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ABSTRACT. Consider the (2 + 1)D Discrete Gaussian (ZGFF, integer-valued Gaussian free field)
model in an L x L box above a hard floor. Bricmont, El-Mellouki and Frohlich (1986) established
that, at low enough temperature, this random surface exhibits entropic repulsion: the floor propels
the average height to be poly-logarithmic in L. The second author, Martinelli and Sly (2016) showed
that, for all but exceptional values of L, the surface has a plateau whose height concentrates on an
explicit integer H (L), and fills nearly the full square. It was conjectured there that the boundary
of this plateau—the top level-line of the surface—should have random fluctuations of L*/3+°().

We confirm this conjecture of [LMS16] and further recover the limiting law of the top level-line:
there exists an explicit sequence N = L'7°(1) guch that the distance of the top level-line from I,
the interval of length N 2/3 centered along the side boundary, converges, after rescaling it by NV 1/3
and the width of the interval by N 2/ 3 to a Ferrari-Spohn diffusion. In particular, the level-line
fluctuations at, say, the center of I, have a limit law involving the Airy function rescaled by N /3,
This gives the first example of one of the (24 1)D |V¢|? models (approximating 3D Ising and crystal
formation) where a Ferrari-Spohn limit law of its level-lines is confirmed (ZGFF is the case p = 2).

More generally, we find the joint limit law of any finite number of top level-lines: rescaling their
distances from the side boundary, each by its (NTQL/ 3, N},,/ 3), yields a product of Ferrari-Spohn laws.
These new results extend to the full universality class of |V¢|? models for any fixed p > 1.

1. INTRODUCTION

The (2 + 1)D Discrete Gaussian model, also known as the integer-valued Gaussian free field and
denoted here ZGFF, is a random surface model extensively studied in the context of the roughening
transition in crystals (see the work of Chui and Weeks [15] in 1976, and the related models in [0]
dating back to the 1950’s). It is dual to the Villain XY model [11], and as such undergoes a
Kosterlitz—Thouless phase transition (see [30])—one of two models (along with Solid-On-Solid)
where this transition was established by Frohlich and Spencer in their celebrated works [19,20)].

For 8 > 0 (the inverse-temperature, which in our context will be taken fixed and large enough),
the (2 4+ 1)D ZGFF model with a floor (or a hard wall) at height 0 is a probability distribution
over functions that assign nonnegative integer heights to the sites of the square grid A = [1, L]?.
Writing @ ~ y for the nearest-neighbor relation in Z2, the probability of ¢ : A — Z, is given by

m8(0) ocexp (= 8160 — /). (1.1)
T~y

with zero boundary conditions (¢, = 0 for all x ¢ A). Define 7} as the analogue of 7} in the

no-floor setting (i.e., when ¢ accepts values in Z as opposed to Z ), and define the infinite-volume
measure 7o, as the weak limit of 74 as L — co. The aforementioned ZGFF phase transition,
occurring in ¢ ~ T, at a critical S (empirically, S; ~ 0.665), can be demonstrated at ¢, as follows:
for § < g (delocalized regime) the surface is rough, in that limy_, . Var(¢,) = oo, while for g > Sy
(localized regime) the surface is rigid, in that Var(¢,) = O(1) (rigidity was shown in [1] at large S,
moreover yielding exponential tails of |¢,| in that regime; roughness at small 8 was established
in [19,20]; the continuity of the phase transition was recently established by Lammers [32]).

We focus on ¢ ~ 772 in the regime of 3 large enough, where most = € A would have ¢, = 0 under
the no-floor measure 73, yet the floor in 7} induces a nontrivial surface (see Fig. 1). This entropic
repulsion effect was identified in a pioneering work of Bricmont, El-Mellouki and Frohlich [5]:
despite the penalizing boundary conditions, the surface is propelled to height at least cy/log L,
where it gains entropy from extra (permitted once at this height) downward fluctuations.
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FIGURE 1. Illustration of the low temperature ZGFF on [1, L]?, where we look at the law
of the top level-lines in a rectangle (magnified on right) along the center of the bottom side.
On bottom right: independent Ferrari-Spohn diffusions, the limiting law of these level-lines.

The study of entropic repulsion in the paper above considered two closely-related models: the
ZGFF and Solid-On-Solid (s0S), where the term |¢, — ¢,|? in Eq. (1.1) is replaced by |¢, — ¢y|.
Caputo et al. [12-11] made significant progress in characterizing the shape of the sos surface above
a floor at low temperature. They showed that the macroscopic level-lines form a sequence of nested
loops, with the height of the top one concentrating on one of the two values Lﬁ log L|—1, Lﬁ log L|.

These works further identified the deterministic scaling limits of the top level-lines in [0, 1]2: these
are the boundaries of the shapes formed by dilating the associated Wulff shape to explicit radii, then
taking the union of all their translations in [0, 1]2. So, the limits are curved near the corners of the
box (where the dilated Wulff shape is visible), and overlap the boundary in intervals surrounding
the center-sides (the “flat portions” of the limit), where the random fluctuations are of interest.
The top level-line in SOS was shown in [14] to have random fluctuations of at most L/3+o(t)
from the flat portions of its limit. Key to that was showing that the law of the top level-line in
the relevant region resembles that of a random walk, conditioned to be nonnegative, and penalized
exponentially in the area below it. The latter is known [2¢] to have L'/? fluctuations, and moreover
its scaling limit is known to have the law of a Ferrari-Spohn diffusion [!8], defined below (in fact,
the continuous analogue—a Brownian excursion tilted by its area—is equivalent via a Girsanov
transformation to Brownian motion staying above a parabolic barrier, which was studied in [18]).
It was recently established [7] that the order of the s0s top level-line fluctuations is at least L'/3,
and one expects that to be the correct order, with a scaling limit that is not Ferrari-Spohn but
a variant of it, due to the interaction between the different level-lines (if the lower level-lines were
instead deterministic—achievable via suitable boundary conditions—the resulting top level-line
would yield a Ferrari-Spohn limit, as was shown in [7] via adapting the recent proof [25] of a
Ferrari-Spohn limit for the 2D Ising model with critical prewetting). Rather, the conjectured sos
limit should take after the line-ensemble of non-crossing random walks with geometric area tilts
(see, e.g., [1,9-11,16,24,39] for studies of this line-ensemble in the discrete (random walks) and
continuous (Brownian polymers) setting, which for a single curve reverts to a Ferrari-Spohn limit).
For ZGFF, the second author, Martinelli and Sly [35] showed that, as in the case of sos, the
surface heights concentrate on two values H, H + 1, and for “most” values of L the surface forms a
plateau of area (1 —e3)L? at height H (for € arbitrarily small as 3 increases). In more detail, let

H(L) := rnax{h L Foo(do = h) > —} . (1.2)
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Further define the h level-line(s) of ¢ ~ 719\, for each h > 0, as the collection of loops obtained from
edges dual to nearest-neighbors z ~ y such that ¢, < = and ¢, > h (for concreteness, in case 4
dual-edges share an endpoint, one “splits” them into two loops along the NORTHEAST diagonal).
Call a loop v macroscopic if its length is at least log? L (or one could use a threshold of (C/3)log L).

Theorem ([35]). Fiz (3 large, and consider the ZGFF ¢ ~ 7% per Eq. (1.1) and H(L) per Eq. (1.2).
Then with high probability, there is a unique macroscopic h level-line loop for each h =0,..., H,
and there are no macroscopic h level-line loops for any h > H +2. This sequence of loops is nested;
the loops for h < H —1 have area (1 —0(1))L?, and the loop for h = H has area at least (1 —eg)L?.

As noted in [35, Remark 1.3], for all but an exceptional set! of values of L, the area of the H
level-line line loop is in fact (1 — o(1))L?, and there are no macroscopic (H + 1) level-line loops
(making the one at height H the top level-line). An open problem left in that work (see [35, §1.5])
was to prove that this top level-line should have L'/3+°(1) fluctuations away from the corners of A.

Our main result identifies the correct scale of the fluctuations of the top level-line from an
interval set at the center of the side boundary—which as conjectured, is indeed LY/3T°() | yet with
a necessary LM correction—and moreover recovers its Ferrari-Spohn limit law, defined as follows.
Let Ai(x) be the Airy function (of the first kind), i.e., the solution to y”(x) = xy with the initial
condition y = 0 at & = co. For 0 > 0, let @ () := Ai((2/0)Y/3z — w1), where wy is the “first” zero
of Ai, that is, w; = min{z > 0 : Ai(—z) = 0}. The stationary Ferrari-Spohn diffusion we consider
(see [18,28]) is the diffusion FS, on (0,00) with Dirichlet boundary condition at 0 and generator

Uj d? 2 ¢o() d

L, =2 < <.
2 da2 " ¢ vo() do

(1.3)

This diffusion is ergodic and reversible with respect to the probability density /g{ (U U)J E 0o (x)? Lizs0ys
where the rescaled Airy function ¢, given above is also the first eigenfunction of the operator L.
Our main result addresses side-lengths L excluding an explicit set % of integers of logarithmic

density zero (see Remark 1.3), about which the plateau transitions from one height to the next.

Theorem 1.1. Fiz 3 > 0 large enough and consider ¢ ~ 7%, the (2+1)D ZGFF model on A = [1, L]?
for L € Z\ % (with % as in Remark 1.3) with a floor and zero boundary conditions. Set H(L) per

Eq. (1.2), and consider the bottom boundary interval I = [& — N?/3, Ly N?/3] for
1
Ni=—"—" (=L'"0), 1.4
F(0e =) ( ) (1.4)

Let £g be the top macroscopic level-line of ¢, and define its vertical distance from I via
p(z) =min{y >0 : (5 +z,y) € &} for — N2 <z < N?3,
Then Yy(t) :== N='/3p(tN?/3) converges weakly to the stationary law FS, on [~1,1] as L — oo for a

fived o > 0. The analogous Yo(t) w.r.t. p(x) = max{y < % : (%+x,y) € Lo} has || Yo — Yoo — 0.
More generally, for fived m, let £y C ... C £—1 be the top m macroscopic level-lines, and

1
N, = =W =0,...,m—1). 1.
Let I, = [% 2/3 Ly N2/3]] and let p,(z) = min{y > 0 : (¥ 4+ 2,y) € £,} denote the vertical
distance of £, fmm In. The joint law of Y, (t) := N_l/3 n(tN, 2/3) (n =0,. — 1) converges

weakly to that of m independent stationary Ferrari-Spohn diffusions FS,,, on [— 1 1] for fixred oy, > 0.
The analogous Y, (t) w.r.t. pp(r) = max{y < % : (% +z,9) € £, have max,<m |Vn — Yolloo — 0.

Iprecisely, for all side-lengths L outside a set & C Z of zero logarithmic density (X kemn[ing + = o(logn)).
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FIGURE 2. The exceptional set # of values of L as per Remark 1.3, highlighted in orange,
which delimits the intervals [Lp, %Lh+1]] where the top level-line concentrates on height h.
As depicted in this log-plot, the set & has zero logarithmic density.
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Remark 1.2. The sequence N = Ny from Eq. (1.4) satisfies e~¢VAlogL/loglog L < N/, < 1/(58),
and each of these two bounds gives the behavior of the fluctuations of £( for infinitely many values
of L. Namely, the fluctuations of £y are of order L'/ for infinitely many values of L, yet they are
o(L~1/3) for infinitely many other values of L. As for N > Ny > ... > N, from Eq. (1.5), while
these scales are all L!=°() for any fixed n, they are of lower order: N,, = N,_je~©(VFlogL/loglogL)

(in particular, the fluctuations of £4,..., £, have order N3 = p1/3—e)) = o(L'/3)).

Remark 1.3. As one increases the side-length L of the box, once the top level-line concentrates
on height h (at some L), it will remain so until L further increases by a factor of exp(cﬁ&).
Precisely, the transition marking the onset of level h + 1 occurs at L ~ (4 + €3)5/Tooc (o = h + 1).
As such, one can define the set Z of exceptional values of the side-lengths L (see Fig. 2) via

B =|J[5Ln, L]  where Ly =[58/Foc(¢o=h)] (h=12,...). (1.6)
h>1

With this choice, Zke@ﬂ[{l,nﬂ% = O(y/lognloglogn) = o(logn) (i.e., zero logarithmic density),
and the ZGFF surface will concentrate on height H(L) = h for L € [Ly, ..., 2Lp41] (h=1,2,...).

Remark 1.4. Taking the intervals I,, = [ — KNZ?, Ly KN?/S]} for any fixed K > 0 (in lieu of
K =1), one has convergence to independent stationary Ferrari-Spohn diffusions FS,,, on [-K, K].

The new results extend to the family of |V¢[P models, defined as follows. In lieu of Eq. (1.1), the
probability of ¢ : A — Z, (with 0 boundary conditions and inverse-temperature 5 > 0) is given by

ﬂf\p)’o(@ X exp < -8 Z ¢z — ¢y‘p> ) (1.7)

Ty
so that p = 2 is the ZGFF and p = 1 is the s0s model. It was shown in [35] that, for all p > 1,
and all “typical” values of L, the surface is typically a plateau (with microscopic fluctuations) at
a single deterministic height H (that scales differently with L for different values of p), as is the
case for sOs and ZGFF. As for the limit law of the top level-lines, the pictures in sOs and ZGFF

are different (a Ferrari-Spohn limit in the latter, vs. a conjectured variant thereof in the former).

In what follows, put 771(\17) instead of ﬁ/(f’)’o for brevity (0 boundary conditions by default), and let

HO(L) = max {h : 70 (0 =) > P} | NP = ! (= L'=o0), (1.8)
78 (¢, = H®) — n)

the analogues of H and N, defined in Egs. (1.2) and (1.5) for the ZGFF.
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FIGURE 3. Comparison of the scales N < 1/%5..3) (¢o = L) in the |V¢|P-model for different

values of p. As the scaling for the level-line £, is ((Nrsp))z/?’, (Nrsp))l/?’), the |V¢|P models
enjoy a scale separation between the level-lines for p > 1, unlike the sSOs model (p = 1).

The next theorem shows that for all p > 1, the level-lines have the same limit law as for ZGFF.

Theorem 1.5. Fiz p > 1, and consider the setting of Theorem 1.1 with the |V¢|P model ng)

replacing 7TR and H®), N7(Lp) replacing H, Ny,. Then the conclusion of Theorem 1.1 holds: the law of
(Yn)nmz_ol, the rescaled vertical distances of the top m level-lines from the bottom boundary intervals,
converges weakly to the law of m independent stationary Ferrari-Spohn diffusions FS, on [—1,1].

Remark 1.6. Analogously to Remark 1.2, for 2 < p < oo, the sequence Nép) from Eq. (1.8) satisfies
e~cVPBlogl < Nép)/L < 1/(58) and NP = Ngi)le_@(‘/m). For 1 < p < 2, one has that Nép) from
Eq. (1.8) satisfies that =¢8P (log L)r=D/P Nép)/L <1/(58) and NP = foy_)le*@(ﬁl/p(logL)(p_l)/p).
In both cases, as in Remark 1.2, the upper and lower bounds on N(gp )/ L give the correct behavior
of the fluctuations along infinitely many values of L: the fluctuations of £y have order L'/? in the

former case and LY/3=°(1) = o(LY/3) in the latter. The lower level-lines, £1,..., £, for any fixed n,
all have fluctuations L'/3-°() = o(L1/3).

Remark 1.7. Analogously to Remark 1.3, one defines the exceptional set £ for the |V¢[P model

in Theorem 1.5 exactly as in Eq. (1.6) but with ﬁ(fo}) replacing 7o, there. The fact that £ has zero

logarithmic density extends to all 1 < p < oo, owing to the fact that the large deviation rate of

70 i super-linear: limy,_,o, —3 log 7 (¢po = h) = 00 (see Remark 7.2 for more on this).

1.1. Proof ideas. Our starting point is the observation that the level-lines in the ZGFF, and
more generally, in the |[V¢|P model for any p > 1, ought to be “separated” from one another.
Indeed, £,,, the n-th level-line from the top, is expected to behave like a random walk tilted by a
term of exp[Ar nA(Ly)], where A, = %(()g)(qbo = H®) —n) and A(L,) is the area of its interior.
Consequently, as such area-tilted random walks are known to have a Ferrari-Spohn limit law after
rescaling their width and height by (/\2/ 3\ 3) respectively, one expects the distance of £, from

(say) the bottom boundary to be of order 7?&2)(% = H®P) —p)~1/3 e, (Nép))_l/?’ for N from
Eq. (1.8). In the case of soOs (p = 1), the fact that %g,)(gbo = h) < e~*" would have every level-line

£, for n > 0 fixed, be at the same scale: all would be found at ©(L'/3) from the bottom boundary,
as seen in the top left of Fig. 3 (see Section 1.3 for more on this).
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For all p > 1, however, one has ﬁ(ﬁ)(@f)o =h+ 1)/%&?(@%)0 = h) = o(1), whence the above heuristic

implies that the scales Nép ) satisfy foﬁl = 0(N7(Zp )) for all n; i.e., each level-line is at a microscopic
scale compared to the one above it (see Fig. 3). Let us focus on the ZGFF model for simplicity.
There, the above ratio of T (+) terms is e~/ 198" For h =< H(L), this is exp[—(log L)Y/?~°M)],
e.g., we expect the second level-line £; to be at an exp[—(log L)Y/2=°(1)] fraction of the “height”
(distance from the bottom boundary) of the top level-line £y, and similarly for the height of £,1
vs. £,. Intuitively, this should mean there is no interaction between the level-lines; if these are
effectively independent area-tilted RWs, their limit would be a product of Ferrari-Spohn diffusions.

Showing this separation of the level-lines rigorously is nontrivial since the typical height of £,
ought to be N,i/?’e_(log L)l/%a(l), so one needs to first control £,, and show that it is concentrated
about its height of Nﬁ/ % to a finer degree. However, even for the sos level-lines (p = 1), where
much more was known on {£,}, the best-known estimates on the height of £, had an L°™) error...
Moreover, we emphasize that, even after one manages to show that the level-lines are well separated,
the interactions between could still have a huge impact on their limiting laws. A notoriously
challenging obstacle in these and related models is the pinning problem, whereby a level-line might
opt to stick to its predecessor/successor (in this case, random; in other settings, it can be the
boundary of the box) due to said interactions. Handling these delicate interactions (and associated
pinning issues) is where most of our efforts in the proof are concentrated.

Our crucial idea here is to separate the analysis into two cases: one showing that £,, stochastically
dominates a Ferrari—-Spohn diffusion, and another showing it is stochastically dominated by one with
the same parameters. If one were to try to show directly that £,, behaves as an area-tilted random
walk, current techniques break down due to the combined interactions (and pinning hazards) with
random level-lines below and above. For instance, the depinning result of [27] is quite delicate,
even failing when the exponential decay of interactions has rate < §/2 (for us it is /3, a non-issue).
Specifically, it is only valid when the boundary of the domain is flat, and it appears that extending
it to “nearly flat” domains is highly nontrivial, if at all possible using their method. In our setting,
even the top level-line £y faces pinning issues from below (to £1) and from above (to microscopic
holes along the boundary of the mesoscopic rectangle of interest, where we wish to derive a Ferrari—
Spohn law). Luckily, the stochastic domination route allows us to employ FKG adjustments that
only go in the right direction for the respective side of the bound (upper/lower) currently studied.
This does away with the pinning issues on one of the two sides of £, (the interactions on the
remaining side are handled differently in the upper and lower bounds, as we explain below).

Upper bound on the limit law of £,. The upper bound is proved in three steps.
(i) We show that each £,, does not exceed height N 3(log L)®, a sufficiently fine degree of
accuracy to obtain the aforementioned separation. This is achieved via a “growth gadget,”
that is, a result showing that conditional on the fact that the level-line loop £, exceeds a
certain area, it is likely to exceed it farther.
(ii) Then, disregarding lower level-lines via the separation established above, as well as upper

level-lines via monotonicity, we show that £,, continues to drop down from N,%/ 3 (log L)€ to

its equilibrium height Nﬁ/ 3 using finer random walk estimates.
(iii) Lastly, we show that the law of the level-line intersected in a small box is approximately

that of an area-tilted RW, when its initial height is O(N,i/ 3).
(As a byproduct of Item (i), we refine the the corresponding estimate for sos; see Remark 4.6.)
In each case, one aims to estimate the law of a level-line £,, in a mesoscopic box V' with boundary
conditions H —n, H —n — 1, and show it is approximately governed by exp[—3|L,| + AL A(Ly)]
where A, = Too(¢o = H —n). E.g., the prequel [11] on soS featured a growth gadget analogous to
Item (i) where the region V had area L*/3t°(1) (then applied to boxes of size L2/3+0(1) x [2/3+0(1)),
The paper [7] on S0 had an analysis analogous to Item (iii) in a box of size (CL*/3) x (CL?*/3).
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Unfortunately, for the ZGFF, we can afford to obtain such estimates at regions of area L(log L)°.
The culprit is the two point probability oo (¢ > h, ¢y > h) for a pair of nearest-neighbors x ~ y.
In s0s, this probability is ~ e 97" so when 7o (¢, > h) =~ e~#" is 1/ L, the two point probability is
L=3/2. This translates to a domain restriction of |V| < L3?2, a computation made rigorous in [14].
In the ZaFF model, the two point probability turns out to be L=17°(1) since the large deviation
event ¢, > h is dominated by ¢ which climbs to h in the shape of a harmonic pinnacle [35], whereby
its neighbors are already at height h — O(h/logh). The consequence is that we can only work on
domains of size |V| < L'+ which forces us to take boxes of say L?/3(log L) x L'/3(log L)°.

