ϕo > h) ≤ εβπ̂

(p)
V (ϕo = h) . (7.10)

Combining the above two displays immediately implies the lower bound.

For the upper bound, by Lemma 7.7 it suffices to upper bound π̂
(p)
V (W (Γ1) ≤ R, ϕo = h) (noting

the comment about the constants after Lemma 7.7). The event W (Γ1) ≤ R implies |Γ1| ≤ R,
which in turn implies that there is a chain of sites with height ϕx ≤ 0 contained inside BR(o) which
surrounds the origin, whose length is at most R. By monotonicity, the heights along this chain can
be raised to 0. That is, calling the interior of this chain Λ, we have argued that

π̂
(p)
V (W (Γ1) ≤ R, ϕo = h) ≤ π̂

(p)
V (W (Γ1) ≤ R, ϕo ≥ h) ≤ max

o∈Λ⊂BR(o)
|∂Λ|≤R

π̂
(p)
Λ (ϕo ≥ h) .

The upper bound now follows by applying Eq. (7.9) for V1 = Λ, V2 = BR, along with Eq. (7.10). ■

Proof of Theorem 7.1, Eq. (7.6). With the above lemma in hand (replacing Claim 2.7 from the case
p = 2), the proof follows from the same argument used to establish Eq. (2.8) in Theorem 2.5, with
the only difference that one defines the two events E1 and E2 for

∆ :=
⌊ c1
6p+1

h
1∧ 1

p−1

⌋
,
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with c1 > 0 from the upper bound on π̂
(p)
V (ϕo = h)/π̂

(p)
V (ϕo = h− 1), now given by (7.4). Note that

for this choice of ∆ we have
∆h(p−1)∧ 1 ≍ ∆p ≍ h

p∧ p
p−1 .

As was argued in Eq. (2.9), one can iterate the upper bound of Eq. (7.4) and thereafter apply
Lemma 7.9 to arrive at the analogue here:

π̂
(p)
V (Ec1 | ϕo = h) ≤ exp

(
− (c1 − o(1))β∆h(p−1)∧ 1

)
.

(NB. We apply Lemma 7.9 for R = Ch(p−1)∧1 whence the term eεβR from said lemma is absorbed
in the o(1)-term in the above exponent.) Proceeding as we did below Eq. (2.9), one then has

π̂
(p)
V (ϕz = h | ϕo = h, E1, E

c
2) ≤ (1 + εβ)e

−β(3∆p+(5∆)p) = (1 + εβ)e
−(5p+3)β∆p

,

where the constants here, apart from the p-power of the interaction, were unchanged as we did not
alter the definition of E1 and E2 (but only the definition of ∆). For the same reason we further get

π̂
(p)
V (ϕz ≥ h+∆ | ϕo = h, E1, E2) ≥ (1− εβ)e

−4β(6∆)p

and

π̂
(p)
V (ϕz ≥ h+∆ | ϕo = h, E1 , E2) ≤

exp(−(c1 − o(1))β∆h(p−1)∧ 1)

π̂
(p)
V (E2 | ϕo = h, E1)

,

combining to yield

π̂
(p)
V (E2 | ϕo = h , E1) ≤ (1 + εβ) exp

(
β
(
4 · 6p∆− (c1 − o(1))h(p−1)∧ 1

)
∆

)
≤ exp

(
− (c1/3)β∆h

(p−1)∧ 1
)
,

as required. ■

Analogously to Lemma 2.8 from the p = 2 case, as a consequence of extending the large deviation
results to an arbitrary domain containing BR(o), we obtain an upper bound on the probability that
ϕx ≥ h even for points x close to the boundary.