This is a serious restriction, due to the pinning issues. When the height of V is only L!/3+o(1)
even though the probability of a random walk reaching height L'/3t°(1) on an L?/3 interval is only
e*LO(l), the interactions between £,, and OV could potentially tilt the measure by a factor of e*# L2
As we mentioned, the case of a flat boundary was handled in [27]; however, our V is a perturbation
of a rectangle with wiggly boundaries, for which that proof method breaks down.

In the direction of showing an upper bound on £,, we circumvent these pinning issues by using
FKG to forget the floor constraint on a subset of V', picking up an area tilt only on a set FF C V'
instead. This effectively removes the size restriction from V, allowing us to use L2/3+0(1) x [2/3+0(1)
rectangles, where the top boundary is too far to induce pinning issues. We handle interactions with
the bottom boundary of V' by conditioning £,, to stay sufficiently far away from it (again by FKG).

As evident from this strategy, we moreover have that with high probability, if we condition on
Ln+1, Lnta, - .., then the conditional limit law of £,, is stochastically dominated by a Ferrari-Spohn
diffusion. One can view this as an induction revealing level-lines from exterior to interior, ultimately
showing that the joint limit law of £y, ..., £,;,—1 is dominated by independent Ferrari-Spohn laws.

Lower bound on the limit law of £,. For the lower bound on the top level-line £y, we first remove the
lower level-lines by FKG (intuitively, they only push £y upwards). Then, we study the restriction of

£o to a domain V' which is a perturbation of an N§/3 X Nol/g(log L) rectangle, with a flat boundary
at the bottom and wiggly boundary on the other three sides. All the monotonicity workarounds
from the upper bound now no longer apply, being in the wrong direction. In particular, the top
boundary of V' cannot be placed far away anymore. Instead, we condition £y to stay away from
the top boundary, and handle the (now flat) bottom boundary by extending the depinning results
of [27] to our setting. Once we establish the depinning, we can reduce the problem to the area-
tilted 2D random walk setting of prior works [7,25] which show convergence to Ferrari-Spohn. This

proves a lower bound for £, which in particular shows that its typical height is O(N& / 3).

Turning to the next level-line, £1, we look at its restriction to a domain V which is a perturbation
of a le/3 X Nll/3 log L rectangle. Since Nll/3 log L = O(Né/g), the behavior of £y can be isolated
from the analysis of £;, and as before the lower level-lines £, £3, ... can be removed by FKG. This
then allows us to show the desired lower bound for £1, and we can proceed inductively for £,.

As in the upper bound on £, (but with a reverse order of which level-lines are revealed, where
here the induction reveals them from interior to exterior), one obtains that with high probability,
conditional on £, ..., £,_1, the limit law of £,, stochastically dominates a Ferrari-Spohn diffusion.
Consequently, the joint limit law of £g, ..., £,,_1 dominates independent Ferrari—-Spohn laws.

Remark 1.8. Note that the upper bound had to reveal the level-lines from exterior to interior
(revealing £,,—1 would introduce a non-flat interacting boundary at distance LY/3+e() above £n)
whereas the lower bound had to reveal the level-lines from interior to exterior (revealing £,,11 would
introduce a non-flat interacting boundary at distance LY/3t°() helow £n).

1.2. Proof outline and organization. The paper is organized as follows.

In Section 2, we establish a polymer representation for the law of a level-line £ using classical
cluster expansion techniques. This requires some refinements of large deviation results of [35]. It
turns out that the natural object to study here is not £, but the entire component of bonds « dual to
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height disagreement edges containing £, which we call a disagreement polymer. Thus, the polymer
model of interest no longer falls under the family of “Ising polymers” for which much has been
proven (e.g., the existence of a surface tension [17] and the depinning from a flat boundary [27]).
Instead, the geometry of  is allowed to be more complex than that of a contour, and its law has
an additional term capturing the area tilt of finite components surrounded by ~.

In Section 3, we prove several foundational results for the aforementioned class of disagreement
polymers, which are already known for “Ising polymers.” We begin by defining animals, cone-
points, and irreducible components in order to establish a product structure to the polymer law,
via Ornstein—Zernike analysis. Next, we extend results of [I7, Sec. 4] to our model, proving the
existence and key properties of the surface tension, as well as elementary depinning results. We
then define the Wulff shape corresponding to the surface tension, and continue the Ornstein—Zernike
theory to show the proper renormalization needed to turn the product structure into a random walk.

In Section 4, we show one side (growth of a droplet) of the macroscopic scaling limit of the
(H —n) level-line £,,, which should be given by a translation of Wulff shapes. (Hereafter, we prove
results on £,, but remember that the object we work with is «.) The behavior in the ZGFF is
markedly different from that in the SOS model: here the Wulff shape is only visible on the O(L)
scale for select values of L, and only for the top level-line £y (see Remark 4.5). A direct implication

of this scaling limit is that £, has a maximum deviation of N3 (log L)® from the boundary of Ar,
away from the corners. Following the strategy employed for the sos model in [14], we look at the
region D known to be contained inside £,, and iteratively grow this region. The key is to show that
in a rectangle V with H —n, H —n — 1 boundary conditions, £, drops to a lower height. Then we
can place such rectangles all around the boundary of the contained region D to expand D in every
direction. A similar dropping lemma is needed in Section 5, but the difference is that here we need
to handle boundary conditions at an angle. The lattice effect makes this a nontrivial change (being
the reason there is even a Wulff shape to begin with), leading to a different analysis.

In Section 5, once we show that the height of £, above the bottom side of OAj is at most
NTIL/?’(log L)®, we prove that inside an Ng/s(log L) x 2N72l/3(1og L)® rectangle, the curve of £, is
stochastically dominated by an area tilted random walk in the middle Ng/ ? interval. As mentioned
above, this requires another dropping lemma, this time showing the stronger result that £, drops
from height Né/g(log L)¢ to O(N,ll/g). (In turn, we must assume that the endpoints of £, are at
an angle of &~ 0.) Then, combining monotonicity considerations with previous results on area tilted
random walks, we prove the sought upper bound on the limit law in Theorem 1.1.

In Section 6, we prove that inside a TNT%/ % x NT}L/ 3(log L)® rectangle, the curve £, stochastically

dominates an area tilted random walk in the middle Ng/ % interval. Since this random walk has
the same increment law as the one studied in Section 5, it converges to the same Ferrari-Spohn
diffusion, proving the lower bound on the limit law in Theorem 1.1.

In Section 7, we prove Theorem 1.5, extending our results to the |V¢|P model for 1 < p < oo.

To that end, we prove a lower bound on the ratio %éﬂ)(éo = h) /7?&?((]50 = h — 1), which was not
addressed as part of the large deviation results from [35] when p # 2. This was not needed in that
work, which only concerned the height histogram of those model, but is imperative here to obtain
an asymptotically sharp bound on the law of the disagreement polymer.

1.3. Open problems and related works. In this work, we showed that the scaling limit of the
m top level-lines, £g,...,£m_1, in the ZGFF above a floor at large enough S, is m independent
Ferrari-Spohn diffusions. Moreover, this holds for the |V¢[P model for any fixed p > 1, which
captures the complete universality class when varying p, as the behavior for p = 1 (S0s) is expected
to be different. It remains an open problem to establish the limit law for the countably many
level-lines £¢, £1, ... in SOs, conjectured to be a Brownian line ensemble with a geometric area tilt;
see [1,9-11,16,24,39] for a plethora of works studying this object.
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For p > 1, several notable problems remain open. Theorems 1.1 and 1.5 address the law of the
level-lines away from the corners. It is expected that at the corners, the level-lines should have
fluctuations of L1/2—0(1) (as opposed to L/ 3_0(1)), with an associated scaling limit of independent
Brownian motions. (This is open for all p > 1, i.e., including $0s.) In addition, our results exclude
an exceptional set Z of values of L (whereas the SOS analysis of level-lines in [141] only needed to
avoid a critical point of transition between top level-lines). It would interesting to investigate the
critical and near-critical behavior of the model for values of L marking the onset of a new level-line.

Lastly, we mention recent developments on the rough phase of the |V¢|P model (with no floor).
At high enough temperature with uniform boundary conditions, convergence of the ZGFF to the
Gaussian Free Field (GFF) was shown in [2,3]; this is expected, but remains open for all other p > 1.
When the boundary conditions are tilted, e.g., taking the value |82+ 62y] at every boundary point
(z,y) for some slope § = (01,02) # 0, then, as long as at least one of the 6;’s is irrational, the surface
is known [10] to delocalize at some unknown rate (“qualitative delocalization”) for all 5 and p > 1.
At high enough temperature, this was extended also to rational slopes in [33] for sOs. More recently,
logarithmic delocalization at high enough temperature was established for all 0 < p < 2 in [37].
It is further believed that the rough phase induced by the slope should have a GFF scaling limit,
mirroring the high temperature regime with flat boundary conditions. However, this remains a
formidable open problem at large 8, where even logarithmic fluctuations are not yet established.
One recent result in this direction is for sos tilted by an added long range potential [34], which
indeed has a GFF scaling limit (for any slope with 61,605 > 0 including when both are rational; this
is in contrast to |V¢[P for all p > 1, including ZGFF, which are rigid at large § when 61,60, € Z).

2. LAW OF DISAGREEMENT POLYMERS

The goal of this section is to formulate the cluster expansion framework for the level-lines of the
ZGFF configuration ¢. In what follows, we will typically refer to dual-edges (in (Z?)*) as bonds,
to help distinguish them from the edges of Z2. We say u,v € Z? are *-adjacent if their L>°(R?)
distance is 1 (i.e., they are either adjacent in Z?2, or their bounding cells share a single corner). For
any point u € R?, we will denote the = and vy coordinates by up, us respectively. Further let OU be
the boundary bonds of U, i.e., the set of bonds dual to uv with v € U and v ¢ U, and let 0,U be
the external vertex boundary of U, i.e., every vertex v ¢ U adjacent to some u € U.

Definition 2.1 (Disagreement polymer). Let ¢ be a Z-valued height function on the vertices of a
connected domain V' C Z2. Associate to each bond e € (Z?)*, dual to some edge (z,y) € Z?, the
gradient (V@) := ¢, — ¢, where x is taken to be the NORTH vertex if (z,y) is vertical and the
WEST vertex if (x,y) is horizontal. We say the bond e is a disagreement bond of ¢ if (V) # 0
(including when ¢, or ¢, are specified by the boundary conditions). A disagreement polymer ~y
is a (maximal) connected component of the disagreement bonds of ¢, and we let P, denote the
disagreement polymers in ¢. For such a polymer, let D; be the connected components of V' \ =,
noting that by the maximality of v, within each D;, all the vertices that are x-adjacent to V' \ D;
must have the same height h; in ¢. Call the triple (v, {D;},{hi}) a labeled disagreement polymer.
For brevity, we denote labeled disagreement polymers by v (omitting the {h;} from the notation).

NB. In the graph on (Z?)* whose edges are y, no vertex can have degree 1 (degrees 0,2, 3,4 are
possible), hence the restriction that all v € D; that are x-adjacent to V' \ D; have the same height.
See the example in Fig. 4 illustrating this.

Definition 2.2 (Energy, length and decorations of a disagreement polymer). Let (v,{D;},{h;})
be a labeled disagreement polymer. Its length A(7y) and energy &3(7) are defined as

N =D 1Vl 5 E(7) =B _1(Ve)el*.

ecy ecry



10 JOSEPH CHEN AND EYAL LUBETZKY

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
1010 10 10 10 10 10 10[11]10 1011 11

10‘10.10.10‘1010 9[w0] o0 10 10 10 10 1[5
m.mEm 10710 10 10|11 11]10 10 10 11]10 10 10 10 10 10 10 10 10[8]9 9 9o o o
1010 10 10 1OE1U 10 10 10 10§99 J10 10 1011 11 10710 10 10 10 10 10]9 9 9 5 9 9
10710 10 10 10 10 10 wmm.m 11 11010 10 1011 11 11]10 10 10 10 10 10 K
10710 10 10[ 8 ]10 10 10 10 10 10 10 10|11 11]10 11.11‘11 )10 107 310‘10‘ 10 X

10 10 10§9 9 9 9f10 mEm 11 11f10f11 11 11 1111 11 11]10 10 10
59999999101010'1_1,7 111111111111109910‘.
11711 11 11 1110 10 10{ 9 "9 |10 10"

ool s [ 10

10

o e e e s s s

FI1GURE 4. Left: A height function ¢ on a rectangle with h,h — 1 boundary conditions at
h = 10, with all disagreement bonds in blue. The disagreement polymer ~ is highlighted.
Right: The corresponding labeled disagreement polymer (v, {D;},{h;}). Each region D; is
assigned a single height h; which can be read off from ¢ on the left (its interior boundary).

To describe the law of the disagreement polymer, we will use a family of decoration functions ®
on subsets W C Z?—each referred to as a cluster if it is also connected— satisfying the following
properties (see the more general family of decoration functions in Definition 3.1).

(i) If W is not connected, then ®(W) = 0.
(ii) The function ® is translation invariant, as well as invariant under a rotation by /2 or
reflection with respect to one of the axes.
(iii) There exists a constant C' > 0 such that for every W, we have |®(W)| < exp(—(5—C)d(W)),
where d(W) is the size of the smallest connected set of bonds in (Z2 )* containing all the
boundary bonds of W.

The main result of this section is the following, where here and in what follows, we use the
notation D = D () to denote D; \ A, where

A, ={uecV : dist(u,v) < 1/vV2},
as the value of ¢ on D; N A, (and elsewhere on 0,D5) are specified to be the corresponding h;.

Proposition 2.3 (Cluster expansion with a floor). Fizn > 0. Let V C Z? be a connected domain,
and consider the ZGFF model 7T‘£/‘F with a floor at 0 imposed only on a subset F C V, and boundary
conditions £ that are H—n on a %-connected path in 0,V and H—n—1 elsewhere so that they induce
a unique disagreement polymer (v, {D;},{h;}) in V U8,V that contains boundary disagreements’.
Then for 8 > By, the law of this unique disagreement polymer v is given by

1 (e}
() = —g—exp ( — &M+ > <I>(W)> (62 >0, ¥z € DY N F), (2.1)
ZV;F WcV >0
WNA,#0

for Z‘E/;F = Z‘g/;F(ﬁ, n) and a decoration function ®(W) as per Definition 2.2.
Moreover, if we further have |F| < L(log L)* and |0F| < L'~° for fized k > 0 and 0 < § < %,

denote by Dy and Dy the regions of v containing the boundary vertices of V at heights H — n and
H —n — 1, respectively, and let

={hI<'™, |FI=|Don F| - DinF| < 117}

2We say the disagreement polymer contains boundary disagreements if it contains a bond dual to uv for u,v ¢ V.
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then the following holds for all B > By (not depending on k,0). The probability distribution given by

1 DoN F T .
p%,F(’Y) = TeXp < - (9@6(7) + (A)]\[’ + E @(W)) W%Zo(d)x Z 0, Vo € Dl N F)
ZV;F " WcV i>2
WNA,#0

for v € E, with N,, from Eq. (1.5) and Z‘g/F a normalizer, satisfies that for every v € F,
(1 | E) = (14 o(1)p§.p(7) - (2.2)
We prove this result in Section 2.2, after we establish some properties of the measure Too.

2.1. Large deviations without a floor. The following was established in [35, Eq. (3.1)-(3.4)])
for the infinite volume ZGFF measure T,: for every fixed large enough 5 and every h > 2,

—cofh/logh %oo(éf’o = h) < p—C1Bh/logh
¢ S Ao h-1) = / (23)
h2 h?
Aoo o — h) = -2 y 2.4
sl =) = oxp | 2mi 0] (2.0
Too(o = h | po = h) < e=2BR/logh (2.5)

where cg, c1,co > 0 are absolute constants.

Remark 2.4. A stronger upper bound of exp(—ceh?/log?h) was stated in [35, Eq. (3.3)], even
though the bound in Eq. (2.5) was the one later proved in [35, §3.3]. The weaker bound still suffices
for the proof of the main theorem there: one needs only to modify the hypothesis in [35, Prop. 4.4]
(where this result is used) from h > loglog L to h > (loglog L)?, which would reproduce the same
estimates needed in that proof from the weaker Eq. (2.5). The proof applied [35, Prop. 4.4] in a box
Ay with h = (log £)1/21°(1) " and hence the stronger hypothesis h > (loglog ¢)? would be valid. NB.
In [35], the aim was to show 7\ (mingey ¢ > —h) < exp[—(1+o0(1))I(h)] for the correct I(h), while
our analysis of the level-lines requires a much more precise bound of the form (14 o(1)) exp[—I(h)].

For our proofs, it will be crucial to have the stronger upper bound of exp(—ch?/log?h) on the
probability appearing in the left hand of Eq. (2.5); we adapt the argument of [35] to obtain it, as
well as estimates in an arbitrary region V' containing a ball of a certain radius around the origin o.

Theorem 2.5 (adapting [35, Thm. 3.1]). There exist constants Sy > 0 and ¢ > ¢ > 0 so that the
following holds for every 8 > By and integer h > 2. Let V C Z? be a region containing B, (o), the
ball of radius r = [2ch/logh]| centered at the origin o, as well as By41(2) for a site z € V. Then

~0
Ty (¢o = h) 1n
eXp(_Cﬁlogh> ~ Ty(po=h—1) SQXP(_Cﬂlogh> ’ (2.6)
h? h? 0 h? h?
exp ( - 27rﬁlogh — CﬁlogQ h> < T plpo=h) <exp ( — 27rﬁlogh + CﬁlogQ h> , (2.7)
. h?
70 (¢, =h | o = h) < exp ( — Cﬁloth) . (2.8)

Proof. The arguments of Egs. (2.3) and (2.4) extend more or less verbatim to the setting given here
of a more general domain V' in Egs. (2.6) and (2.7), provided that V O B,.(0) for the given r, and
we begin by explaining this point. Let R = |h/logh].

The lower bound given in [35] on Eq. (2.3) was stated for Too(¢o = h)/Too(do = h — 1), carried
out on V = Br (o) for L > R, but in fact holds for 7 for any domain V' O Bg(0)®.

3The proof of this bound in [35] is concluded immediately after [35, Claim 3.5], using nothing only that V' O Br(o)
until that point; it does appeal to [35, Claim 3.6], but the latter is already phrased for a general domain V.
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Remark 2.6. To see why the requirement V' O Bg(0) is the only one needed for the lower bound
on Eq. (2.6), we briefly summarize that argument. The proof first reduced the lower bound to
showing that all z neighbors of o would have ¢, > h — cR, for a large enough ¢, as expected given
that the (harmonic) optimum ¢* for the R-valued Dirichlet problem has h — ¢% =< h/log h at those
sites: this step is valid in any domain V. Next, factoring out the contribution of ¢*, the problem
was reduced, sequentially, to

(i) the configuration o := ¢ — ¢* on V' \ {0} (already here the assumption Br(o) C V is used,
as one defines ¢* as the R-valued solution on Br(o), and 0 outside);
(ii) then to its integer part ¢ := |o| in V' \ {o};
(iii) and finally to ¢ in a ZGFF model on V' \ {0} where the interaction strength in the interior
Br(o) is modified to 1/2 vs. 1 in its exterior.

(This second series of reductions incurs a cost that is absorbed by further increasing c.) The
dominant term in the lower bound is exp(—cfR), yielding the sought bound that appears here, for
the more general V', in the left-hand of Eq. (2.6).

The upper bound of [35] on Eq. (2.3) holds for every V' O Bgr(0) as follows: arguing very similarly
to the proof there?, if one chooses r = R for a small enough § > 0 (fixed independently of (), then

_ 7?V(d)o = h) < e—%/ﬁr + eEBTZTB,.(o)(Cbo = h) < e—%ﬁ&R + e—coﬁlog(%)lp/\ %\V(QZ)O - h) :

v (o =h—1) v(do =h—1) Tv(do=h—1)
using that 7, (o) (¢o = h) < e~ 0P LR R, (d, = h) and that Tg, (o) (¢ = h) < e Ry (¢ = h)
using [35, Lem. 3.6] for the first inequality and [35, Cor. 3.9] for the second one’. Rearranging the
above equation yields the sought upper bound on 7y (¢, = h)/7y (¢ = h — 1) in Eq. (2.6).