Lemma 7.10. Fix 1 < p < 2, or 2 < p < ∞. There exists εβ → 0 as β → ∞ such that, for every
V ⊂ Z2, x ∈ V , and h sufficiently large compared to β,

π̂
(p)
V (ϕx ≥ h) ≤ π̂(p)∞ (ϕo ≥ h)1+εβ . (7.11)

Proof. Consider first 1 < p < 2. Here we take R = Chp−1. Let V ′ = V ∪ BR(x). By Eq. (7.9), we
have

π̂
(p)
V ′ (ϕx ≥ h) ≥ e−εβR

2
π̂
(p)
V (ϕx ≥ h) ,

using the fact that ∂V \ ∂V ′ ⊂ BR(x) so that |∂V \ ∂V ′| ≤ πR2. Combining with Lemma 7.9 to

compare both π̂
(p)
V and π̂

(p)
∞ with π̂

(p)
BR(o), we obtain that

π̂
(p)
V (ϕx ≥ h) ≤ π̂(p)∞ (ϕx ≥ h)eεβCh

2p−2
.

By the lower bound of Eq. (7.5) and the fact as h → ∞, h2p−2 ≪ hp in the regime 1 < p < 2, we
have that

eεβCh
2p−2 ≤ π̂(p)∞ (ϕo ≥ h)o(1) ,

where o(1) is as h → ∞. We conclude by combining the above two displays with the translation

invariance of π̂
(p)
∞ .

For 2 < p <∞, we can apply the same logic as above with R = Ch to obtain that

π̂
(p)
V (ϕx ≥ h) ≤ π̂(p)∞ (ϕx ≥ h)eεβCh

2
.
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In this case, the error term is of the same order as the large deviation with respect to h (both are
exp[O(h2)]). We instead use the εβ term to ensure that the error is sufficiently small. That is, by
the lower bound of Eq. (7.5) for 2 < p <∞, we have

eεβCh
2 ≤ π̂(p)∞ (ϕo ≥ h)εβ ,

and the proof concludes by the translation invariance of π̂
(p)
∞ . ■

We now have all the tools needed to prove the crucial bound on the probability of having a floor
(analogous to Lemma 2.9), which results in the area term in the cluster expansion. Recall the

definition of H(p) in Eq. (1.8).

Lemma 7.11. Fix 1 < p < 2 or 2 < p < ∞. Fix 0 < δ < 1
3 and n ≥ 0, let V ⊂ Z2 be a connected

region, let F ⊂ V be a subset satisfying |F | ≤ L(logL)50 and |∂F | = O(L1−δ), and set h = H(p)−n.
Then, for β sufficiently large,

π̂
(p)
V (ϕx ≥ −h, ∀x ∈ F ) = (1 + o(1)) exp

(
− π̂(p)∞ (ϕo < −h)|F |

)
.

Proof. The proof follows exactly as in Lemma 2.9, only plugging in the estimates above when
needed. We summarize the crucial relationships between the exponents in Theorem 7.1 for the
reader’s convenience.

To lower bound the left hand side, we firstly need that the exponent in (the lower bound of)

Eq. (7.4) is of a smaller order than in Eq. (7.5). This ensures that for each finite h = H(p) to

h = H(p) − n, π̂
(p)
∞ (ϕo ≥ h) = L−1+o(1), a fact used throughout the proof. To control points near

∂F , by Lemma 7.10, we have that for all x,

π̂
(p)
V (ϕx < −h) ≤ L−1+εβ ,

which replaces Eq. (2.18). The εβ in place of o(1) is not an issue as we only needed something
smaller than δ for the application in Eq. (2.19) (though it does mean that for every choice of δ, we
need to take a sufficiently large β). The rest of the proof of the lower bound just involved FKG
and coupling to infinite volume, holding exactly in the same manner.

The upper bound was a more involved “grill” estimate. The key equation to prove (analogous
to Eq. (2.24)) is

π̂
(p)
V

(
Ds ∩

⋂
x∈Q′

ij

{ϕx ≥ −h}
∣∣∣ Fj−1

)
≤ exp

(
−
(
1− e−cβh

p∧ p
p−1

)
π̂(p)∞ (ϕo < −h)|Q′

ij |
)
, (7.12)

where the definitions of Ds, Q
′
ij
,Fj all remain the same. The exponent is motivated by the bound

on the conditional probability in Eq. (7.6). Indeed, the justification for the above equation is to
use Bonferroni’s inequalities, with the main term to estimate being∑

x,y∈Q′
ij

0<dist(x,y)≤log2 L

π̂(p)∞ (ϕx < −h, ϕy < −h) ≤ (logL)4 exp(−cβhp∧
p

p−1 )π̂(p)∞ (ϕo < −h)|Q′
ij | ,

and this follows directly from Eq. (7.6), Eq. (7.5), and the lower bound on Eq. (7.4). We highlight
that when justifying this point, as was done in the proof of Lemma 2.9, one needs that