It is for Eq. (2.4) where one needs to extend the radius of the ball contained in V' from R to cR;
more precisely, one has the following more general form of [35, Cor. 3.9], via the exact same proof’:

Claim 2.7 (extension of [35, Cor. 3.9] via the same proof). Let co > 0 be an absolute constant
satisfying, for all h > 1 and V' O Bgr(o), that Ty (¢o = h)/Tv(¢o = h — 1) > exp(—coBh/logh).
Setting r = [2coh/logh], for every V D B,.(0) one has

e—{iﬁ’l‘ < %V(¢O = h’) < 6657’ .
T TB.(0) (G0 =h) T
The required bound in Eq. (2.7) now follows from [35, Lem. 3.10], which showed that

2 2

~ h h
log T, (o) (00 = h) = 2By} < Bty Br?

where ¢ > 0 is some absolute constant’.
It remains to establish Eq. (2.8), via a small modification of the argument of [35]. Letting

X =max¢, , Y :=ming¢,,
T~z xrr~z

the proof of Eq. (2.5) in [35] considered the events {X < h} and {Y > h — §\/h/logh} to derive
the sought estimate. Here we will instead consider {X < §;h/logh} and {Y > h — dsh/logh}.
Specifically, let ¢/ > 0 be the constant in the upper bound form Eq. (2.6), and let

Ey={X<h+A} , Ey:={Y>h-5A} for A= L(C//QOO)IOZhJ .

4Gee the argument that appears immediately after [35, Lem. 3.10].

5Here one appeals only to the first part of [35, Cor. 3.9], which is valid for any V' D Br(o).

6The upper bound in that result used the fact r > 2¢oR to replace Ty (¢o = h — 1) in [35, Eq. (3.12)] by Tv (¢o = h);
the lower bound holds for all r.

TAs seen in the short proof of [35, Lem. 3.10], the constant ¢’ associated with the error term ¢ in its statement is
of the form ¢’ = ¢B for some absolute constant ¢ > 0.
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By iterating the upper bound in Eq. (2.6), using here that B,(x) C V for each x ~ z, one has that

~ 70 (dp > h+ A 70 (g = h o
7 (ES | ¢ = h) < 455132{ Wv%ggj(q; :’;) ) < 4%35;%:}3exp ( - CBAlogh)
hA
<o (- (@ - o)y ). 2.9)

with the second line following from Claim 2.7 to show that 7y (¢, = h)/Ty (¢, = h) < exp(egr),

which is negligible as r < % = O(A%). It thus suffices to show that, for some ¢ > 0,

~0 o _ h?
7TV(¢Z =h | d)o — h, El) é eXp ( — CﬁlOth) . (210)

Next, on the events Iy N ES, we can reveal ¢ at the neighbors {xi}?zl of z and then increase those
values by monotonicity, to find that

(6. = h | do = hy By, BS) S 7% (9 2 h | 6oy = h—5A, 6y =h+ A for 2< i < 4)
< (1+25)e BBATTEA?) (1 4 £5)e= 28007

Thus, bounding (¢, = h | ¢o = h, E1) <7V(6> = h | ¢o = h, Er, ES) + 7 (B | ¢ = h, Ey), in
order to show Eq. (2.10), it is enough to show that for some ¢ > 0,

~ h?
7By | ¢o = h, Ey) Sexp(—6672>. (2.11)
log“ h
Again by monotonicity,
(6> h+ Al ¢o=h, Er, E2) > T (¢ > h+ A | ¢y, = h—5A for 1 <i < 4)
> (1—eg)e PO = (1 — gg)e 144547 (2.12)
On the other hand,
7?9/((;57; >h+A ’ bo = h7E1)
70 (E2 | ¢o = h, En)
70 (. > h+ A, =h) _ exp(=(d — o(1))5 1)
T AV (B [ @0 =h, EORY(By [ @0 =h) = F)(Ea | o =h, Er)
where the last transition used Eq. (2.9) to show that 7, (E1 | ¢o = h) = 1 — o(1), whereas the
numerator was bounded from above first by @, (¢. > h+A) /7Y (¢ = h) and then by iterating the

upper bound in Eq. (2.6) and thereafter using Claim 2.7, as was done in Eq. (2.9). Combining this
with Eq. (2.12), we find that

T (hs > h+ A ¢o=h, E1,Ey) <

%%(EQ | ¢o=h, E1) <(1 +63)6Xp <ﬂ<144A — (c’ — 0(1))logh>A> < eXp(— (C//4)BlggAh)

by the choice of A. This establishes Eq. (2.11) and completes the proof. |

The following lemma shows that the large deviation estimate in Eq. (2.7) is also an upper bound
for all points in V, in particular at sites x near the boundary of V' (whereas Theorem 2.5 was only
applicable for sites = at distance at least ch/logh from OV).

Lemma 2.8. There exists cg > 0 such that, for 3 large and every V. .C Z?, h > 2, and x € V,

~0 h? h?
Ty (¢e = h) < exp < - 27Tﬁlogh + e h) . (2.13)
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Proof. Let r = [2ch/log h] for the constant ¢ > 0 from Theorem 2.5, and let V' = VUB,(z). Then

i (Ba > h) > 70 (¢ > hy dlavgyr > 0) > ( inf 7 (¢ > h)>7??//(¢fav\avf >0).

€: &gy =0,
Elav\av’ 20
By FKG, this is minimized at £ = 0; namely,
T (fr > h) 2 7 (60 > W)V (Sloviovr = 0) 270 (e > h)  [] 7hi(0e 20),  (2.14)

€V \OV'

with the last inequality again following from FKG. A standard Peierls argument (see, e.g., [1])
shows that for any A > 0 and any V/,

70 (pe > h) < epm(dn = h),

where €5 — 0 as B — oo (and similarly, #)(¢, < —h) < 370 (dy = —h) by symmetry). In
particular, conditional on ¢ = 0 on a subset of 9V \ dV’, the probability that ¢, = 0 for an
additional vertex x along that boundary is at least exp(—eg), and so

[T #v(6s = 0) 2 e =olV\OV'] 5 mesh?/log®h, (2.15)
2€OV\OV"

where the last inequality holds (for a different €3) using that, since 9V \ OV’ C B,(z), we can infer
that [0V \ 9V'| < 72 < O(h?/log? h). Combining Egs. (2.14) and (2.15), we find that

%‘Of(gi)x — h) S 6€3h2/10g2 h%‘(}/((ﬁz _ h)7 (216)
whence the proof concludes via Theorem 2.5. |

We can now bound the probability of the floor event. Our bound will be asymptotically tight,
whereas the analogous estimate in [35, Prop. 4.4] (which considered a similar event: rather than
B = (,ey19: = —h} addressed here, it pertained B intersected with another event forbidding
macroscopic nonzero paths) had a (14 o(1)) term, not as a prefactor, but within the exponent in
that probability. It is crucial that we have this more precise estimate for our cluster expansion
expression in Section 2.2, and it comes at a cost of area and boundary constraints on the domain.
As we describe below (see Remark 2.11), these constraints are more stringent in ZGFF compared
to the case of sOs, where the corresponding estimate was applicable to an L2/3%¢ x L2/3+¢ hox
(whereas we can only afford to address a L?*?(log L)® x L'/3(log L)¢ box in the setting of ZGFF).

Lemma 2.9. Fiz 0 < < %, k>0, andn > 0. Let V C Z? be a connected region, let F C V be a
subset satisfying |F| < L(log L)* and |0F| = O(L'~%), and set h = H —n. Then

(60 > —h, Vo € F) = (1+ 0(1)) exp (= Foo(@0 < ~N)|F]) .
Proof. We begin with the lower bound. By FKG,
(e > —h, Vo € F) > [[ 70 (62 = —h) = [] (1 =7V (¢a < —h))

zeF el
> exp ( S R (e < k) = 3R (6 < —h>2) L e
el zeF
using 1 — s > exp(—s — s?) for 0 < s < 1, applied to 7Y (¢s < —h) = o(1). Moreover, by Egs. (2.3)
and (2.4) and the definition in Eq. (1.2) of H, we have Too(¢o < —h) < L™ (moving from
Too(po = —(h+1)) for h = H to h = H —n incurs a multiplicative cost of exp (ncoﬁﬁ) = 1°W),
and hence by Lemma 2.8 we have that for all x,

V(g0 < —h) < L7100 (2.18)
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as moving from the upper bound Teo(¢o < —h) to T (¢o = —h) incurs an additional multiplicative
cost of exp (CloggQH) = L°M) This implies that

Z ¢;t < h < L*2+o(1)|F| < L71+o(1) _ 0(1)

z€F
using our hypothesis on |F'| (with room to spare: the stringent requirement on |F'| would come
from the upper bound). Equation (2.18) further implies that

S #ge < —h) < LHW[9F] < L) = (1) (2.19)

zeF
dist(z,0F)<log? L

by our assumption on |0F|. A straightforward consequence of the Peierls argument of [1] is the
following decay of correlation property of 7: for every z € F' and R such that dist(x,0V) > 2R,

< e PR, (2.20)

79015000 € ) = Foo(Bl15000) € )

TV

(To see this, note that one can couple ¢ ~ 7}, and ¢’ ~ 79 so that they agree on Br(z) and Bg(o),
respectively, provided there is no x-connected path of sites P connecting 0Bg /2( x) to OV, along
which every site y has ¢, # 0 or gbg # 0; in particular, either ¢ or ¢’ have more than | P|/2 nonzero
sites along P. This occurs with probability at most exp(—c8R) by Peierls applied to both ¢, ¢'.)
Thus, if 2 is such that dist(z, V') > log® L} (which holds if dist(z,dF) > log> L as F C V) then

[0 (60 < —h) = (o < —h)| < ™%,
and hence our bound on |F| again yields
> 7 (90 < —h) < |F|(Fooldo < —h) + =PI L) < |P[Fog (00 < —h) +0(1).

zeF
dist(x,0F)>log? L

Overall, we conclude a lower bound of
(¢ > —h, Vo € F) > (1= o(1)) exp ( = Too(do < —h)|F]) . (2.21)

We proceed to the upper bound, which is where the stronger assumptions on |F'| will be needed.
The proof will follow a grid partitioning argument using Bonferroni’s inequalities, as was done in
[13, Prop. 7.7] and [14, Prop. A.1] for the SOS model, in [21, Prop. 6.2] for the 3D Ising model, and
in [35, Prop 4.4] for the ZGFF (where it was applied more crudely, as the focus there was the height
histogram of ZGFF surface as opposed to the fluctuations of its level-lines).

Let

u:=4/3 , s:=0/4,

and partition Z? into squares P; of side-length L* + L?, and let Q; C P; be the concentric squares
of side-length L*. We will refer to P; \ @Q; as the shell of the square @;. Observe that if

V1:U{B- : PiﬂFC;é(Z)},
U{ )NF : PNV =0},

then |Vi| < |0F|(log L)** = O(L'~%/3) by our assumption on OF and choice of u, while |V5| <
L57Y F| (each shell P;\ Q;, fully contained in F, has |P;|L*" sites), which is at most L!~9/12+0(1)
by the assumption on F' (and choice of u,s). Combined, we have

Too(do < —R)(IVi| +|Va]) < L™/ 120 = o(1),
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so it suffices to show that, for the increased event that restricts its attention only to V3 we have

%%( CE h}) < (14 (1)) exp (= Foo(do < ~1)IVA) (2:22)

z€V3

We now aim to decrease the event under consideration via intersecting it with

D = {gb has a no disagreement polymers v with diam(y) > L5/4} .
Indeed, by the standard Peierls argument,

F(99) < [VIexp (= (8- )L5/4) = o[ exp (— Foo (00 < ~H)|V4]) )

since oo (o < —h)|V3] < L) and thus Eq. (2.22) will follow once we show that

7Y <©5 N

Denoting by {i;};>1 the indices of the @Q;’s that contribute to V3, we reveal ¢[ p, in step j, and
J

M {60 = —h}) < (14 o(1)) exp  — Foel6 < M)V (2.23)

z€V3

denote the associated filtration by (F;);>0. For brevity, write
Q;j =FN Qij .

We will argue that

0 <®m N {¢e > —h} ‘ ;fjl> < exp(— (1 . C"logzh) (b0 < —1)|Q) \) (2.24)

veQ),
J

from which Eq. (2.23) will readily follow as |Q;| = |V3] <|F| < L(log L)* by assumption, so

2
¢ PRI (6 < thQ | < e PR O £ (6, < —H)|Vy|

_(Cﬂ 0(1))10g2h , (225)

using the lower bound of Eq. (2.3) (or the one in Eq. (2.6)) in the first inequality (to move from
h
Troo (o < —h) to Tao(Ppo < —H) at a cost of ec(’ﬁ”@) and Eq. (1.2) and the hypothesis on |F| in
the second inequality, as h?/log? h =< log L/loglog L, thus (log L)® = o(exp(ch?/log? h)) for any
fixed C,c > 0.
To establish Eq. (2.24), denote by C the outermost *-connected circuit of zeros in P;;, noting that

for every ¢ € Ds, the distance of C from 9F;; cannot exceed L°/4. Letting U denote the interior
of C, we see that B,.(x) C U for every z € Q;; with r < L* >
We now apply Bonferroni’s inequalities to infer that

~ ~ 1 ~
78< N {¢: > —h}) <1- ) @ < —h) + 5 > Fol¢e < —h, ¢y < —h).
mEQ;j xGQ;]_ x,yEQ;j
TAY

log 5, our assumption in Theorem 2.5.

By the decay of correlations bound in Eq. (2.20), we can replace %8 with 7o in each of the sums
at an additive error cost of

\ng\Q exp(—cBL*) = x1 \Q;jﬁoo((ﬁo < —h) for x1 <exp(—(cf—o(1))L?) < L7190,
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Next, we again use the decorrelation estimate in Eq. (2.20) to infer that

~ R 2 _ 2
D Felbr < —h by < ) S (Y Focldn < <))+ Q) PemIEE
x,yEQ;j CCEQ;j
dist(z,y)>log? L
< (X2 + x3)|Q, | Toc (b0 < —h),
where Yo, Y3 correspond to the two terms on the right-hand of the first line, and satisfy

xo < L7HH2ure(l) o p =146 0 < exp (=(cB —o(1))log® L) < L1,

Finally, and this will be the dominant term in our error, we address pairs z,y € Q;J_ at distance at
most log? L as follows. Noting that Too(¢y > h, ¢y > h) < (1+65)Tec(de = h+1, ¢y =h+1) by a
standard Peierls argument (enumerating the two inner most (h + 2)-level-line loops that surround
each of x, y (possibly this is the same loop), and subtracting 1 in each of their interiors if nonempty),
it suffices to bound the sum of said probability. This is achieved by Eq. (2.8) as follows:

Y Feolbe=—h—1¢y=-h-1)= Y Toolds=—h—1)
:CJJEQ;J. JCEQ;].
0<dist(x,y)<log? L
x> Feldy=—h—1|¢s=—h—1)
yeQ;,
0<dist(z,y)<log? L
< Xaoo(B0 < —H)IQ|.
where
4 h?
< (log L < - 7) .
x4 < (log L) exp | —cf log” h

h2

Summing these, we see that for x = Z?zl Xi < exp(—(cf— 0(1))@

) (dominated by x4), we have

%8( N {6 > _h}> <1 (1= )7%(60 < —)IQ| < exp (= (1= )7L (60 < —)IQ} 1)

xEQéj
thus establishing Eq. (2.24) and completing the proof. [

Remark 2.10. The probability 7o (¢, = h | ¢ = h), which we controlled through (2.8), governed
the error-term in the proof of Lemma 2.9. Had we instead used Eq. (2.5)—which features an

exponent of ¢ % as opposed to cf8 log—zh from Eq. (2.8)—it would have competed with the exponent

coﬂn% from Eq. (2.3) which appears in our estimate for oo (¢, > —h) already when considering
h=H —n for n = 1. We will need to consider n = 1, the second-from-top level-line, already to
address the law of the top level-line, as we need to establish that there ample spacing between them
(and of course, in Theorem 1.1 we proceed to further obtain the joint law of the m top level-lines).

Remark 2.11. The analysis of dist(x,y) < log? L in the final part of the upper bound generated
the term x4|F|Too(¢o < —h) < p|F|/L for p = exp(—c%) = L=°W) derived from Eq. (2.8).
Thus, we can only obtain an o(1) additive error in the exponent if |F| = L'*°() and moreover we
can handle L(log L)¢ but not any arbitrary L'*°(1). The analogous setting in sos had p < L~1/2
(due to the different nature of the large deviation problem), resulting in a much larger applicable
domain of area L*/3t°(1) in [14, Prop. A.1] (see the hypothesis on the domain A in Eq. (A.2) there).
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2.2. Cluster expansion and proof of Proposition 2.3. Cluster expansion for disagreement
polymers under without a floor (i.e., under %g) will follow from classical results, as formulated in the

next proposition. We will thereafter use it in conjunction with Lemma 2.9 to derive Proposition 2.3.

Proposition 2.12 (Cluster expansion). Let V C Z? be a connected domain, and consider the ZGFF

model %ff with boundary conditions £ that are 1 on a x-connected path in 0,V and 0 elsewhere so

that they induce a unique disagreement polymer (v,{D;},{h;}) in V' U,V that contains boundary
disagreements. Then for B > By, the law of this unique disagreement polymer is given by

") = = exp<—<fﬁ<fy>+ ) <I>(W;7)> (2.26)
1% WcV
WNA,#0

for 2‘5/ = 2‘5/(5) and a decoration function ®(W) as per Definition 2.2.

Proof. The proof will be a standard application of the framework of the Kotecky—Preiss [31] cluster
expansion. Observe that, by Definitions 2.1 and 2.2, for any connected domain V' we have

W (¢) = exp( PIRIC! )

7€P¢

where the sum goes over the disagreement polymers arising from ¢, each of the form (v, {D;}, {hi}).
Equivalently, letting Py be the set of all disagreement polymers that can arise in ¢ ~ %?/ (or,
equivalently, arising from any ¢ ~ %‘k/ for boundary conditions all-k), we put

2%V - Z He 200) ’
{'YJ}CPV

v; pairwise dlSJOlHt

so that the partition function 28 from above is synonymous with 2 0 . Since &z(7y) > A (7),
Z eB=Co) A (V) =657 < o] Z —Co¥ (1) < A (70)

vy o#D RELS

for a large enough Cj, satisfying the criterion of the main theorem of [31] for a(y) = A4(v) and
dist(y) = (8 — Cy — 1)4 () in their notation. By that theorem, one has

logZ8, = 3" ®o(F) where @o(P) = 3 (—)FWl0g 23,
BCPy PP
and the function ®( satisfies ®o({~;}) = 0 if the graph formed by the edges of {7;} is not connected,
and Y20 [Po(B) [ ODTE) < N (70), where A (B) = 3, A (yy) for B = {y;}. It
follows that |[®o(B)| < exp ( — (8 — C1)A#(BP)). One can then, as done in [17, Sec. 3.9] (see
also [13, §A.2]), define for any subset of vertices W C Z2,

o(W) = 3" {@0(P) : B = {(1;, {Dji} {hsi})} such that | JDjs = Wi},
whence (not just under 0 boundary conditions, but for any all-k boundary conditions)
log Zyy = »_ ®(W), (2.27)
WcV

and the aforementioned bound on ®y() implies that (after summing it over all possible {h;;} to
get a decay of exp(—(8—C) > |v;]) and noting that the boundary bonds W are a subset of | J; 7;),

[®(W)] < exp (=(8 - C)d(W)) ,
recalling that d(W) is the size of the smallest connected set of bonds containing all boundary
bonds of W. The fact that ® is invariant under translation (®(W) = ®(W + z)) as well as
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under rotation by /2 or reflection with respect to one of the axes is apparent from its com-
binatorial construction (as the graphs formed by the 7;’s are isomorphic to the corresponding
translations/rotations/reflections).

Finally, let ¢ ~ 7?‘5, with & consisting of an interval of 0 and an interval of 1 as per Proposition 2.12.
We will move from Eq. (2.27) to Eq. (2.26) via observing that, by definition, if (v, {D;}, {h:}) € Py,
then

_ IL: Zp
() = exp (= E(7) —5 -
Zy
We combine this with the fact that, by Eq. (2.27),
IT; Zh
= exp( Z (W) + Z Z @(W)) = exp< Z <I>(W)> ) (2.28)
Zy wcVv i WCD? ay
WNA,#0
to conclude the proof. |

Proof of Proposition 2.3. We begin with the standard identity (see the proof of Proposition 2.12)

5. p(7) = exp(—4; thg,
VF 7
70
= éV exp(— HZho 7rDo (¢ >0,V € D;NF).
ZV;F

Absorbing Zg/Z‘g,;F into the partition function, then applying Eq. (2.28) to rewrite (][, 2]“9)/28
in terms of the decoration function @, establishes Eq. (2.1). l

To derive Eq. (2.2), we let v € E, and wish to apply Lemma 2.9 to 7TDO (¢ > 0,Vx € DY N F).
Our hypothesis on F gives |DY N F| < |F| < L(log L)*. Next, |0(D; N F)| < |0(D; NF)|+O0(]A]),
which is at most |0(D; N F)| 4+ O(|y|). We further claim that

d(D;NF)CvyUOIF;

indeed, every bond b in the left-hand is dual to some edge uv for w € D;NF and v ¢ D; N F, which,
if v € F°, is counted in OF, and otherwise v € D§ and must have b € 7 (as all other bonds of 0D;
have v € V¢ C F°). Altogether, we conclude that

8(D N F)| < |0F| +O(]nl) = O(L')

by the definition of F, satisfying the hypothesis of Lemma 2.9. Applying that lemma we obtain
that, for : =0, 1,

%g?—"—i(qu >0,Vz € Df N F) =7he(dp > —(H —n—1i), Vo € DI NF)
— (14 0(1)) exp ( — Foo(6o < —(H —n— )| Dy N F]),
using here that
Too(Po < —(H —n = 1))|(Di \ D§) N F| < Fog(¢o < —(H =1 —=1))O(|n]) = L7FW = o(1).
Recalling that |F| < |[Do N F| + |Dy N F| 4+ L9, we see that
Foo(o < —(H —n —1))|Dy N F| = Foo(po < —(H —n— 1)) (|F| — |Do N F| + O(L' %)),



20 JOSEPH CHEN AND EYAL LUBETZKY
whereby we again have oo (¢ < —(H —n — 1)L = L=9t°(1) = (1), and

(%oo(gbo < —(H = n)) = Fono (o < —(H —n — 1)))|D0 N F| = 7o (¢0 = —(H —n))| Do N F|
_|Don F|
==

by the definition in Eq. (1.5). Thus, absorbing exp[—7oo(¢o < —(H —n —1))|F|] into the partition
function (being independent of ), we find that

DoNF ~h; o
) x (o) exp (= 850 + 2 S aw)) [Tl 6. 2 0. v e i),
" WV i>2
WNA, #0

as required. [

3. GEOMETRY OF THE DISAGREEMENT POLYMERS

Our eventual goal is to show that v behaves like an area tilted random walk. Hence, we would
like to show that upon removing the main area tilt % from Eq. (2.2), v falls under the Ornstein—
Zernike setup. We will prove this in a more general polymer model setting.

To begin, we need to define the set of legal polymers from A to B. Fix any two vertices
A, B € (Z?)* and a simply connected domain V' such that A, B are on dV. As OV is the boundary
in R? of a simply connected domain, consider any conformal map that sends OV to the unit circle
centered at the origin, mapping A to the point (0, —1) and B to the point (0,1). Let £ be the
boundary condition which is h along the interval of OV that maps to the arc of the unit circle in
the upper half plane, and h — 1 along the rest of OV, where h can be chosen as desired. For every
height function on V' with boundary condition &, there is a unique labeled disagreement polymer
~ which contains the boundary disagreements. Define Py (A, B) as the set of all such possible
disagreement polymers in this setting (note that the choice of h is irrelevant in defining this set, all
that matters here is that the boundary heights differ by 1). We can then extend this definition to
domains V' with infinite volume by defining Py (A, B) = Uy Pv/ (A, B), where the union is over
all simply connected V' C V which have finite volume.

Next we will define the polymer weights with respect to interaction functions ®(W;~).

Definition 3.1. Let ®(W;~) denote a function on subsets W of Z? and disagreement polymers 7,
which satisfies the following properties:

(i) If W is not connected, then ®(W;~) = 0 for all ~.

(ii) For every v, the function W — ®(W; ) depends only on W N A,.

(iii) For every W,~ and x € Z2, one has ®(W;v) = ®(W + z;v + z). Moreover, ®(W, ) is
invariant under a rotation of (W,~y) by a multiple of 7/2 or reflection with respect to one
of the axes.

(iv) There exists a constant C' > 0 such that for every W,~, we have |®(W;~)| < exp(—(5 —
C)d(W)), where d(W) is the size of the smallest connected set of bonds in (Z?)* containing
all the boundary bonds of W.

Note that the above describes a more general class of functions compared to Definition 2.2, so
that modifications of ®(W;~) (denoted as ®(W;~) and ®};(W;~) in this section) also satisfy the
above properties. With this in mind, we define the weight of 7 interacting with a domain U with
boundary conditions at height H —n and H —n — 1 as

W) =ep (=& + Y Wiy Lweoy) [[75 (60 2 0, Vo € DY) . (3.1)
WNA,#0 i>2
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For brevity, define the shorthand notation
Dy (Wiy) = (W;9) Liwcuy-

Remark 3.2. It is clear that if ®(W;~) satisfies the properties of Definition 3.1, then so does
O (W;y). As usual, the results of this paper hold more generally for any choice of ®; that satisfies
the decay condition Item (iv) above and such that ®y(W;v) = ®(W;~) for any W C U.

Note that the weight g7} (y) makes sense even when + is the disagreement polymer for a domain
V' # U. Moreover, the definition of gj;(y) does not depend on this reference domain V', as {D;}i>2
are the finite areas encapsulated by . Hence, it makes sense to consider polymer partition functions
of the form

Zhu(AB) == Y G,
YEPy (A,B)

If £ is an event about v, then we define
Zpup(ABIE =Y a0
~EPY(A,B)NE
When the points A, B are clear from context, we will drop them from the notation so we instead

have Z7,;; and Zy};(€).

3.1. Non-negative decoration functions and product structure.
Following standard treatment, we now adjust &3(y) to make the decoration functions ®¢/(W;~)

non-negative (see, e.g., [27, Sec. 3.1] or [7, Sec. 2.4]). Let Vi = Uy_(y y1e;)e, {00+ €, b—€i}. Then
we can consider the decoration functions given by
Oy (W) = [W N VeI + @ (Wi ), (32)

for the constant C' from Item (iv) from Definition 3.1 above. It is again clear that if ®(W;y) satisfies
the properties in Definition 3.1, then so does ®7,(W;~). Moreover, by the decay bound in Item (iv)
applied to ®/(W;), we have that ®;,(W;v) > 0. Let ¢(8) = ZWﬂb;é(Z) e~ (B=C)dW) noting that

c(8) = 0 as B — oo. Then, we obtain that > -\yqa 9 Pu(W;v) = =3c(B) Y]+ X wrv, 20 Pu(W; 7).
Hence, we can write

@G () =exp (= &) =3cBl+ Y @yW;) [ 7po(¢e 20, Ve € DF).

WNV.,#0 i>1
hi<j—1
For simplicity of notation, we now define
&5(7) = Es(y) +3c(B)| —log ( T[] 7pe(¢s 20, Vo € DY), (3.3)
i>1
hi<j—1
so that
@) =exp (=N + >, (W;v). (3.4)
Wnv, #£0

In many parts of the paper, we will only care about the total interaction. For simplicity, we define
as shorthand the notation

() = Y Sp(Wiy), (3.5)
WNV., #0

so that we can equivalently write

a(v) =exp (—&5(v) +Tu(v)) .
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Recall that the boundary condition n is needed to determine either the heights h;, if viewing v as
labeled disagreement bonds, or the energy &3(v), if viewing v as a triple (v,{D;},{h:}), so that
the term é"ﬁ* implicitly depends on n. It will also be convenient to define

pl=p—cB).

Now define W (W, v) = (exp(®y;((W; 7)) —1)Liwnv., 20y- We have now ensured that Wy (W,v) > 0,
so that the weights can eventually be interpreted as probabilities. For this, observe that we can
write

exp( > @b(W;’y)): 1T <<6%<WW>—1)+1>: S TR Wiy,

WNV,#0 WNV.,#0 W={Ww;} i
where the final sum is over all possible finite collections of components W.

Definition 3.3. Define an animal as a pair I' = [y, W], where « is a disagreement polymer of a
height function in some domain V', and W is a finite collection of connected components of vertices.
We can assign each animal with the weight

(1) = exp(=&5(7) ] To(W;9).
Wew

Observe that we can again sum over all possible finite collections W to write

W= Y @l). (3.6)

I'=[y,W]

Hence, we will apply the previous notation of Py (A, B) and 2{}7(](14, B) to animals. More precisely,
we say I' € Py (A, B) to mean that I' = [y, W] for some v € Py (A, B) and any finite collection of
components W, and Z{ZU(A, B) is also a partition function for animals through Eq. (3.6).

Definition 3.4. We say a point m = (mq, msg) is a cut-point of I' if m € I" and the intersection
of I' and the vertical line = my is the point m. That is, v only crosses the line once, and so in
particular no components of W or finite regions D; cross the line.

Suppose I' = I'; oI' is the decomposition of I' before and after a cut point m. More precisely, if
I’ = [y, W], then we can write I'y = [y, W;] and T's = [y2, Wy] where v = 1 07 for 1 € Py (4, m)
and 2 € Py (m, B), and W = W; UW, where all components of W, lie to the left of m and all
components of W, lie to the right of m. By the definition of the law g7}, we immediately have

a;(I) = gy (T1) g (Ta) - (3.7)
Remark 3.5. The only property of é"g('y) that will be used is that
E5(7) = (B —c(B)A (7) = BN (7). (3.8)

(Recall from Definition 2.2 that .4(y) is the number of bonds in 7, counting the absolute value
of the gradient along the bonds.) Moreover, in bounding the number of disagreement polymers -y
that satisfy some criterion, we will only use the fact that each v is a connected set of dual bonds,
where each bond is labeled with an integer whose absolute value represents the multiplicity of that
bond. In particular, we will not use any of the additional geometric restrictions that come with the
fact that ~ is the disagreement polymer of a height function ¢; this is only needed to ensure that
the regions D; and heights h; are well-defined. However, to keep notation consistent, we will still
denote the integer label on a bond e by (V¢)..
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FIGURE 5. An animal I' = [y, W], with cone-points in green. The forward and backward
cones emanating from the cone-points form diamonds which encapsulate I'. The disagree-
ment polymer < is in blue, and the components W are in pink.

3.2. Cone-points and irreducible components.
We now define cone-points as a subset of the cut-points. See Fig. 5 for an illustration of the
diamonds formed by the cone-points.

Definition 3.6 (Cone-points). The d-forward cone from u is the set Y*(u) := u + {(z,y) € Z* :
ly| < 6z}. Similarly, the backward cone from u is the set V¥ (u) = u — {(z,y) € Z? : |y| < 0z}
When ¢ is omitted from the notation, we assume § = 1. When u is omitted from the notation, we
assume u = (0,0). For a disagreement polymer v, u is a cone-point of ~ if v C Y™ (u) N Y*(u).
Similarly, for an animal I" = [y, W], u is a cone-point for I' if I' C > (u) N Y*(u).

Definition 3.7 (Irreducible components). An animal I' € Py (u,v) is called left-irreducible if it
has no cone-points, and I' C Y*(v). Similarly, T" is right-irreducible if it has no cone-points and
I' € Y*(u). We say I is irreducible if it is both right and left irreducible. The set of all left-
irreducible, right-irreducible, and irreducible animals with starting point at o* is denoted A, Ag, A
respectively. (So each of these sets consist of I' in |J5 Py (0*, B).)

A few remarks are in order. First note that the only difference between A being a cone-point
for v vs. I' is the additional criteria on the clusters in W. Note also that by definition, every cone-
point is a cut-point. Suppose now that I' has at least two cone-points. Then, we can decompose I
according to all of its cone-points, so that

Fr=TWor®s. . or® ok

where '™ e A, each I'D € A, and T® e Ag. Repeatedly applying Eq. (3.7), we obtain the
product structure of the weights:

k
q (1) = g ™) [T @) (3.9)

=1
We will now show that a typical animal I" has lots of cone-points. First, suppose S is a simple
(non self-intersecting) path of dual bonds, and is given the weight e~ 5. Define also the partition

function
\S/W(Aa B) = Z 6_5|S| y

S:A—B
Sev

where the sum is over all simple paths from A to B which stay inside V. We will focus our attention
on domains for which a typical simple path S drawn from the measure given by the above weights
will have linear length and number of cone-points.
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Definition 3.8. Fix ¢, € (0,1), and A, B with B € Y;*(A) \ {A}. We call V an e-nice domain
with respect to A, B if there exists Sg, vg, dg, ¢ > 0 such that uniformly over 5 > By and r > 1 + ¢,
we have

ZPV(A,B||S] > r||A = Bl) < cem0PrIA=Bh oV (A, B), (3.10)
ZPW(A, B | |Cpts(S)] < 28]|A — B||1) < ce "0PIA=Bli z5W (4 B) . (3.11)

Throughout this paper, we will refer back to the following cigar shape.

Definition 3.9 (Cigar shape). Fix A, B with angle denoted 04 p and By — Ay = M4 p. Define
the curves Cj g by

e )0t =AY

C*(t) = tan(04,8)(t — A1) + ( Map

Define the cigar shape ¢ = € (AB) as the region in between the curves C} 5 and Cj p.

Remark. The domains that we will consider in this paper include Z2, the upper half plane H,
and domains containing ¢ (AB) or ¥(AB) NHy. In each setting, Eq. (3.10) is easily satisfied by
a Peierls argument mapping S to a minimal length path from A to B. The existence of a linear
number of cone-points was established on the domain Z2 in [%, Section 2.7], but the proof method
is robust and has since been applied to reach the same conclusion for other domains, such as H in
[27, Lemma 3]. By the product structure of Eq. (3.7), this implies that for the domains Z? and H,
the simple paths behave like random walks. As € (AB) is defined to contain a typical random walk
from A to B, it is then easy to extend the results to domains containing ¢’ (AB) or ¢ (AB) NH,
as well.

To go from simple paths to disagreement polymers, it will be useful to define the upper and
lower envelopes of a disagreement polymer.

Definition 3.10. Suppose 7 € Py (A, B). The upper envelope UE(7) is the highest (by lexico-
graphical ordering) simple path from A to B that is a subset of the bonds of v (so in particular,
the labels of the bonds are ignored). We can analogously define the lower envelope LE(7).

The next lemma states that for nice domains, a typical animal I' has linear length and number
of cone-points.

Lemma 3.11. Fize,6 € (0,1), and A, B with B € Y(A) \ {A}. Let V' be an e-nice domain, and
U any domain. There exists By, vg, dg,c > 0 such that uniformly over n, 8 > By, and r > 1 + 2¢,
we have

Z3u(AB || 2 7| A= Bly) < cem@M=Eh 75 (4, B), (3.12)

Z3(A, B | [Cpts(T)| < 2604 — BJly) < ce™0I4=B I 2 (4, B) (3.13)

Proof. The proof of Eq. (3.12) is standard, we simply compare 7 to 7y, a shortest path from 0 to y

where all the edge labels are 1. Note that since V' is e-nice, the length of 7p is at most (1+¢)||A—B]|.
We have by Eq. (3.4) and Item (iv) of Definition 3.1 that

Gt (7) < @5 (v0) exp(=&5 (v) + B'ol + e P (] + 1l) - (3.14)

Now, the number of rooted connected sets of bonds of size k is at most C*. For each such set of
bonds v, we then obtain the following upper bound by allowing each (V¢), to take on any value
in Z \ {0}, and applying Eq. (3.8):

S exp(=&5(7) < CHT D 2exp(—#j) < Cre k. (3.15)
YEPv (A,B), e€y j=1
IvI=k



THE LIMITING LAW OF THE DISCRETE GAUSSIAN LEVEL-LINES 25

Hence, we have

Ziy(A Bl W 2rllA-Bly < Y > @t

k>r||A—B|j1 v€Pv (A,B),
lvI=k

b)Y, exp(=Bk+B(1+¢)|A- By +Ck)
k>rl| A= Bl

<G (10)C exp(=(8' = C)r| A= Blli + B'(1 +¢)[|A - Blh)
Ceo?mIA=Bl Z8 (A, B)

IA
SE

IN

1 C
aslongasvg<1—%—y.

To show Eq. (3.13), we will first show the same inequality holds when considering cone-points of
v instead of I'. First note that by Item (iv) we have

exp ( - @@E('Y) +Ju(7)) o~ (80
e (3.16)

As e*(fB*C)]’y\ is smaller than vyf for sufficiently large [, it suffices to prove the bound replacing
q; () with ¢*(v) := ¢4 That is, if we define Zy (A, B) = Zvepv(A,B) q" (), we will show
that

ZQU(A, B | |Cpts(y)| < 280]|A — BJ1) < ce—voﬂllA—BllléaU(A, B). (3.17)

Now, for every v € Py (A, B), let S = UE(). Observe that since each S is a simple path, the
energy &7 (7) is simply 8 times the length of the path, 8[y|. (In particular, there are no domains
D; enclosed by v that contribute an area term to the energy, and so there is no dependence on n
anymore). Hence, we have

3 7'(S) = Z2W(A, B). (3.18)
S:S=UE(y),y€Pv (A,B)

Moreover, for each v such that UE(y) = S, we can view the set of bonds in 7 as a collection
{S,(B¢)ces} where B, are connected components of dual bonds indexed by the first bond e € S
that the component is connected to. For every S, denote by Py (S) the set of labeled disagreement
polymers 7 such that UE(y) = S. Using Eq. (3.8), we can upper bound the sum over v € Py (S) by
enumerating over collections {5, (Be)ccs} and then enumerating over adding integer labels on ~:

)DIEECES | (RS TN SRR YTy SEESOras
=1 Jj=1

~YEPy (S) ecsS k>2 k<—1
< (1+Ce ?)IsIg(9)
< exp(Ce™"|S))g"(S).

The sums over k captures the possibilities that at each bond e € ~, the gradient (V¢). is either > 2
or < —1 instead of 1. The sum over [ includes the possible sizes of the connected component B,
and there are C! possible components of size I for some constant C. For each such component B,,
each bond of B, can also have a height disagreement of j along that edge for |j| > 1. The above
with Eq. (3.18) implies that if £ is measurable with respect to UE(7), then

Z3u(A, B | €,|UE(y)| < 1.1|A=B|s) < exp(Ce " A=B|[) Z3" (4, B | €,|UE(7)| < 1.1 A=B|1) .
(3.19)
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Combining Eqgs. (3.11) and (3.19) thus implies that
Z} (A, B | Cpts(UE(y)) < 260/l 4 — Bll1, |UE(7)| < 1.1]|4 = B|)1)
< e PlIA=Blh z5W( 4 B) < e—CBIIA—BHl'ZV&U(A’B)’

where the last inequality follows as Z‘S,W (A, B) is just a restriction of Z{},U(A, B) to simple paths.

Moreover, since |UE(v)| < ||, we can also bound the event that UE(v) is too long. We have
from Eq. (3.12) and Eq. (3.16) that

Z3y(A, B | UE(y)| > L1||A = B||y) < e=?I4=Bh Z2 (4, B). (3.20)
Hence, to prove Eq. (3.17), it suffices to show
Z3.u(A, B | Cpts(y) < 300[|A — Bll1, Cpts(UE(y)) > 20o||A — Bl|1,|UE(v)| < 1.1]|A = BJ}1)

< G—CBIIA—BIMZ{}’U(A7 B).
(3.21)

However, observe that in the computation above Eq. (3.19), each component B, adds on a multi-
plicative factor of O(e AlB¢l) to the weight of §"(S) (more precisely, this factor is in the interval
[eBICel (Z;; 2e87)ICel] depending on the admissible assignments of height differences along the
edges of B). In [7, Propositions 2.12], it was proved that for an animal I' = [y, W], many cone-
points of 7 are also cone-points of the whole animal T", precisely in the sense of Eq. (3.21). The
proof was a combinatorial computation using the fact that each cluster W of the animal contributes
a factor of e~ (B=C)1AW) ¢4 the weight, and hence the exact same computation proves Eq. (3.21) with
components B, taking the role of clusters. This finally establishes Eq. (3.17). From here we can
show that many cone-points of 7 imply many cone-points of I" to conclude Eq. (3.13) again using
the computation of [7, Propositions 2.12] (this time actually using it to enumerate over clusters in
the animal), as it did not matter there that v had the simpler geometry of a simple path. |

3.3. Surface tension existence and properties. Fix n (which determines the heights h; in the
weight g7;(7)), and fix a unit vector i with angle . Recall the definitions of Pz2 and Z7, ,, from
the beginning of Section 3. Let N be such that the point Nn lies on the lattice. Define the surface
tension as

- : 1 ~ . Ao
Tﬁ,n(e) = Tﬁ’n(n) = — ]\}E;Iloo W log Z£2,Z2 (O 5 Nn) (3.22)

where the limit is over N such that Nn lies on the lattice. We will use both the notation of n and 6.
As usual, if the above limit exists, we can extend 75, to a function over all of R? by homogeneity.
We will show the following proposition about the surface tension.

Proposition 3.12. The above limit exists and satisfies the following properties:
(i) The convergence of the limit is uniform over all unit vectors n.
(i3) 75, is analytic as a function from R? to R?
(1ii) T3,y is strictly convez, i.e., for any two vectors u,v pointing in different directions,

T8, (U) + 780 (V) > T8, (u+ V).

(v) T3, s symmetric under rotations by /4, reflections across the x and y axis and the diag-
onals y = +.

The statement of Item (iv) follows by construction: it is clear that each listed symmetry de-
fines a bijection from P2 (0, Ni) to Py2(0, Niv'), where i’ is the image of i under the symmetry.
The energy, é‘g (7), is preserved under the symmetry, since .4#'(y) remain unchanged, the encapsu-
lated domains D; are just rotated /reflected so that their corresponding area terms are unchanged,
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and finally the functions ®(W;~) are also preserved under symmetries as stated in Item (iii) of
Definition 3.1.