(a) the probability exp[−cβh(p−1)∧ 1] given in (the lower bound of) Eq. (7.4) is of a larger order

than the probability exp[−cβhp∧
p

p−1 ] from Eq. (7.6), and is thus absorbed (see Eq. (2.25));

(b) for h = H(p)−n, which satisfies h ≍ (β logL)1/(p∧ 2) by Eq. (7.5), the same exp[−cβh(p−1)∧ 1]
term from the (lower bound of) Eq. (7.4) outweighs the (logL)c pre-factor.

The remaining computations are unchanged. ■
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We can now establish the cluster expansion law. We use the same definitions of disagreement
polymers as per Definitions 2.1 and 2.2, with the exception that the energy of γ is now defined to
be

Eβ(γ) = β
∑
e∈γ

|(∇ϕ)e|p .

With this definition, we have the following analog of Proposition 2.3.

Proposition 7.12 (Cluster expansion with a floor for |∇ϕ|p). In the setting of the |∇ϕ|p model

for fixed p > 1, with π
(p),ξ
V replacing πξV and Eβ as above, the statement of Proposition 2.3 holds

unchanged.

Proof. The proof is identical as in Proposition 2.3. The cluster expansion without a floor only
requires that Eβ(γ) ≥ N (γ), where N (γ) is the number of bonds in γ, and we have this. Obtaining
from this the cluster expansion with a floor requires only the area estimate of Lemma 7.11. ■

Proof of Theorem 1.5. With Proposition 7.12 replacing Proposition 2.3, we can proceed through
Sections 3 to 6 just as in the case p = 2, since the only property needed from the polymer model
was that the energy E∗

β(γ) satisfies Eq. (3.8). Otherwise, the only properties we used of the actual
measure πΛ were the FKG inequality and basic Peierls arguments. We simply highlight that in
part (b) of Theorem 4.4, the initial upper bound on the displacement of the (H−n−1) level line is
obtained by the estimate of the ratio Nn+1/Nn coming directly from the upper bound in Eq. (2.6),

now replaced with the upper bound in Eq. (7.4) at h = H(p) − n. What is needed is that this ratio
is smaller than (logL)κ for any κ > 0, which holds for all 1 < p <∞. ■

Appendix A. Monotonicity of |∇ϕ|p models with non-uniform floors and ceilings

It is well-known that the |∇ϕ|p measures enjoy the FKG inequality for any p ≥ 1; we will use
this fact in the presence of non-uniform floors and ceilings, and we include the short proof for
completeness.

Claim A.1. Let π
(p),ξ,a,b
V be the |∇ϕ|p model (p ∈ [1,∞) and β > 0) on a domain V with boundary

conditions ξ and arbitrary floors and ceilings a,b ∈ (Z∪{±∞})V (i.e., ax ≤ ϕx ≤ bx for all x ∈ V ).
This measure satisfies the FKG lattice condition. In particular, if ξ ≤ ξ′, a ≤ a′ and b ≤ b′

pointwise, then π
(p),ξ,a,b
V ⪯ π

(p),ξ′,a′,b′

V .