The statements of Items (i) to (iii) (and many more properties) regarding the surface tension of
a polymer model have been well studied in [17, Ch. 4] in the case where the shape of 7 is a contour
and &5 (y) = B'l7]. (See [17, Sec. 4.12] for analyticity and uniform convergence, and [17, Sec. 4.21]
for strict convexity.) We provide a brief review of the beginning proof ideas there in order to show
what adjustments need to be made in our setting. (The careful reader will notice slight differences
due to conventional inconsistencies, such as a choice of § vs. 283 in the law of v — these are
inconsequential and hence ignored.)

Remark 3.13. The key point is that the polymer model in [17] is shown to be a perturbation
of minimal length paths between the start and end points. Even though our model has more
complicated features — -y is allowed to be any connected component of bonds, and there is also an
additional penalty in the area term for finite regions enclosed by v — any portion of + that is not
locally behaving like a minimal length path is sufficiently penalized due to Eq. (3.8), so that our
setting is also a perturbation of minimal length paths.

We begin by recalling [17, Secs. 4.1-4.4], which set up the following definitions.® Define the
point-to-line polymers

7322 Upz2 0 tN)

Let h(y) be the difference in height between the start and end of v. That is, if v € Py (A, B), then
h(vy) := Bg — Ag, the difference between the y-coordinates of B and A. Define also the partition
function with a complex parameter z as

2%2722 (N,z) = Z exp (— &5 () + %,B/h('y)z + Z 72 (W;7))

767)22 (N) WOVW#Q)

(Ultimately, we only care about z = 0, but including this parameter is needed for studying the
characteristic polynomial of a random variable in later sections of [17].) Recalling the defini-
tions of cut-points and animals I' = [y, W] from Section 3.1 as well as the notation U(W;~v) =
(exp(®'((W;7)) — D)1ywnv., 20}, we can define the animal weights @(F) for T' = [y, W]

G(D) = exp(= &5 (7) + 18h(7)2) [] w(w

Wew

As before, we can then obtain a product structure for the weights,

222 Z2<N z Z qu )

Fo,...,I' i=1

where {T;}!_; is the decomposition by cut points of some animal whose polymer 7 is in Pz2(N).
We assume that each resulting I'; cannot be further decomposed by cut points, and we call such
a I'; as wild (not to be confused with the previously defined irreducible components, which refer
specifically to cone-points).

Next, in [17, Sec. 4.5], the authors consider only I' capturing the  — oo behavior. That is,
they consider restricting to the set of I' = [y, W] where v has minimal length in the sense that
there are no two horizontal bonds with the same z-coordinate, and W = (). This is denoted by
I3, a notation that we will leave unchanged to emphasize that even though we start with a more

N )
comphcated set of polymers 7 than in [17], once we impose the above restrictions, we are reduced
8Diction::ury between the notation of this paper and [17], modulo that this paper considers a more general set of

polymers: P2 (0%, 1) = Zn .5, Pz2(N) = I, the complex parameter z is denoted H, g7 () = W (&), Z2s 22(N,z) =
E(N, H).
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to the same set of I' considered there (and with the same weight as well). The case of no fixed
endpoint is also considered, with ZJ := (J; Z¥ 5. The partition function summing over just animals

in ZY is then directly computed ([17, Eq. 4.5.7-8]) as

JE— sinh(3) N .
Z ¢z () = <cosh(ﬂ’) — cosh(zﬂ’)) = ()"

rezy

Now for each wild animal T'; in the decomposition of some I', define J(I';) as the projection onto
the z-coordinate of the starting and ending cut-points of I';. In [17, Sections 4.6-4.7], the focus is
on the sum over all possible wild animals projecting onto a fixed interval I,

> @),
Ti:J(Ds)=I
To be precise, the sum should be interpreted either as restricting to I'; rooted at the origin, since
q2(I';) is invariant under vertical shifts of I';. The key bound in [17, Lemma 4.7] shows that this
decays exponentially with (5 — C)|I| relative to the total weight of (not necessarily wild) animals
with J(I') = I and I' € ZJ. This is a mathematical statement of the perturbation described in
Remark 3.13. The proof there relies on the fact that the polymers are contours, and thus will need
to be modified to fit our setting. We do this in Lemma 3.14.

In [17, Sec. 4.8], the key bound is used with the cluster expansion machinery of [31] to obtain a
formula for log 2%2722(]\[ ,z) as a sum of some abstract functions ®(I) over all intervals I C [0, N].
From here onwards, the authors work primarily with the functions ® and the properties of ® proven
in [31], which otherwise loses the information of the original polymer model. The first exception
is in [17, Sec. 4.14] where the polymer weights are reintroduced to add extra parameters to the
weights. However, the same cluster expansion machinery is immediately used, justified also by
Lemma 3.14 (see the equation below [17, Eq. 4.14.18]), after which the authors work with the
resulting ®(7) functions again. The second exception is in the proof of the sharp triangle inequality
[17, Sec. 4.21]. Tt is straightforward to check that the proof there requires only the results proved
previously in the chapter, and is not impacted by our different polymer setting. Hence, to obtain
the results of [17, Chapter 4] in our setting, it suffices to reprove the key bound given in [17, Lemma
4.7], which we now state more explicitly.

Lemma 3.14. Fiz 6 > 0. Let z, 2, forr =1,..., N be complex numbers such that |Rz| <2—46/0".
Let s be a real number in [0,0/3]. For any interval I C [0, N] with integer endpoints, define

Xns() = (]Q:)" D @) exp(slI)).
rel r:JjIr)=I

Then, there exists some By and constant ¢ such that for all N, B > Bo, z, z», and all such intervals
I, we have

[ Xns(D)] < exp(=(8 = Bo) (|| = 1)) -

Proof. Let T' = (y,W1,...,W;), and let J(T') = I = [m/,m"]. We can write A (7) = A4 (7) +A45(7)
where (), A4 () denote the contribution to .4 °(y) from horizontal and vertical bonds of ~,
respectively. Moreover, we define A/(y) := A (y) — ([I| — 1) and A (y) = A (y) — h(y). We
begin with the observation that for every integer m’ < m < m”, either v intersects the vertical line
x = m more than once, or there is some cluster W that intersects the line z = m. This implies that

[T =1 <A+ Y dW). (3.23)
wer

(Note that this is off from [17, Eq. 4.7.6] by a factor of 1/2, because if 7 is required to be a contour,
then the only way « can intersect a vertical line more than once is to intersect it three times. The
only impact is that the decay bound in the lemma is off by a factor of 2, which is of no consequence.)
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By the assumption in Eq. (3.8), for an upper bound we can replace &5 () with 8'4"(y) in g;(I").

With this simplification we can now follow the calculations exactly as up to [17, Eq. 4.7.18] to
obtain
5 —(B— _ 0
K (D] < e U S ep(=Sh)] = #(Aln) = hO)]) — B M), (3:24)
v (v)=1

where (1, 8o are just constants that can be taken arbitrarily large depending on ¢, but not dependent
on . (Note that above [17, Eq. 4.7.13], the additional bound |h(vy)| < A (7) is used to upper
bound —f|h( =B (A (y)—=1h(y)]) < —%JK,(V), which is in the final expression obtained in [17, Eq.
4.7.18], the analog of Eq. (3.24) above. We will need the sharper bound as we have written.)

It now remains to show that the sum

- )
= ) exp(=g|h(v)| = B(A(y) = [h(N]) = B2A0 (7))
y:J(y)=1
is bounded by a constant independent of 3’. First observe that in order for v to climb height h(v),
we need at least |h(7y)| vertical bonds e such that sgn((Ve).) = sgn(h(y)). Hence, we partition the
bonds of v into the three sets

By ={ee€v:sgn((Ve)e) = sgn(h(y)), e is horizontal}

By = {e € v:s5gn((Vo).) # sgn(h(y)), e is horizontal}
Bs = {e € v : e is vertical},
and obtain the upper bound

=< Z H e 5B (I(V)e|-1) H —B'(VP)el H —B2|(Vo)e (3.25)

v:J(v)=I e€By e€B> e€ B3

We next enumerate over the bonds by partitioning « into fragments. For every v such that
J(v) = I, we consider slicing 7 at all vertical lines z = x; for integer x;, so that we are cutting all
horizontal bonds in half. We end up with a collection of fragments F', each consisting of a (possibly
empty) vertical segment 7, and at least one (but possibly more) horizontal half-bond attached to
it. Each bond (or half-bond) also inherits the label (V¢),. from .

For a fragment F', we can denote its height by h(F'), and the number of vertical and horizontal
bonds by AG(F) and A4 (F) respectively (accounting for the labels as in Definition 2.2) where
now 4 (F) may be a half integer. We additionally define a marked fragment as a pair (F,e) of
a fragment and one of its horizontal half-bonds. The marked half-bonds will tell us later how to
reconstruct v given these fragments. Finally, if R is any connected (in R?) set of vertical bonds
and horizontal half bonds, we call a horizontal half-bond of R open if it is not part of a whole
horizontal bond in R. We will consider an ordering of open half-bonds of R by associating to each
open half-bond its point at which another half-bond could join to it to create a whole bond, and
then applying a lexicographic ordering to such points.

We now construct an injection from ~ to a list of marked fragments § = F(y), to be indexed as
§[i]. Starting at i = 1, set F[1] to be (F, () where F is the fragment containing the unique half-bond
of v intersecting the left-most vertical line x = m’ (we allow e = () for this starting fragment only).
At each step i, define R; to be the subset of v consisting of the fragments which have been added
to § by the end of step 4, so that R; is the fragment §[1] (rooted at the origin, where ~y is assumed
to be rooted). Now let i = 2. Let e be the minimal open horizontal half-bond of R;_;. Let F be
the fragment in v\ R;_1 that contains the half-bond ¢’ such that ¢’ and e combine to make a whole
bond in 7. Set §[i| = (F,€’). Then define R; as instructed above, set i =i + 1, and repeat until we
have reached Ry = =, where N is the number of fragments in .

Now we show that this map is injective. Suppose we start with § and we know that § = §(v)
for some ~y, and that § was built through a sequence of R; as described above (but of course we do



30 JOSEPH CHEN AND EYAL LUBETZKY

not know what 7 or the R; are). We know the number of fragments in v is N := |F|. We start by
placing the fragment of §[1] so that its leftmost horizontal bond starts at the origin, and call this
T1. By construction, T3 = R;. Now set ¢ = 2. We know T;_1 = R;_1. Let e be the minimal open
half-bond of T;_;. Calling §[i] = (F,¢€'), let T; be the result of adding F' to T;_; so that ¢’ and e
join together to make a whole vertical bond. By construction, R; also results from attaching (F,e’)
to the minimal open half-bond of R;_; via €’. Since R;_1 = T;_1, then R; = T;. Now set i =1 + 1
and repeat until we have exhausted the whole list §, so we have reached Ty. Since Ty = Ry = 7,
we are done as we have constructed 7 only from knowing §.

Thus, we can upper bound the sum over v by a sum over marked fragments. Consider F' with
height hA(F') = k. We next bound the contribution to Eq. (3.25) of the bonds in such a fragment.
We begin with the horizontal half-bonds. There are 2k + 2 choices of where to put the marked
half-bond. Accounting for the possible label of this half bond, its total contribution to the weight
is at most

(2k+2)) 2e777/2.
j=1

Similarly, each of the other 2k + 1 locations can either have a labeled half-bond or not, for a total
contribution of

oo
1+ Z 2€*j52/2)2k+1 )
j=1

For the k vertical bonds, we split up into the two cases of B; and By. Assume without loss of
generality that sgn(h(vy)) = 1, as the —1 case is analogous and the result is the same. For e € By,

we get a contribution of Z >1 e~ 3 BU=1, Fore ¢ Bs, we get a contribution of Zj<71 e Pl
Hence, we get a total contrlbutlon of

(Z e~ 5B -1 4 Z e P'lilyk

j>1 j<—1

Altogether, we have that

Z S OII e (V= T e ?IVOl T e %IV (3.26)

k=0 F:h(F)=k e BiNF e€BoNF e€BsNF
o) o) 2k+1
< ((2k+2)22€j52/2) <1+22€j52/2> (Zeg 'G-1) 4 Z -p |J|)
k=0 j=1 =1 §>1 j<—1

0
< Z Cefﬁg/lecke_@/zefké/?y
k=0

for sufficiently large 8’ compared to . We can then choose 2 = f2(d) and a constant C' = C(J) so
that ke—kd/3+cke™®2/% — Cio—=kd/4 for A1) k > 0. Then the above sum is upper bounded by

1
ZCG Ba/2}, ocke™P2/2 —k5/3 < (Cle 52/27—5/4 <O P2, (3.27)
k=0

Finally, enumerating over ~ as a collection of marked fragments (and ignoring any other compat-
ibility conditions) and noting that there must be at least |I| fragments, we have by Egs. (3.25)
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o (3.27) that

=< N "(1(V)el—1) e PI(Vo)el e~ P21(V)el
H H[ 11 11
i=1eeBiN

3[4 e€BaNFli] e€ B3N]

Vo)el-1) e~ B1(V)el o)
I« Il II
)N

N>|I|< F ec

< Z C// —pB2
N>|I|

< e—(ﬁ2—c)\f|’

Mu
M

e€ BoNF e€ BsNF

which is a 8 independent constant. |

As a result of the above discussion, we can now conclude the remaining properties of Proposi-
tion 3.12, as well as the following results from [17, Chapter 4]:

Proposition 3.15. The following statements hold for any finite n and sufficiently large 3. Let
A = (A1, A9),B = (B1,Bs) be any two points, and assume that A is to the left of B. Let 04 p,
My B, £a B denote the angle, horizontal length, and length of the line segment AB respectively, and
assume that |04 g| is bounded away from ©/2. Let S = S(A, B) denote the infinite vertical strip
with A, B on its boundary, and let W D S.

(i) [17, Eq. 4.15.4] Let hi(y) be the maximum height of v above AB at the line x = Ay + t.
There exist constants C,c > 0 such that for any A, B as above,

WZQ(AB\ht ) >j) < Cy/Mape MJ/thz?(AB)

Let £(y) be the number of bonds in v to the left of x = A1 +t. For some constant K(04 ),
we have

Wz?(ABMt( ) > j+ K(0ap)t) < C\/Mype 0N /DZ Zyy72(A, B) .
(i) [17, §4.12.3] There exists C > 0 such that for any A, B as above,

‘log 222722(14, B)+ 18,04 B+ %log MA7B‘ <C, and
‘log 22 32(A, B) + T5.nlap + §log MA,B‘ <C.

Remark. Note that Item (i) above was originally written only for W = Z2. However, an immediate
consequence of Item (ii) is that for any W O S,

1og 232 52(A, B) — log 24y, 12(A, B)‘ <C, (3.28)
and this implies the generalization.

Now assume additionally that 1 < /4 p < L. We next prove two useful lemmas that allow us to
switch between domains and modify interactions, as long as we contain the cigar shape capturing
typical random walk fluctuations (recall Definition 3.9).

Lemma 3.16. Let V D € (AB). Then,
|log Z: 52(A, B) —log Z3 ;2(A, B)| < C'.

Consequently, both the large deviation bounds in Item (i) and the surface tension result in Item (ii)

of Proposition 3.15 hold for ZVZ2 (A, B).
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Proof. Tt suffices to consider V = € (AB). It is clear that ZQ(E)W(A, B) < ZQQ,ZQ (A,B). To

show the other side, we take a union bound over Item (i) of Proposition 3.15 to obtain
7% 72(A,B |y ¢ €(AB)) < Mape 081" 22 1,(A, B) = 0(1)Z% 12(A, B).
This implies that
7 iy z2(As B) = (1= 0(1) Z8 2.,
and then we can apply Eq. (3.28) to conclude. |

Lemma 3.17. Let V. O € (AB). Let W contain the infinite vertical strip with sides v = Ay +
(log L)? and x = By — (log L)?. Then, we have

|log Z} (A, B) —log Z1 2(A, B)| < C(log L)?.
Proof. Let T4 p be the set of points to the left of x = A; + 2(log L)? and to the right of x =
B; —2(log L)?. Since W contains the strip, we have
[log Gy () — log @ (7)] < Ce Py N Tap| + e UL |y TG 5|

Let 13, E be the probability and expectation for the polymer model with weight 622 and partition
function Z\SZQ. Then we have

72w (A, B)

2y 2 (A, B)
An easy Peierls argument shows that

P(ly| = 2ap +j) < e 7,

while Lemma 3.16 shows that |y N T4 p| has an exponential tail past O((log L)?) that beats the
gain of exp(Ce™P|y N T4 p|) for sufficiently large 3, so that we have

{&W(A’ B) < eC(logL)2 )
2} 12(A, B)

< E[exp(C’efB\’y NTaBl+ e—cllog L) RAAEYW:IE

For the lower bound, we have
S > Blexp(~Ce |y N Tap| — e = |y T p)]

> ¢ Cloe L)’ P(|y| < 304 5, |y N Tap| < 2(log L)?)
> (1 — o(1))e~ClosL)* u

We end with a payoff of this subsection - one of the main benefits of comparing two partition
functions is the ability to show an event has low probability in one polymer model by bounding its
probability in a simpler polymer model. This is stated more generally as follows.

Lemma 3.18. Let Vi, Vo, Uy, Us be any domains such that Vi C Vo and Uy C Us. Suppose we have
the bounds on the partition functions

‘log 73 0, (A, B) = log Z}, 11, (A, B)‘ < fi(A,B), and (3.29)
log 2‘7}17(]2 (A7 B) - log 2‘7}2,[]2 (A7 B)‘ S f2(A7 B) ’ (330)

where we allow the more general form of @y as in Remark 3.2. Then, for any subset £ C Py, (A, B)
such that R R
Z\%,UQ (Av B ‘ 5) < pZ\'r}z,Uz (A7 B) )
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we also have .
7 1, (A, B | €) < 2B RAB) 570 0 (A B).

Proof. Let Py, v, be the probability measure given by

aUz (7)
V2 U, (A B)’
and let Ey; ;; be expectation under Py, ;. Let Py, ;. Py, 1 be defined similarly. Define AJ(y) =

Ju,(7) = Ju, (7). Then, we have
23, 1, (A.B) Ep, g Le exp(AT(3)]
Z3, v,(A, B) EV, 1, lexp(AT(7))]
The assumption Eq. (3.29) implies that EY, ;; [exp(AJ(y))] > e~ 1A4B) - Applying the bound with

respect to ®p, = 2y, — 20y, (justified since Uy C Uy), we also have EY, 1,[exp(2AT(7))] <
ef1(4B) By Cauchy-Schwarz for the first inequality and Eq. (3.30) for the second, this implies that

Py, 0, (7) =

EV1 Us [exp(ATJ(v))] =

1
%’Ul(g) < e2f1(A,B) P%,Ug(g) < e2f1(A,B)+2f2(A,B) P%,Ug(g)

concluding the proof. |
3.4. Wulff Shape. In this subsection, we recall a few facts about the Wulff shape, which will
allow for a more fine-tuned analysis of the polymers via Proposition 3.19. For any function 7, we
can define a corresponding Wulff shape

W=W(r):=[{heR*:h-y<7(y)}. (3.31)
yeER2

Now for 7 being the surface tension 75, defined in Eq. (3.22), by definition we have

log Zz2 72(0%,y) = —7pn(Y) (1 + oy, (1)) -

Thus, the sum ZyGZ2 ehyzn (o*,y) converges if and only if h-y < 75, (y) for all y € Z? such that

72,72
llyll1 is sufficiently large. But then since 73, was defined by homogeneity and is also a continuous
function, this is equivalent to requiring that h -y < 73,(y) for all y € R2. Hence, an equivalent

definition for the Wulff shape is

W= {h €R?: Y ehvG(y) < oo}.

y€eZ2

Now, for any h € R?, we can define the weight
Wh(T) = Mgz, (1)

where X (I") is the difference between the ending and starting point of I' (i.e., if I' € Py2(A, B), then
X(T') := B—A). A special value of h will be hi! = V75,,(y), so that by the homogeneity of 74,
we have h -y = 75,(y). Note that hy is only dependent on the angle of y and not the length.
We next state an important result which allows us to view the weights of irreducible components

as probabilities, when normalized by " X(T) " Recall the definitions of the sets A AL, AR from
Definition 3.7.

Proposition 3.19. For any 6 € (0,1), there exists By such that for all B > By, anyy € YVs(0*)\{0*},

we have
STBN(T) = 3 M X, (1) = 1.

T'eA T'eA
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Moreover, the expectation is collinear to vy, i.e. there exists some constant a = a(f8,y) > 0 such
that

EN[X(D)] = ay.
Lastly, there exists a constant vg > 0 such that for k> 1,

2 PVID)yraey < Cet,
TeALUAR

This last exponential decay property holds more generally, replacing hy with any h € W, or replacing
PY (1) with e XOGe(T) for any domain U.

Versions of this proposition have appeared before in slightly different settings [7,27,29]. The
closest to our setting is the treatment in [7], where the definition of cones is exactly the same. The
only differences are in the weights g, (I') and the set of admissible I', both of which are irrelevant
to the proof of [7, Prop. 2.14, Eq. 5.18], which only uses the properties of the surface tension in
Eq. (3.22) and the existence of cone-points in Lemma 3.11. Hence, the result also holds in our
disagreement polymer setting.

We can now conclude by defining the variance o2 which appears in Theorem 1.1.

Definition 3.20 (Variance of the effective 2D RW). For the particular choice of y = (1,0), define o2

as the variance of the y-coordinate X (I')y under the measure P from Proposition 3.19.

4. INITIAL UPPER BOUND ON THE DISPLACEMENT OF A LEVEL-LINE

The goal of this section is to prove Theorem 4.4, stating that w.h.p., the (H —n) level-line contains
a translation of Wulff shapes, which in turn provides an initial upper bound on the displacement
of the level-lines from the sides of A;. We will use the following shorthand notation:

Definition 4.1. For a subset A C Z?2, let &,(A) be the event that the H — n level-line contains A.

We begin with some notation surrounding the Wulff shape. Recalling the definition of the Wulff
shape W(r) from Eq. (3.31), let Wi (7) be W(7) rescaled to have unit area. Define

wi(T) = /BW ( )T(@s)ds,
1\7T

where 0 is the direction of the normal with respect to OW;(7) at s. Our target shape for the
level-lines will be a translation of Wulff shapes.

Definition 4.2. Let £"(¢,r) be the set obtained by first taking the union of all translates of
Wi (718,,) inside the unit square, and then dilating the shape by a factor of (1 + r).

Fix § as any small constant (e.g., 6 = 1/10), and define
by =Lp(0) :=wi(18,n)Nn/2(1 =)L,
Finpy = NM3(log L)°/L .

Remark 4.3. Observe that since Ny < L/58, then ¢y < wy g/10(1 —6)5. Moreover, wy g ~ 43
(up to a multiplicative (1 +¢)). Hence, ¢, < ¢y < 1/2.

We next state the main theorem of this section.

Theorem 4.4. Consider the ZGFF on an L X L box with zero b.c. for non-exceptional values of L
(as in Theorem 1.1). Recall that H = H(L) := max{h : Too(¢po > h) > 58/L} and N,, = N, (L) :=
1/Too(po > H —n). Then, w.h.p., we have

En(LLY(Ly(1 + L7Y%), —(H — n)kin1s5)) -

In particular, if x is a point on the bottom boundary of A at distance at least, say, L/10 from the
corners, then
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(a) the vertical distance of the (H — n) level-line from x is at most N%/B'(log L)'S;
(b) by the upper bound of Eq. (2.6), the analogous distance of the (H —n — 1) level-line is at

most
1/3 6 3 /B ogl

Remark 4.5. The shape LL"(¢o(1 + L™Y/2), —(H — n)ky 15)) is flat away from the corners, but
around the corners there will be an arc of the Wulff shape. When Ny = O(L), then the size
of this arc is O(L) and the Wulff shape is visible (note that the shape and hence the H level-
line will still occupy a 1 — eg fraction of the sites however). However, for most values of L (i.e.,
with the exception of a zero logarithmic density set, similar to Remark 1.3), o = o(1) so that
LL"(Lo(1 + L™Y2), —(H — n)ky,.15)) is flat all the way up to distance o(L) away from the corners,
and there is no visible Wulff shape at the O(L) scale. When we consider n > 1, we always have
¢, = o(1), so the latter picture is always the case. This is in contrast with the sOs picture where
the Wulff shape is always visible, even for the (H — n) level-line for finite n.

Remark 4.6. While our focus is the ZGFF, and later (in Section 7) we also extend Theorem 4.4 to
the |V¢|P model for all p > 1, we note that Item (a) of the theorem applies also to the case p = 1:
Using [14, Lemma 5.9] in lieu of Proposition 2.3, the proof of Theorem 4.4 extends to SOS to show
that, for H = Lﬁ log L| and any fixed n > 0, the vertical distance of its (H — n) level-line is at

most LY3(log L)'6 with high probability (refining the L¢ in [14, Thm. 6.2] into a polylog(L)).

4.1. Growth gadget. In this section, we will prove that in a region around a line segment at
the correct scale, the level-line will drop below a certain point, motivated by the treatment in
[14, Section 5.2]. This will eventually be used (see Lemma 4.20) to show that the level-line drops
far enough below where a Wulff shape would be, which will allow us to iteratively grow the region
which we know the level-line contains.

We start with a lemma stating that for a rectangle in the middle of Ay, we can enforce the
desired H —n, H —n — 1 boundary conditions at the cost of moving from the rectangle to a wiggly
domain approximating the rectangle. The proof will be postponed to Appendix B.

Lemma 4.7. Fizn, and let R be an {1 x {3 rectangle, where {1, {5 > (log L)®. Let Agr 10 CV C AL,

and 0 < k < H—n—1. Suppose that, w.h.p. under W{“/, R is contained in the interior of £,_1 and
that there are two points A, B on the sides of OR with the top arc of OR from A to B in the interior
of £, such that if d is the distance from {A, B} to the top or bottom of R, then \/f1(log L)? < d.
Then there exists a W"“/—measumble distribution on connected regions QQ C R with marked boundary
conditions & satisfying Items 1 to 4 below, such that the following holds. If Ay is the area of the

interior of £, intersected with Q, and Asg is the area above the (H —n) level-line in Q under wg,

then As C Ay w.h.p. under 77{“/.

(1) Q is simply connected,

(2) dist(0Q, OR) < (log L)?,

(3) There exists A', B’ € 0Q such that €(A'B’) C Q, Y4(A’) does not intersect the left side
of Q, Y*(B') does not intersect the right side of Q, and max{d(A,A’),dist(B,B’")} <
2(log L)°.

(4) The boundary conditions & assigns height H—n on the top arc from A’ to B', and H—n—1
on the bottom arc.

The main theorem of this subsection is the following, showing that the H — n level-line drops
below a certain height. Fix a > 4 and b > 3a. Motivated by the above lemma, consider a
N,E/?’(log L)* x 2N72L/3(log L)* rectangle R with A, B distance at C’N,i/:s(log L)® above the bottom
of R for some C' > 1. (The requirements on /1, ¢, d are easily satisfied.) Let Q = Q, satisfy the
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above properties in Lemma 4.7. Assume for simplicity that the slope of AB is § = 04 p € [0, 7/4]
and the midpoint of AB is the origin. For future reference, we define here also F as the intersection
of @ with the parallelogram that shares sides with R, has top and bottom sides parallel to AB,

with height erl/g(log L)® and centered at the origin.

Theorem 4.8. The following holds uniformly over all possible Q as above. Let £, be the (unique)
(H — n) level-line induced by &. Then, with Wé—pmbability 1- e*C(logL)Q, £, lies below the point
X =(0,Y 4+ o(log L)* + (log L)?), where

1/3(log L)%
8(78,n(0) + 75, (6)) cos()? ’
o = 2/3(10g L)
A(7pn(0) + 75,(0)) cos(6)*
Remark 4.9. In Section 4.2, we will apply the above for the choice of a = 5,b = 15. As the

error probability is a e~c(og L)Q, any union bound over a polynomial number of applications of
Theorem 4.8 will still have an error probability of the same form.

Y =—

(4.1)

In contrast to the polymer model studied in Section 3, we now need to reintroduce the primary
area term. Let V be a finite simply connected set, and consider v € Py (A, B) for any A,B € V.
Let F C V, and assume for simplicity that AB C F. Define Ar(7) as the signed area of the region
above UE(7) with respect to the line segment AB, after restricting to F. That is, Ap(y) is equal
to |Dp N F| minus the area above the line segment AB in F. (Note that although |Dy| depends
on the reference domain V', the normalized area Ap() does not.) Define the polymer weight with
boundary conditions H —n and H —n — 1, area tilt 4 on F, and domain of interaction U, by

Ginu(7) = exp (= E5() + 2 Ar() + D @p(W;n) (4.2)
" WV, #0

* H ~
= exp (~ 6500 + H-Ar() +30())
where &7 (v) and ®7;(W; ) are as defined in Egs. (3.2) and (3.3). For convenience, recall that

&5(7) = E(y) +3c(B)| —log ( [ 7pe(¢s 20, Vo € D7)).
b1

As usual, we can define the partition function
Z@,U;F,M(Aa B) = Z QE;F,M(PY) ’
"/GIPV(AvB)
with the notation Zy ;. r (A, B | £) denoting the restriction of the sum to v € £, for any event

E. Note that when p = 0, we recover the definitions of ¢, and Z{}U from Section 3. Of course,

477, (7) is just a renormalization of the cluster expansion weight ps; #(7), a fact we will frequently
apply without reference.

We next prove a few preliminary lemmas. In order to prove Theorem 4.8, we will in several
instances want to show that at a specific point, v has the geometry of a simple path.

Definition 4.10. For a bond b € ~, call D, = Dy(y) the connected component of all finite regions
in Z2 \ v containing a region that has b as part of its boundary. If there is no such finite region
adjacent to b, then Dy = ().
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Lemma 4.11. Fiz any V,U, F, and any points A, B € V. Let b(vy) be the first horizontal bond
where the upper envelope UE() hits the vertical line x = m for a fivzed m € [Ay, Bi]. Then there
exists a constant C' > 0 such that for any k > 0, we have

ZY 0. p (A, B | 0Dy = k) < e O=Ok278 1 (A, B).
In particular, we have
ZVup (A B | Dyyy = 0) > (1 —€5)Zy 1.5, (A, B) -

Proof. By construction, Dy is the union of some D; for ¢ > 2 such that one arc of Dy is a subset
of UE(v) and the remaining arc is a subset of LE(y). Let t1,t2 be the first and last points on UE(7)
that are intersected by 9Dy. Let A(Dy(,)) be the length of the shortest path from #; to to that
does not exit Dy(,). In particular, we have |0Dy,)| > 2A(Dy(,)), and so

0Dy | = A(Dy(y)) > 5|0Dp(r)| -

Let f be the map which replaces the portion of v between t; and ty by a path attaining length
A(Dy() (which can be chosen arbitrarily — say by the minimal lexicographic one that does not
exit Dy(,)). Note that this map can only lower UE(y) so that Ap(y) < Ar(f(v)). Moreover, the
map only removes some regions D; for i > 2 and does not change any others. Thus, by the definition
of é”ﬂ*(y) and the decay property of &y, we have for some C' > 0 that

1
g (V) < @ (£(7))e” P21l (4.3)

Moreover, for a given w in the image of f, the number of preimages v such that f(y) = w and
|0Dy () ()| = k is bounded above by the number of connected components of bonds of size k times
the number of possible points ¢;. The former is at most s* for some universal constant s, and the
latter of which is at most k? (since we can look at the first intersection of w with x = m, and #; is
at most distance k from there). Hence, we obtain

Z‘?U;FM(A’B | an(v)| > k) = Z qE;Fu ) < Z Z Z qrr, Fu (4.4)

¥:10Dy (| >k J>k welmage(f) yef—1(w):
10Dy (+) =4

<Y S () O

7>k welmage(f) yef~1(w):

|0Dy(y1=3
<> eIz (A B)
j=k
<e =3k zn b (AL B). ]

Remark 4.12. Since the proof of Lemma 4.11 uses a Peierls map type argument, the results can
be strengthened if we have more information about the image of the map f. More specifically,
suppose we know that for all v € £;, we have f(v) € &. Then, in Eq. (4.4) we can start instead

with the sum Z'y:|3Db<7)|2k,'y€51 q0.r,,(7) and replace the sum 3 i aeee) BY 2 icimage(t)ne,- What
was previously an upper bound of

> () < 20, (A B)
we€lmage(f)

now becomes

Z qg;Fw(f(’Y)) < Z\E,U;F,M(Aa B | 82)7
w€lmage(f)NEa
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and hence we get
23 e (A, B | 0Dy > k&) < e P=Ok2z0 1 (A, B &).
We next show that we are, with high probability, in a setting where we have cluster expansion.

Lemma 4.13. Let v be the disagreement polymer from A to B in the setting above Theorem /.8,
recalling also Q,&, F there. Let Gy be the event that |F| — |Do N F| — |Dy N F| < L% and |y| <
2/?’(log L)*. Then, ngF(gf) < el Moreover, if GV is the event that £, stays above a given

horizontal line H above the bottom of Q, then ﬂg;F(Q’f | gY) < gL,

Proof. By Proposition 2.3 and comparing with the definition of Z]B, we have

o) < @) ] 7be " (62 = 0¥z € DYNF),
1=0,1

with the same statement holding for 77%, (7| GY) except restricting to v € G~. To obtain a rough
lower bound on the probabilities, a standard computation using FKG and monotonicity in the
boundary conditions obtains

~ 1 ~
Wgon l(¢mZO,Vx€DfﬂF)22exp(— Z FOD?(¢x<—(H—TL—1))>.
zeDINF

Using that 7% (¢, < —(H —n — 1)) < L7121 and the fact that |F| < N, (log L)**®, we obtain

~ 1 a —1+4o0 o
go n— Z(¢x > O,VLU c Df N F) > 767Nn(10gL) +bp,—140(1) > efL (1) .

1=0,1

[\

Hence, changing the weights to %(7) can only tilt the measure by a multiplicative factor of eLD(l),

so it suffices to prove that
= _.71/24 &
75 o(A, B 1 G) < M 2 (A, B), and (15)
Zo(AB| Gi.G") < " 2 (A B| 6°). (4.6)
Now in the polymer model, the bound on the length

~ _ 2/3 a =,
Z8 (A, B | |v] > IN2/3(log L)?) < e~¢Nn'"(log L) Z8 o(A, B)

follows by an easy Peierls argument (take the map that sends 7 to a minimal length path from A
to B). The same holds when intersecting with G", as mapping to the minimal length path stays
within the set G“.

Bounding the area of |F| — [DoN F|—|D1NF| = J;~, D; N F follows essentially the same proof
of Lemma 4.11 but simpler since there is no area term anymore. By the above, we can assume that
Iy < 2N2/3(log L)*. Thus, if |F| — |Do N F| — |Dy N F| > L%, then by the pigeonhole principle
we must have |Dy| > LY12 for some b € v which is adjacent to a vertex in F. So, we fix any bond
b adjacent to a vertex in F, and let v be such that b € v. As in Lemma 4.11, let t1,ts be the first
and last points on UE(~) that are intersected by Dy, and let A(Dy) be the length of the shortest
path from ¢ to t9 that does not exit Dy so that

|0Dy| — A(Dy) > 310Dy .

Let f, be the map which replaces the portion of v between t; and t2 by a path attaining length
A(Dy). By the definition of 55(7) and the decay property of ®¢g, we have

Bio) < Bl GO0, (4.7)
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Moreover, for a given w in the image of fj, the number of preimages v such that f,(y) = w and
|0Dy(y)| = k is bounded above by the number of connected components of bonds of size k, which
is at most s¥ for some universal constant s. Finally, observe that by the isoperimetric inequality,
|Dy| > LY'2 implies |0Dy| > 4LY?*. Hence, we obtain

ooamms Y > D160
y:bE7, k>4L1/24 welmage(fy) vef ' (w):
D >L1/12 b _
| Dp|> [0Dy () |=k
_(a_nL
< > Y @E))e Rt
k>4L1/24 welmage(fy) yef, ! (w):
|0Dy () |=k
—(B—C ik Bn
< Z e B C)QkZQ’Q(A,B)

k24L1/24
< e B=CMLYHgn (A B).

We can then take a union bound over the at most O(N,(log L)*") bonds adjacent to a vertex in
F' to conclude the proof of Eq. (4.5).

By the logic in Remark 4.12; we also obtain Eq. (4.6) as long as we can show that if v € G",
then f,(y) € GY, or equivalently that for every Dy, there exists a shortest path from ¢ to to
that stays above H. Without loss of generality, assume H is at a half-integer height, and suppose
for contradiction that there is no such path. Then, take a shortest path P, and let u,v be two
consecutive points of P on H which mark a drop of P below H (i.e., in between u, v, P lies strictly
below H). Observe that the region sandwiched between P and the arc of UE(vy) between t1,to is
contained in Dy. Since v € G, UE(y) must be at or above H, and in particular at or above the
line segment uo. Moreover, the arc of P from w to v must be strictly below ww. Hence, %o is in the
sandwiched region, and is therefore in D,. This means that the path P’ which replaces the arc of
P between u and v by @v is in Dy. Since |P’| < |P|, this is a contradiction. |

The above lemma shows we can restrict our attention to a set of “good”  for which we have
cluster expansion on. We will also want to then consider the partition function with respect to
these cluster expansion weights, and it will be convenient to have the partition function sum over
all possible v C @, and not just the “good” ~ from Lemma 4.13. For the same reason as above, this
difference is negligible. That is, for Q, F, A, B as above Theorem 4.8 and for any constant p > 0,
we claim that

_ .7 1/24
Z4 (A, B GF) < e "' Z8 0.1 (A, B), and (4.8)
_71/24
Zg,Q;F,u(A7B ‘ gf’ gl_l) <e o ZEL),Q;F,;L(A? B ’ gLI) : (49)

Indeed, the effect of the area term can only tilt the measure by a factor of O(exp(—(log L)**+?)).
Without the area term however, we reduce to showing that

= _71/24 =

Zyo(A,B|GF) < e™ Z5 (A, B), and

Zh (A B|61.0%) < e 2 (A B | 69,
which were proven above in Eqs. (4.5) and (4.6).

Lemma 4.14. Let v be the disagreement polymer from A to B in the setting above Theorem /.8.
Let Gy be the event that for all b € 7, |0Dy| < (log L)?. Then, wg;p(gg) < e=losD)®  Moreover,
if GY is the event that £, stays above a given horizontal line H above the bottom of Q, then
w6 (05 | G°) < oo 1),
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Proof. By Lemma 4.13, it suffices to upper bound Wé, #(G5,G1). This in turn is upper bounded by

Wé'F (GS | G1), whence we can use Proposition 2.3 for the equality and Eq. (4.8) for the inequality
to write
Z4.q:r1(4, B G5,61)

Z6.ra(A B G1)

Zg,Q;F,l(A7B | gg)

Z6.qira(A B)

e p (G5 | G1) = (1 + o(1)) < (1+o(1))

For a fixed bond b € ), we have
n —cCl 10, 2 n
Z3 01 (A, B | |0Dy] > (log L)?) < e=s L Z8 11 (A, B)

by applying yet another map argument which is a minor modification of the ones in Lemmas 4.11
and 4.13 (in particular, we would apply the map f}, from Lemma 4.13, but use the bound Eq. (4.3)
from Lemma 4.11 since there is an area term). The proof now concludes after taking a union bound
over all b € Q. The case conditioning on G follows similarly as f, preserves the event GY, just
intersect every partition function above with the event GY and use Eq. (4.9) instead of Eq. (4.8).
We record for later use the end result that

n C —C(10; 2 n
73 giri(A B[ G5,G7) < e U878 o p1 (A, B|GY). (4.10)
[

Our last item before the proving the theorem is to provide a bound on partition functions in
terms of the functions ¥(¢, 0), defined as

£3M2
T 2 0) + L O)NE

n

G(0,0) = —75,(0)0 (4.11)

Let § = 1/10. Let Ry, be the set of pairs of points (A’, B') in @ with distance {4 pr < 2k(1—6)N5/3,
angle 64/ p, and horizontal distance M4/ p/. Without loss of generality, assume A’ is to the left of
B'. Finally, let T4 g be the set of points either to the left of the vertical line z = A} + 2(log L)?
or to the right of the vertical line x = B} — 2(log L)?. Fix any u > 0, and define the weights

w'(7) = exp (= &) +322(7) + e Py N Tl + - Ar (7))

where the energy &3 (7) is defined as in Eq. (3.3) with respect to boundary conditions H — n and

H —n—1. The new term e ?|yNT 4 p/| in the weight w"(v) should be thought of as a buffer term
that allows us to switch between different interaction functions Jy7(7y) (see Corollary 4.16). It will
also be important for later use to note that the exact dimensions of @) and F' (in particular, the
choice of a,b above Theorem 4.8) play no role in the following proposition.