Proof. Write π = π
(p),ξ,a,b
V for brevity. It suffices (see, e.g., [23, Thm. 2.22]) to verify the condition

π(ϕ1 ∨ ϕ2)π(ϕ1 ∧ ϕ2) ≥ π(ϕ1)π(ϕ2) (A.1)

for two configurations ϕ1, ϕ2 that differ on exactly 2 sites x, y ∈ V . We may further assume that x, y
are nearest-neighbors (or there is equality in Eq. (A.1), as all interactions are nearest-neighbor).
Writing ai := ϕi(x) and bi := ϕi(y), we may further assume without loss of generality that a1 > a2
and b1 < b2 (or else again there is trivially an equality). The above then translates into showing

|a1 − b2|p + |a2 − b1|p ≤ |a1 − b1|p + |a2 − b2|p .
Writing k := a1 − b1, ∆a := a1 − a2 > 0 and ∆b := b2 − b1 > 0, this is equivalent to

|k −∆b|p + |k −∆a|p ≤ |k −∆a −∆b|p + |k|p .
If ∆a > ∆b then we have [|k−∆a|p−|k−∆a−∆b|p]/∆b < [|k|p−|k−∆b|p]/∆b by the monotonicity
of slopes due to the convexity of the function x 7→ |x|p for p ≥ 1. Similarly, when ∆b > ∆a the
monotonicity of slopes implies [|k−∆b|p−|k−∆a−∆b|p]/∆a < [|k|p−|k−∆a|p]/∆a, thus Eq. (A.1)

holds in both cases. The final conclusion of the claim is a consequence of FKG in π
(p),ξ,a,b′

V if ξ = ξ′,
whereas the statement for ξ ̸= ξ′ follows as we may implement ξ via ax = bx = ξx for all x ∈ ∂V
(in the measure on V ∪ ∂V with, say, 0 boundary conditions). ■
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Appendix B. Random boundary construction

In this section, we prove Lemmas 4.7 and 6.2. We begin with the following fact, which follows
easily by a Peierls argument.

Observation B.1 (e.g., [35, Eq. (4.2)]). Let Cix be the connected component of x of sites y with
ϕy ≤ H − n− i. W.h.p. under πkV , the interior of Ln+i−1 does not contain x with |Cix| > (logL)2.

Proof of Lemma 4.7. Start by revealing all of ϕ↾ΛL\R. Now on R, we will continue to reveal ϕ at
certain sites and lower some of the revealed heights in order to obtain Q, ξ in the manner described
below, and this defines the πkV -measurable distribution on Q.

As the procedure will reveal all of ϕ↾Qc , the boundary conditions ξ leave two cases to consider:
first, that Ln does not intersect R at all. Then, either R is entirely in the interior of Ln or entirely
in the exterior, and the requirement that A,B ∈ ∂R are in the interior of Ln rules out the latter
possibility. Hence, A1 is all of Q, so A2 ⊂ A1 deterministically. In the second case, Ln intersects R,

in which case ξ implies that the restriction Ln↾Q coincides with the H − n level-line in πξQ. In this
case, the law of Ln has also been changed due to the lowering of heights in the revealing procedure.
However, since the area inside a level-line is an increasing function of ϕ, we obtain that A2 ⊂ A1

by monotonicity.
The procedure to construct Q, ξ is as follows:

(1) Call ∂1R, ∂2R the top and bottom arcs of ∂R from A to B, respectively. For every x on
∂1R with ϕx ≤ H−n−1, reveal the connected component C1

x of sites y with ϕy ≤ H−n−1
containing x. Similarly, for every x on ∂2R such that ϕx ≤ H −n− 2, reveal the connected
component C2

x of sites y with ϕy ≤ H − n− 2 containing x.
(2) By maximality, the sites in the outer boundary of C1

x have height ≥ H − n, which we can
drop by monotonicity to be exactly H −n. Similarly, the sites in the outer boundary of the
C2
x have height ≥ H − n− 1, which we can drop to be exactly H − n− 1.

(3) The remaining sites in ∂1R all have height ≥ H − n, which can be lowered to H − n by
monotonicity. Similarly, the remaining sites in ∂2R have height ≥ H − n− 1, which can be
lowered to H − n− 1.

(4) By construction, every x ∈ ∂1R is now either at height H − n, or enclosed in a boundary
of sites with height H − n. Similarly, every x ∈ ∂2R is at height H − n− 1 or enclosed in a
boundary of sites with height H − n − 1. Hence, the union of these sites at height H − n
and H−n−1 enclose a simply connected domain Q satisfying the conditions of Lemma 4.7
except for Item 3. (Here, we use Observation B.1 to ensure Item 2.)