Proposition 4.15. Let Z}, p, = Z’YEPZQ(A’,B’) w™(7y). Then, for all k < %5 logy log L, uniformly

over all A', B € R}, we have

Zﬁ/ B < Zk@g‘?(zAl’BlﬁA/’B,)

(log L)2 2k—1

— pC —
where z1 = e , 2k = 2]

Proof. Following [14, Section 5.3], this will be a proof by induction. Let P 4r,p denote the proba-
bility measure on vy given by
622 (7)

Pyp(y) = 22—
Zgs g2 (A, B)

and let ]/E\IA/’B/ denote the expectation. We begin with the base case taking k = 1. Fix A, B’

distance €4/ pr < 2N3/ 3 apart. Let hpax(y) be the maximum height reached by v with respect to
the line segment A’B’. By a union bound over Item (i) of Proposition 3.15, we obtain

P ar p (hinax(7) 2 §) < CM g e 0N Mari) (4.12)
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By an easy Peierls argument mapping v to a minimal length path from A’ to B’, we also have
Py > 20a p +j) < e F=C),

Now, by Cauchy—-Schwarz, we write

ZZ/,B’ — ZZ2 ZQ(A B’ )EA’ B |:(3Nn-AF( )+6_5|’YQTA/,B/:|
~ ~ 2p ~ _
< Z%Z 2o (AlvB/)EA’,B’ |:6Nn AF('Y):| EA/,B’ |:e26 ﬁ'YﬂTA/’B/|:| .
By the fact that Ap(y) < 7] (Amax(¥) A 1/S(log L)), we have

N 27“ -~ hmax(’Y)
EA’,B’ [eN"AF(’Y):| < EA/,B’ |:€'yo(1)]l| |>5N2/3] + EA/ B/ |:6N1/3 ] )

The first term on the right can then be bounded by a constant by the tail bound on |y|. The second
term can be bounded by CMI{?B, by the tail bound on Ampax(7y)-

Similarly, the tail bound on |y N T4/ p/| given by Item (i) of Proposition 3.15 implies that
EA@B/ [626_5|70$A/7B/|] < ecllog L)?, Moreover, by Item (ii) of Proposition 3.15, we have

7m, 22 (A, BY) < Com s Oar.)latr |

Putting the above together implies the claim for £ = 1.

Now we show the induction step. Let (A’, B') € Rg4+1. Let b(y) be the first horizontal bond
where UE(y) hits the middle vertical line between A" and B’. Let C' = (C4, C2) be the left endpoint
of b(v). Define ACy = Cy — A2;B2, and first consider the case where |[AC| > N,i/?’(log L)%, We
have

A AR (e P IyNT 41 |

Zio p(IACa| 2 NI (10g L)) = Zg 52 (A B)Bar sy |1y st 1 150

Hence, by another application of Cauchy-Schwarz, it suffices to bound the P Ar,p probability that
|ACy| > N,1L/3(log L)3 which is at most e8¢ L)*" by Eq. (4.12). Hence, we altogether have

73 5 (|AGs| > N3 (log L)) < e~ Oat 50t 1 =clox L) (4.13)
For the case that |ACy| < N,%/‘g(log L)**, we recall the event Dy,y from Lemma 4.11 where we
have (noting Remark 4.12)
Z}r 5 (D) = 0, |ACs| < Ny/*(log L)**) > (1 - 5) Z% 5 (|ACs| < N/ (log L)*).
On the event Dy(,) = (), we can split up v = 71 o 2 as the segments of v before and after C. Write
Ar(7) = A% + Ap(m1) + Ar(m2),

where Ap (1) is the signed area above v; w.r.t. the line segment A’C'; Ap(72) is the signed area
above 72 w.r.t. the line segment CB’, and A% is the signed area of the triangle A’C'B’ intersected
with F (signed negative when C is above A’B’). Note that |A%| < EA/ B ACy| cos(04r, /). Now,
define the correction term

AT72(71,72) = JTz2 (1) + Tz2(72) — T2(7) . (4.14)

By the decay properties of ® in Definition 3.1, we have that [AJz2(y1,72)| < e~ =y N Top|
Hence, we have the bound

Z% 15/(Dyyy = 0,]ACs| < NM3(log L)**) < > eF ME L (4 )™ ()
7:|ACQ\§N,1/3(log L)3a
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Since both (A’, C) and (C, B’) are in Ry, by the induction hypothesis, the above display is bounded
by

‘€A' ! n n
Z]% Z exp <M2]V:B |ACQ|COS(6A/,B/) +g,u (EA’,CHBA’,C') +{§“ ([C’B/’907B/)> .
|ACH|<N/3(log L)3a "

By a Taylor expansion in 6 followed by a Gaussian summation and the convexity of 73, (see
[14, Prop. 5.11] for details), this is in turn bounded above by

C(ﬁ) ng exp(gg(EA/’B/, 914/73/))

for some constant C'(3). In total, we have proved that

Z p (|ACs| < NyP(log L)**) < (14 e)C(B)y/ L 27 exp(F (€, 0.0, 51))
which together with Eq. (4.13), after increasing the constant ¢ in the definition of z; to absorb the
C(B)+/lar pr term above, concludes the induction step. |
Corollary 4.16. For any A', B in Q, we have
Zg?,ZZ;F,u(A/’ B) = Z qTZlQ;Fw(w < exp(9) (Lo, 04, ) + O((log L)*)).
vEPq(A’,B’)

Let W be any region containing the infinite vertical strip between the lines v = Ay + (log L)* and
x = B} —(log L)?. The same bound holds if we replace the weight qg%F’#(’y) with qiy.p ,(7), or with

exp (— &5 (7) + NL-AF('Y) + Tw (7) = ATw (7, Yieft))

uniformly over all e € Po(A, A"), with AJw (7, Viefe) defined as in Eq. (4.14).

Proof. Note that because of the decay properties of the interaction terms, switching the weights from
J22(7) to Jw(y) or to Tw(7) — AJw (7, Vieft) comes with a factor of at most e~ =) |y N T 4 pil.
Thus, the corollary follows from Proposition 4.15 at k = 1%5logylog L and the trivial bound

Q C 72 |
We are now finally ready to prove Theorem 4.8.

Proof of Theorem /.8. For simplicity, we may assume that in the construction of @ we have A’ = A
and B’ = B, as the shift by (log L)? is negligible compared to the margin of error provided in the
proof of the theorem. Define the event 4 as the event that £, intersects the line x = 0 at a point
higher than X = (0,Y + o(log L) + (log L)?) (recall the definitions of Y, o from Eq. (4.1)). Recall

the goal of the theorem is to upper bound wéQ’Q(ﬂ). Since 4 is a decreasing event in ¢, by FKG we
have WELQ(il) < wé; (&0). Then by FKG again we can condition on the decreasing event G“ that
£, stays above a horizontal line H distanced 2(log L)? above the highest point on the bottom of
@, so that ﬂg;F(ﬂ) < ﬂé;F(ﬂ | GY).

By Lemmas 4.13 and 4.14, we have Wg;F(gf | GY) < e~eL'** and wé;F(gg | GY) < e—cllogL)? e
are then left with ﬂé;F(ﬂ, G1,G2 | GY), which we upper bound by W%;F(ﬂ | G1,G2,G"). Since we are

now conditioning on the event Gi, and also since £ and hence 4, G can be read from ~, we can
use Proposition 2.3 to write the above as the ratio

Z&aQZFyl(A’ B | u’ g17 gQa gl_l)
ngQ;F,l(A” B ’ gl7 g27 gl_l)
We first upper bound the numerator of Eq. (4.15). Let S be an infinite vertical strip with sides

containing the sides of Q). Let W be the extension of @ to S at the top and bottom of Q. (As we
will see, the exact choice of S and point of extension are irrelevant.) We show we can move from Q

ﬂé;F<u 1 G1,G2,G") = (1 +0(1))

(4.15)
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interactions to W interactions. Indeed, G; implies v stays a distance (log L)? from the top of Q (as
such an excursion would force 7 to have length 3N72L/ 3 (log L)*, coming from 2N721/ 3 (log L) vertical
bonds and N,/ 3(log L)® horizontal bonds). Moreover, Go N G- implies v stays distance (log L)?
away from the bottom of (). Hence, by the decay properties of ® and the polynomial bound on the
length of 7, we can replace the weights ¢¢). () with gjj,. 1 (7) at the cost of (1 +0(1)) and then
disregard the events Gi,G" so that
Zg,Q;F,l(Av B | U, 61, Ge, gu) = (1 + 0(1))Z82,W;F,1(A7 B ’ 4,61, Ge, gU) < Zg),W;F,l(Av B | i, g2) :
4.16
Next, let b(y) be the first horizontal bond where UE(y) hits the line x = 0. Let 4 be th(at 2,3
intersects x = 0 above X — (0, (log L)?). Then, for the map f in Lemma 4.11, we have v € £{N Go
implies f(y) € 4N Dy,) = 0, so that Remark 4.12 gives us

Zg,W;F,l(Av B | |8Db(,y)| > 0,44, 92) < 5625,W;F,1(Aa B | Db(,y) = @,g) .
The implies that
Z(?),W;F,l(Av B |4 Go) < Zg,W;F,l(A’ B Db('y) = @,ﬂ) + 6ﬁng,W;F,l(A? B Db(w) = (0,;1)
< (1 + 8/3)ZCT£),W;F,1(A7 B ’ Db(v) = @,Ll) ) (417)

where the first inequality uses the previous display, and the second inequality is because U C 4.
Now let C' = (—3%,C5) be the left endpoint of b(y). Consider the disjoint union { Dy, = 0} NYU =
Y U Yy, where U, 4, additionally intersect with the events that C5 is smaller or bigger than
Y=Y+ 1o (log L)?, respectively.
We first bound Z .1 (A, B | £4;). Let E,, P, be the expectation and probability defined for
the polymer measure with weights q{}v; P and partition function Z&W; F M(A, B). Then, we have

Z8.wra (A, B | 8) = 28 (A, B)Eo[1y, exp(5-Ap(T))]

- 2a n 7n
< CeTon(O)0+0((log L) >\/ZQ7W;F72(A, B)/Z3 (A, B)V/Po(Ly) ,

where the equality is by definition, and then we use Cauchy-Schwarz and Corollary 4.16 at u = 0 to
get the inequality. We can also use Corollary 4.16 to upper bound Z&W; FQ(A, B) and Lemma 3.17

to lower bound 257W(A, B), obtaining
n 7n og )3 oo [)2
Z38 w.ra(A,B)/ 28 (A, B) < eClos ) +0os L7

Moreover, the event 4, implies that v hits the line z = 0 once below Y and once above Y, which
means there are two points on the vertical line distanced 3o (log L)* > C(83, H)er/?’ (log L)3*/? apart.

= /

In the Z7, ,, measure, this has probability e—cln'? by Item (i) of Proposition 3.15. By Lemma 3.18

with Lemmas 3.16 and 3.17 as the inputs, we have the same for our Py measure:

_CN1/3

Po(Uy) <e '

Altogether, we obtain the upper bound

1/3

Z3 w1 (A B | ) < CemTon@femehn™, (4.18)
Next we bound Z&W;FJ(A,B | Uy). We will sum over possible Cy > Y. Let Y =107
be the decomposition of v into components before and after C. Note that this decomposition is
now well-defined because we are on the event Dy,) = (). Note also that even though C' is not
necessarily a cut-point, the fact that Dy, = () still implies that the energy naturally decomposes
as 65 (v) = &5(n) + & (12). As in the proof of Proposition 4.15, we will need the correction term

AJw (v1,72) =Iw(n) + Iw () —Iw(yoe).
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We can also write Ap(y) = A% + Ap(11) + Ar(12), where Ap(71) is the signed area above 1 with
respect to the line segment AC, Ap(72) is defined analogously with respect to CB, and A% is the
signed area of the triangle AC'B intersected with F' (signed as positive when C' is below AB and
negative when C' is above it). We obtain

A A
Zow.ra(A, B ihy) < Z Z eNn e~ 65 () Iw (1) + Apm) e~ (02) 3w (12)=AJw (v1.72)+ Axfiol
y>Y v Ca=y
1 0
_. A &5 () +Iw (1) + x5 Ar (1)
=) emir 3 e o Zry-
y<Y mn:Ce=y

But now we can apply Corollary 4.16 twice to bound the above by

a 1
Clog 1) 3 e <FA% + 9 (Cac, 0ac) + % (Lon.bcp) )

y<y

We can further decompose this sum into ¥ + g, where ¥; sums over values of y > N, 13 (log L)3®

and Yo sums over the remaining values of Nn/ (log L)3“ >y > Y. The case of Y1 is easy to bound
since we have a large negative signed area from .A%. Indeed, by definition we have

GH0,0) = —75,,(0)C + O((log L)**) . (4.19)
However, the area term is N%LA% < —c(log L)** for some ¢ > 0, using here that b > 3a so that the

triangle AC'B is contained in F' when y = N}/g (log L)3¢. Hence, by the convexity of 7 in Item (iii)
of Proposition 3.12, and Eq. (4.19), we have

Y1 < exp(—T75.,(0)¢ — c(log L)**) = exp(%;*(¢,0) — c(log L)**) . (4.20)
To bound 9, we wish to do a Taylor expansion on the angles in all the surface tension terms.

Through such a computation, combined with the fact that A% = 1N 2/ 3(log L)%y (since in this
regime of y, the triangle AC'B is contained in F') and £ cos(f) = Ny, 2/% (log L)%, we eventually obtain

gn _y=v)?
Sy < (14 o(1))e“'(¢0) 3 e T (4.21)
velV,Ny/* (log L))
where we recall the definitions of Y and o in Eq. (4.1). (See the computations leading up to

[14, Eq. 5.11], where the same computation was done, for details. A further elaboration of the
steps there can be found in, e.g., [22, Sec. 3.1].) We can now interpret the sum as the probability

that a Gaussian with mean Y and variance o2 lies in the interval [Y, N3 (log L)3%]. Recall we have
defined ¥ =Y + $o(log L)?, so that this probability is exp(—c(log L)?*) for some ¢ > 0, resulting
in the upper bound
¥y < exp(471(¢,0) — c(log L)?*) . (4.22)

Combining Eqs. (4.16) to (4.18), (4.20) and (4.22), we obtain as our final upper bound for the
numerator of Eq. (4.15)

Z3 o.r1(A B U, Ga) < exp(9]*(¢,0) — ¢ (log L)%, (4.23)

We now turn to getting a lower bound for the denominator, which we recall is
Z5.0.r1(A, B | G1,G2,G7).

First note that by Egs. (4.9) and (4.10), we have

2 i (A B | G1.62,6%) > (1~ 0(1)) 2 gura (A, B | GV). (4.24)
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The lower bound in [11] consisted mostly of using the proof of [36, Lemma A.6]. We summarize
these ideas together here and show the crucial modification needed in our setting (though for details
that are unchanged, we will refer the reader to [30]). Begin by defining the optimal curve

L (r — Ay)(B1 — )
nepe () = ABW) + o8 s 8 + 77 (8) cod ()

(4.25)

Then, we can take a linear approximation .Z of vy4pt consisting of log L many line segments. This

linear approximation is such that the width of the line segments start at O(Ny N2/ (log L)*) for the
segment containing the middle of vopt, and decreases by a factor of two with each segment going
left /right from there (as was done, e.g., in [36, Lemma A.6]"; we reproduce that argument here for
completeness). Now let T' be any line segment. Denote its endpoints by Ap, By, its length by /7,
its angle by 67, and its horizontal length by Mp. Recall the definition of the cigar shape € (T)
from Definition 3.9. For brevity, define the union of the cigars as

¢ =) ¢

Te?

Note that the cigars are constructed such that all v contained in € are automatically in GY. We can
then lower bound Eq. (4.24) by restricting to polymers which lie inside the union of these cigars,

S ep-EM I +rAr) > Y ep(-850) +Te() + - Ar().
vEPo(A,B)NGY " vePG(A,B)NE "

(4.26)
Now forget about the main area term Ap() for now. The shapes of the cigars imply that we can
ignore interactions between the cigars at a cost of e¢(°8 Ly
by a product of polymer partition functions:

ST exp(=85(7) +3q(7)) = el T Y exp(=&5(vr) + o)

YEPG(A,B)NF TeZ yr€P¢(ry(AT,Br)

. Having done so, we can approximate

(4.27)

—C(log L)? 7n
Te?
Now with the exception of the first and last few cigars close to the sides of @, all of ¢’ (T) will be
distance > (log L)? from 0Q so that
|log Zi} 1) o(Ar, Br) —log Zi iy 72| < o(1).

For the cigars within distance O((log L)?) from the sides of ), we can still switch @Q interactions to

C(log L)?

7?2 interactions at a total cost of another e . By Lemma 3.16, we have

log Z\(@(T),ZQ (AT, BT) Z —Tﬁ,n(GT)BT — % IOg MT .
This implies that
11 Zg 1) o(Ar, Br) > exp(— > m5u(0r)tr — Y §log My — C(log L)) . (4.28)
Te? Te? Te?

The sum of the log My terms will be at most O((log L)?), as there are log L many terms contributing
at most O(log L). Finally, as in [14] we can exchange the sum ), o 7, (07)¢7 by an integral at

9The proof of [36, Lemma A.6] refers to [17, Thm. 4.16]. The upper bound stated in that theorem was later found
to be erroneous, but only the lower bound is required for that proof.
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a cost of O(log L) (it will be a constant cost for each T), resulting in the bound

exp < = > 1a0r)lr — Y Clog MT> > exp < — /7 75.0(05)ds — O((log L)2)) . (4.29)

Te? Te?
To summarize, by combining Eqgs. (4.27) to (4.29), we get

S -0+ 00) 2 ew (= [ (s —0(os 1)
YEPQ(A,B)NE Yopt

Now to handle the area term N%;AF(V) which we removed from the above analysis, note that for
every v C €, we have

Ar(7) = Ar(Yopt) + O(N23(log L)*(N2/3(log L))/?(log L)?) = Ar(Yopt) + O(Ny (log L)3/2+2) .
Thus, we get

A o A (Yopt)
S exp (=& () +Tg)+ ;(7))>e<10g”3 TR exp (- / 7(05)ds—0((log L)?)) .
Y€Po(A,B)NE n Yo

(4.30)

We now use the fact that yopt deviates at most O(N}L/ 3(log L)?® from AB, so since b > 2a it never
leaves the region F'. Thus, it is the same as if Ap(yopt) were defined with no area restriction to F,
and as remarked in [141, Eq (5.17)], we also have

1
— [ r(0ds + 5 Ar () = F(E0) + (1)
Yopt n
We can now plug this into Eq. (4.30) to obtain
* ~ 1 n a
> (=& (NI~ Ar(y) = exp (47(¢,0)+0((log L)****2+(log L)?)) , (4.31)

N,
YEPG(A,B)NE n

which together with Eqgs. (4.24) and (4.26) provides the final lower bound on the denominator.
By combining the lower bound on the denominator in Eq. (4.31) with the upper bound on the
numerator in Eq. (4.23), we obtain that for the choice of @ > 4 (so that the (log L)?* term in

Eq. (4.23) dominates), the fraction in Eq. (4.15) is upper bounded by
Zy q.ra (A, B[ 4,G1, G2, GY)
ngQJ‘_’)l(A’ B ’ gl) g27 gl—’)

for some ¢ > 0. [ |

< exp ( — c(log L)**) (4.32)

4.2. Level-lines contain translated Wulff shapes. In this subsection, we will use Theorem 4.8
to prove Theorem 4.4. The strategy will be to begin with a small Wulff shape, and use Theorem 4.8
to “grow” it to a large Wulff shape (one argues that if a small Wulff shape is present, then w.h.p.
a larger one is also present). The smallest starting Wulff shape we need has diameter < % (see
Remark 4.3). In order to jump-start this growth process, we use the following consequence of the

analysis of [35].

Claim 4.17. For every 0 < € < 1—10 there exists By such that, for every B > Bo, if V is a domain
such that Ay_oy, CV C Ay, then w.h.p., ¢ ~ w0, satisfies the event Eo(A1—26)1.)-

Indeed, in [35, Sec 4.4] the authors argue (as part of the event denoted there Ry _1) that ¢ ~ TI'RL
contains a x-adjacent circuit C' of sites at height at least H — 1 encapsulating Aj_(y_1), where
¢ < Lexp|[—co(Blog L/ loglog L)'/?]. This is obtained inductively, establishing such a circuit C; for
heights j = 0,...,H — 1, each time applying [35, Prop 4.5] (the main growth tool in that work)
to every box Ay at distance at least log? ¢ from the previously found Cj_1; that tool shows the
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@ 4 )

. 4

FIGURE 6. The growth procedure used to prove Proposition 4.19. Left: Fix x such that
the Wulff shape W™(z, ¢,,) (colored blue) is contained in L&, Wi (73.,). We start with the
event &, W"(z,0)) that £, encapsulates W"(x,¢). Middle: By Lemma 4.20, we can grow
this Wulff shape until it reaches a o(L) distance from the boundary. Right: Repeat with all
possible starting x from the left picture to obtain D. We can then start again from the left,
now allowing x such that W™(z, ¢,,) is contained in D, and iterate this process.

existence of a circuit at height at least j and distance at most f from Ay, and “stitching” these
circuits together gives C;j. For the final £y, one chooses ¢’ that may be of order L (still ¢ > L)
yet it can be as large as %L, hence the upper bound on ¢ in our assumptions), and proceeds as
before, yielding a circuit C'y encapsulating A(;_.yz. As this argument is based on applications of the
growth tool on small boxes A, at distance at least log? ¢ from Cj—1 (and in the first iteration 0V'),
all that is needed is to have V'O A(;_.). Thus, in our setting we obtain Cj, for each j > H — 1,
encapsulating A _.yr_j, and finally Cy that encapsulates A _g. .

We will also need the following deterministic fact about the Wulff shape (see e.g., [14, Lemma
3.9] for the proof).