(5) To obtain Item 3, let A(0) = (A
(0)
1 , A

(0)
2 ) be the rightmost point on the left side of ∂Q such

that A
(0)
2 = A2 + (logL)5 + (logL)2. We start the following iterative procedure starting

with A(0). Look at the (logL)2 × 2(logL)3 rectangle with A(0) + (1, 0) as the midpoint
of the left side of the rectangle. If there is no point in ∂Q which intersects the rectangle,
then set A′ = A(0). Otherwise, let A(1) be the the rightmost intersection of ∂Q with the
rectangle. Then, repeat starting with A(1), continuing until we set A′ = A(k) for some k.
This procedure must stop after at most (logL)2 steps because each A(i+1) is to the right of

A(i), while ∂Q only deviates at most (logL)2 distance from the left side of ∂R. Moreover,

the change in the y-coordinate from A(i) to A(i+1) is at most (logL)3 at each step, so that

|A′
2 − A

(0)
y | ≤ (logL)5. In particular, A′

2 ≥ A2 + (logL)2, so that by Observation B.1, A2

lies on the arc of ∂Q with boundary condition H − n.
(6) Repeat the above procedure analogously on the right side of Q to obtain the point B.

Finally, lower the boundary conditions from H − n to H − n− 1 on the arcs of Q between
A and A′, and B and B′.
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The fact that C (A′B′) ⊂ Q follows because of the assumption that A,B are at least distance√
ℓ1(logL)

2 away from the top or bottom of R, and the shifts by up to (logL)5 to A′, B′ are
irrelevant as ℓ1 ≫ (logL)6. It is straightforward to check that the remaining conditions in Item 3
are now satisfied by A′, B′. ■

We turn now to prove Lemma 6.2, which is essentially the same as Lemma 4.7 but with reversed
monotonicity. The minor complication is that the Cx components we wish to reveal now will now
be of the form {y : ϕy ≥ H − n + 1}. The Peierls argument that deletes the contour ∂Cx would
now want to shift the sites in Cx down, but this may run into problems with the conditioning that
ϕ ≥ 0. This was handled in [35], which we recall here.

Observation B.2 ([35, Theorem 2]). With high probability under π0ΛL
, for each h = 0, . . . ,H, there

is at most one h level-line of size > (logL)2, and there is no H +1 level-line of size > (logL)2. In
particular, if Cx is the connected component of x of sites y with ϕy ≥ H − n + 1, then for n ≥ 1,
w.h.p. the exterior of Ln−1 does not contain x with |Cx| > (logL)2. For n = 0, w.h.p. there are
no points x with |Cx| > (logL)2.

Proof of Lemma 6.2. As described in the beginning of the proof of Lemma 4.7, by monotonicity it
suffices to construct Q, ξ via a procedure which reveals ϕ↾Qc under π0ΛL

raises some of the revealed
heights. The procedure to construct Q, ξ is as follows:

(1) Call ∂1R the top and sides of ∂R. For every x on ∂1R with ϕx ≥ H − n + 1, reveal the
connected component Cx of sites y with ϕy ≥ H − n+ 1 containing x.

(2) By maximality, the sites in the outer boundary of Cx have height ≤ H − n, which we can
raise by monotonicity to be exactly H − n.

(3) Call ∂2R the bottom side of ∂R in between A,B. Call ∂3R the remainder of the bottom
side of ∂R. Since all the boundary heights on ∂2R ∪ ∂3R are 0, by monotonicity we can
raise the boundary condition on ∂2R to H − n− 1 and on ∂3R to H − n.

(4) By construction, every x ∈ ∂1R is now either at height H − n, or enclosed in a boundary
of sites with height H − n. Hence, the union of these sites at height H − n with ∂2R and
∂3R enclose a simply connected domain Q satisfying the conditions of Lemma 6.2, using
Observation B.2 to ensure Item 2. ■
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