Lemma 4.18. Fiz 6 € [0,7/4] and any T satisfying the properties of Proposition 3.12. Let AB
be a line segment of length d and angle 6 such that A, B are on OW; (7). Recall that wi(7) is the
value of the Wulff functional on OWy (7). Let A(d,0) be the vertical distance between the midpoint
X = A‘FTB and OW1. Then we have that for d < 1,

d?(1 d?
AdLg) - DEQ+O)
16(7(0) + 7"(0)) cos(0)
The next proposition is the key growth result that shows we can go from the Wulff shape to its

translates, to be proven over Lemmas 4.20 to 4.22. (See Fig. 6 for a visualization of the proof.)
Fix 1 < m < log L. Recall the definitions of ¢, and x, ; stated above Theorem 4.4. As a result of

Remark 4.9, we will take b = 15 in what follows, and let én,m =L /(1 — mknp 15).

Proposition 4.19. Let n be any fized integer. Let 1 < m <log L. Let A be any region containing
LL"(ly m, —(m — 1)kp15). Under W[I:rf"*l, given that w.h.p. E,(LL,Wi(T5,,)) holds, then w.h.p.

we have En(LL™ by m+1, —MKn,15)).

For shorthand, define R := LL"({y pm, —(m — 1)kp15). Let W"(z,f) denote the scaled Wulff
shape L¢W(75,,) centered at x. Let ¢, be the largest value before W"(z, () gets within distance

Né/g(log L)? from Re.

Lemma 4.20. Fix x € R and £ such that ¢, < ¢ < {,. Under 7['/1\_{7”71, given that w.h.p.
En(W™(z,0)) holds, then w.h.p. we have E,(W™(x, ly)).

Proof. We show that if £,(W"(z,£)) holds, then w.h.p. so does &,(W"(x, £(1 + L=3/*)). Pick an

angle 6 € [0,7/4]. Let AB be the line segment such that its horizontal distance is Ng/3(log L)?,
AB has angle 0, and A, B lie on the bottom right quarter of W"(x,¢). Assume that B is to the
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right of A. Let R be the rectangle with width N3/3(log L)® and height 2N,2/3(10g L)® such that

A, B are on the sides of R, and the distance from A to the bottom of R is NA/?’(log L)', Let
Z = (Z1, Z3) be the midpoint of A and B. By Lemma 4.7 and the fact that Theorem 4.8 holds for
any () satisfying the conditions in Lemma 4.7, we have that w.h.p. the interior of £,, contains the
point W = (Z1, Ws) where

Ny/*(log L)1°
8(1(0) + 7"(0)) cos(6)

By rescaling the result of Lemma 4.18, we obtain that Z lies a vertical distance of A’ above
OW"(x, /), where

W2 = ZQ - 3 + C(Bv Q)Né/g(log L)15/2 .

4/3
A ppa (N og L) N w1 (75.0) N/ (log L)10 + o)
¢Lcosf ' 16(7(0) + 7" (0))¢L cos(0)3 '
Hence, as long as, say,
w1 (78,n) Nn ~1/4
1—————— > (logL 4.
520N (g £) 11 (433

then W is at a height at least O(Nyll/g(log L)'0=1/4) below OW™(x, £), whereas the enlarged Wulff
shape W"(z,£(1 + L=3/%)) is only distance O(L'/*) below OW™(x,£). Tt is easy to check that
Eq. (4.33) is satisfied by the assumption ¢ > ¢,. By repeating this O(L) times to cover all angles
0 € [0,7/4] and (using symmetry to conclude for other angles), we obtain &, W" (x, £(1 + L=3/4)).
We can then repeat this at most o(L3*log L) times to obtain &, (W"(z,£y)). [

Now we can define (deterministic) sets D} as part of the enlargement/translation procedure. Fix
¢ such that ¢, < ¢ < £,. We start with Df defined as the largest rescaling of W, (73,,) that is
contained in the unit square S. Now given Dj!({), define D}, (¢) as follows. For any ¢ € D} (¢),
define

te = max{t > 1: tWi(18,,) + ¢ C S},
with ¢, = 0 if there is no such ¢. Then, define
Dia(0) = | {tcWi(7s0) + ¢}
¢eDp
Note that by construction, D} (¢) C Dy, (¢) C S for each k£ > 0, and there is no dependence of D

on £. The following lemma showing convergence of the D} (¢) to L™(¢,0) was proved in [11].

Lemma 4.21 ([14, Lemma 6.8]). The sequence D}}({) converges to DY, := L"(¢,0), and the Haus-
dorff distance between D} and DY is bounded by c* for some constant ¢ € (0,1).

We can now apply Lemma 4.20 in the iterative procedure of the D} sets.

Lemma 4.22. Let xy be the center of R. Under 71'1]{1,7”71, given that w.h.p. E,(W™ (0, ¥s,)) holds,

A~

then w.h.p. we have E,(LL™ (L m, —Mkn,15))-

Proof. By definition, we have L(1—(m—1)k, 15)Dg C R. Hence, by adding another factor of y, 15,
we get L(1 —mrp,15)Df C W"™(x0,ls,). We show that with high probability,

En(L(1 = mbin15) DR (522—)) == En(L(1 — msin,15) Dy (152—))) - (4.34)

n
1—mkn,15 1—mkn,15

Indeed, for any W"(z,¢,) C L(1 — mﬁn,15)DZ(H€7’;n%), we can apply Lemma 4.20 to conclude
that

EW(z,0,)) = EW"(x,4s)) .
Suppose that we could grow W"(z,£) to W"(z,/,), defined as the largest scaling of W"(z,()
contained in Ar(1_mp, ,5) as long as E; > £. Then we could apply the above display to all x such
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that W"(z,¢,) C L(1 — mnn715)DZ(1_7£72nJS) to obtain Eq. (4.34). However, it is a-priori possible
that ¢, > ¢,. That is, the additional restriction that we need to consider is that by definition of
L., we can only grow each Wulff shape until we reach distance N%/ 3 (log L)? from 9R°¢. But, since
D} C DL, the ending shape L(1 — mﬁn715)D£+l(£75) is already at a distance Né/s(log L)?

1—m:n,1
away from ¢, so this additional restriction does not change anything. Note also that we only need
to repeat this up to & = O(log L) times to get D} within distance 1/L of D, by the bound given
in Lemma 4.21, which is all that is needed due to the discretization of the lattice. As noted in

Remark 4.9, we can afford this many iterations. |

The observation that LL"(y, 1, —mkn15) C LL" (U m, —Mmky15) together with Lemmas 4.20
and 4.22 concludes the proof of Proposition 4.19. Now we prove the main theorem of this section.

Proof of Theorem /.. First, additionally assume that we have

gn+1(L£n(€n7H_n, —(H —n — 1)/€n,15)) .

We reveal the H — n — 1 level-line in this case. This reveals an interior region that contains
LE”(!%H,”, —(H —n—1)ky,15) with a boundary of sites with height > H —n —1. By monotonicity,
we can drop this boundary condition down to exactly H —n—1. Then, we can apply Proposition 4.19
to conclude that with high probability we have &, (LL"(£y 11 —n, —(H —n)kin15)), which implies the
theorem as én,H_n </l,(14 L*1/2).

It thus suffices to justify the above assumption. We again use monotonicity, this time dropping
the floor to —(H — n — 1). This allows us to control £, the 1-level-line with a floor at 0 by the
1-level-line with a floor at height —(H — n — 1), which is then the same as the (H — n) level-line
when the floor is at 0 and boundary conditions are at height H —n—1. By Proposition 4.19 (whose
application is justified by Claim 4.17 and Remark 4.3) with m = 1, this level-line (and hence
£1) contains Lﬁn(én,g, —kn,15). On this event, we can reveal £;, and by monotonicity drop the
induced > 1 boundary conditions to be equal to 1. Then we can repeat, studying the k level-line,
L, for 2 < k < H — n by dropping the floor to —(H — n — k), and concluding that £; contains

LL™(Ly jy1, —Fkin,15). n

5. UPPER BOUND
Our goal in this section is the following bound on the distance of £,, from the bottom side of Ap,.

Theorem 5.1. In the setting of Theorem 1.1, fit n > 0 and K > 0, let p,(x) be the maximum

vertical distance of £, above a;—i—(%, 0) for —Nn2/3 <zx< Nfb/g, and set a,% > 0 as per Definition 3.20.

Then every weak limit point Y, (t) of the process Y,(t) := Nn_l/gpn(tNﬁ/?’) (t € [-K,K]), as

L — oo, satisfies
Y, =FS,, .

Moreover, for every fized m, every weak limit point (Y, (t))n<m of the processes (Yy,(t))n<m satisfies

(Yn)ngm = ® FScrn .

n<m

Observe that p,(z) is a decreasing function of ¢. Hence, en route to proving Theorem 5.1 in this
section we may apply monotonicity arguments that are decreasing (e.g., decreasing individual floor
constraints or heights of boundary vertices; see Claim A.1).

Let R be the rectangle of size Ng/g(log L)% x 2N§/3(10g L)% centered at the = 0 such that

the bottom side of R is at distance 2N,/ exp(—cpB+/log L/loglog L) above the bottom side of
Ap, for ¢ as in Theorem 4.4. Let A, B be on the sides of R such that the distance from A, B

to the bottom of R is Nyll/g(log L)'6. The dimensions of R and the location of A, B satisfy the



50 JOSEPH CHEN AND EYAL LUBETZKY

2
3

N;? (log L)*

2

N,;? (log L)°

1
N (log L)

FIGURE 7. An instantiation of the domain @ used in the proof of the upper bound on £,,.
The orange line is the lower level-line £,,+1, and the floor (the constraint that ¢, > 0) is
only present in the green region. The two gray points on the boundary mark where the
boundary conditions change from H —n —1 to H — n.

requirements of Lemma 4.7. So, let Q,£ be any domain and boundary condition satisfying the
properties of Lemma 4.7 with respect to this R, A, B (see Fig. 7). By Theorem 4.4 and Lemma 4.7,
for the stochastic domination of a single Y, it suffices to prove Theorem 5.1 where £,, is the H —n
level-line in 75,.

Next, by FKG, we can first remove the floor in some parts of ), and condition on decreasing
events. Let F' be the portion of ) below the line y = 2N71L/3(log L)', Let G be the event that £,

stays above the horizontal line A distance 2(log L)? above the highest point on the bottom side of

Q. Then, ﬂ'é - W%;F(' | GY). Note that the distance between H and the bottom of Ay, is o(N%/g),
and goes to 0 under the rescaling of Y,,. For simplicity, in the rest of this section we will refer to
the y-coordinate of H as 0, and use “height” to denote the vertical distance of a point above H (as
opposed to referencing ¢ as a height function).

From here, we can follow the same preliminary steps done in the proof of Theorem 4.8 to move
to a polymer model. By Lemma 4.13, we can condition further on the event G; defined there, which
says that we have the cluster expansion form of the measure given by Proposition 2.3. That is,
(recalling Eq. (3.4) and the notation in Eq. (4.2)) we have

Ar(7)
Ny

rlr16.01) xoxp (= 850) + 26 43000 = (). (5.1)
Hence, by Eq. (4.9) we can now move to the polymer model with weights a0, F,1(7) and partition
function

Zg,Q;F,l(‘LL B ‘ gu) = Z qa;F,l(fY)'
v€Pqo(A,B)NG-

Recalling the animal decomposition from Definition 3.3 and the notational comment following
it, we extend the above definitions to weights and sums over animals I'. Now define W as “@Q with
no top or bottom”, i.e. the extension of () to an infinite vertical strip containing it at the top and
bottom sides of Q. (Both the choice of the strip and exact point of extension are irrelevant.) By
the event G and the construction of Q, we first argue that except for a bad set of v making up a
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o(1) fraction of Z 5.1 (- | GY) and of Z§ vy 1o, (- | GY), we have

40,r1(7) = (1 +o(1)aw.p1 (7)),

and we can instead study the polymer model with weights gy, and partition function ZowiF1 (-]
GY). By the decay properties of J, it suffices to show that ~ stays distance at least (log L)? away
from the top and bottom of @), besides an exceptional set of . If v approaches the top of @) then
it must have length greater than 1.1N71L/ 3(log L)', which can be ruled out via a Peierls argument
mapping to a minimal length path from A to B. In particular, the distance from ~ to the top of Q
is at least (log L)?. Regarding interactions with the bottom of @, in the proof of Lemma 4.14 (see
Eq. (4.10)) it is shown that

Za,Q;F,l(AaB | Iileaiic‘an‘ < (10gL)2 7gl_l) > (1 - 0(1))25,Q;F,1(A73 ‘ gl_’)’

and the same proof also holds when replacing the interaction domain with W. For = in the left
side of the inequality, the distance between ~ and the bottom side of Q is at least (log L)

Random walk preliminaries and notation. Let P denote the polymer measure on I' with
weight gfj,. -1 and partition function Zf) . 21 (4, B), so our starting point is P(- | GY). First observe
that in Eq. (5.1), we could have replaced Ap(y) with —|D; N F|, the area below «y intersected with
F', by just a renormalization which does not change the measure P (in fact we only started with
Apr(7) to keep the same notation as Section 4). Now define A%(F) as the area of the region below
the linear interpolation of the cone-points of I' intersected with F. Similarly for an irreducible
component ' between cone-points u, v, we define A%(F(i)) as the area below uv intersected with
F. In Lemma 5.2 and Remark 5.3, we show that except for a bad set of I occurring with P(- | GY)-
probability o(1), we can replace |D; N F| with |Aﬁ(F)| at the multiplicative cost of (1 + o(1)) to
the weight of T'. We will make this change and call the new measures P and P(- | GY).

Now observe that every diamond in T' is fully contained in W, and hence Jy (T'?)) = J,2(T®)
for irreducible components '), For P, recall from Proposition 3.19 that, after renormalizing the

. hn (B—A)
weights by e (1,0
P"(Lo) (F(i))e_%nA%(F(l>). By the product structure of the weights (Eq. (3.7)), this implies that the
law of I' in between any two cone-points u,v is an area tilted random walk bridge with increments
taking values in the set of irreducible components, independent of the portion of I" before u and
after v. This random walk measure will be denoted by Py (T") := P(T' | u,v € Cpts(I')), where it
is implicit that the measure is on the restriction of I' in between u and v. It will be useful also to
define the one ended random walk measure P, that starts at u, so that Py, = Py(- | v € Cpts(I')).
We can also define the above notation for the case when there is no area term, replacing P by P.

Finally, the notation for the expectation with respect to the above measures will be to replace P
with E.

, every irreducible component I'™ in I has weight given by the probability

Proof strategy. The strategy for proving Theorem 5.1 is as follows:

Step 1: We show in Lemma 5.2 that w.h.p. we have the event Bdd, informally stating that the
first and last cone-points of I' are not far away from A and B, and the maximum distance between
any adjacent cone-points of I' is suitably small. This moreover allows us to modify the area tilt
so that it only depends on the cone-points of I'; and not the full path. Calling the first and last
cone-points A’, B', we move to the measure P p/(- | G-, Bdd) for the next step.

Step 2: We next show in Lemma 5.4 that w.h.p. in the first and last quadrant of the interval

[A], B]], we can find points with height at most 1000]\7}/3. Denoting these points i, v, we proceed
to the next step with the measure P, (- | G-, Bdd).
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Step 3: Moving inwards, we show in Lemma 5.8 that for any ¢ > 0, with probability 1 — ¢,
the cone-points with x-coordinates —(loglog L)Ng/3 and (loglog L)Ng/?’, call them ©’,V/, are at
height at most Kaan/ ®. Calling these points i, V/, we move to the next step with the measure
Pu’,v’(' | gu7 de)

Step 4: In Lemma 5.12 we show that with high probability, we have the event Repel that Cpts(I")
stays above N? in the interval J that is N8 away from the endpoints @’ and v/. Call the first and
last cone-points in J by u”,v" and consider the measure Pgr v (- | G-, Bdd, Repel). Since BddNRepel
implies G“, the conditioning on G“ can be removed. The resulting measure Pgr v (- | Bdd, Repel) is
such that the marginal on Cpts(I") is a 2D area-tilted random walk, as (recalling also Remark 5.3)
we have removed everything not measurable with respect to Cpts(I'). The convergence of such a
random walk to the Ferrari-Spohn diffusion was proven in [25].

Reducing to a 2D RW with an area-tilt. We begin with establishing the boundedness of
irreducible components.

Lemma 5.2. Let Bdd be the set of ' such that |Cpts(T')| > 2, and the mazimum displacement
max; (| X (D), | X (@TE)|, | X (D)) is no more than (log L)*°. Then,

f)(dec ‘ gu) < efc(logL)E’O’

or equivalently,

N . —e(loe LY —n
Z3 w.ra(Bdd® [ GY) <e (log L) Z8wir1(G7).

Proof. Since the area tilt can change the weight of events by at most a factor of e(l°8 L)41, it suffices
to prove the bounds with respect to Zgw and weights gjj, (i.e. having removed the area term). By
Lemma 3.11 we can assume we have cone-points. Now by construction of @), all diamonds of I" are
entirely contained in W, whence a{}V(F(i)) = qp (T@). Ignoring the event GY by an upper bound,
we can thus write

25 w(A,B | 1X(TWH)] > (log L), |Cpts(T

g
< > > @wah) > @w(r®) > quz

ue€Y*(A)  TWeANPy(Au) IR eARNPq (v,B) k>1
veY™(B) rMo..r®Fep 2(u,v)
| A—u|>(log L)%°

= Z Z NI/ZV(F(L)) qw (T (R)) Z2Z2( v).

ueY*(A)  TMOeANPo(Au) I (R) eARNPo (v, B)
vey™ (B)
| A—u|>(log L)5°
Fixing u, every I'F) € Pg(A,u) has length at least |A — u|, so by Proposition 3.19 we have
Z %(F(L)) S 06_y96|A_u|6_TB,n(A_U) ’
FOEANPG(A.u)

with an analogous bound for T'®). Thus, using that Egg z2(u,v) < e~ .n(v=%) and the convexity of
the surface tension (Item (iii) in Proposition 3.12), we obtain an upper bound of

Z8 w(A, B X (TW)| > (log L)*,|Cpts(I)| > 2,GY)

< Ce_Tﬂ’"(B_A) Z e—VgB|A—u\ Z e—ug,3|B—v| ]

ueY4(A) veY™(B)
| A—u|>(log L)5°
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The number of points u such that |[A — u| = r is O(r), so that the sum over u is bounded by

14
~ % Bl1og 1)

e . By the same logic, the sum over v is bounded by a constant. Hence, we have

50

Z5w(A, B |X(T1)] > (log L), |Cpts(T)| = 2,G) < Ce™ 2 #10h ™ emmn(B=4)
S Ceic/j(log L)SO A£2722 (A7 B)
< CemPlos D™ 71 | (A, B),

where we used Item (ii) of Proposition 3.15 in the second line and Lemmas 3.16 and 3.17 in the
third.

The proof that the irreducible components | X (I'¥)| have the same bound follows similarly, so
the details are omitted. The lemma now concludes by a union bound. |

Remark 5.3. Given T, let S be the linear interpolation of Cpts(I'). On the event Bdd, the area in
between I' and S between two cone-points of T is at most O(log L)*°. There are (deterministically)

at most Ng/ 3(log L)?5 cone-points, so the total difference in area between I' and S is at most
O(N3/3(log L)™). After dividing this area by N, this is o(1). Hence, as commented in the

preliminaries of this section, we can change the area tilt term in Eq. (5.1) to —A%(F) /Ny, at the
cost of a multiplicative (1 + o(1)).

Next, we show that I will drop to height O(Ni/ 3). For an easier read of the proof, we leave the
dimensions in terms of a, b but our application is for a = 25 and b = 16.

Lemma 5.4. Fiz a,b > 0 such that a > 3b/2, let I := [[—%Ng/?’(logL)“,—%Ns/?’(logL)“]], and
let u,v be such that u; < vi are within an additive (log L)%°-term of the two endpoints of I, and
Ug, Vo € N71L/3(10g L)+ (log L)?°. Let Drop be the event that there exist cone-points of I in first and
last quarters of I which lie below height KN%B. Then for some constant K > 0,

Pu,v(DI'Op ’ gl_l’ de) >1-— e—c(logL)a )

Proof. Roughly, the sought bound is achieved by forcing the 2D random walks to proceed as follows:

e In the two intervals of length Ng/3/(log L)? closest to u,v, drop by height N%/S/(log L)Y/2.

3b/2 /3

This is repeated up to (log L) times from each side so the height drops to at most %Nﬁ

e Not exceed height K erL/ 3 throughout the remaining middle interval.

We will argue that the probability cost associated to these two items in a random walk with no
area-tilt is exp[—c(log L)%*/?] and exp|[—c(log L)?] respectively, whereas the associated area of such
I’ has .A%,(F) = O((log L)3*/2? + (log L)*)N,,), giving a term of the same order as above in the
probability.

By a union bound, we may as well assume that Drop only refers to the existence of such a
cone-point in the first quarter of I. Isolating the area term, we have

1
Byyle %M1, o | GY, Bdd]

P (Drop® | G“,Bdd) = .
By e 540 | gu Bdd]

On the event Drop® N Bdd, we know that I lies above height KNy/3 — (log L)* =: K'N,/? over an
interval of length N,2L/3(log L)*/4. Thus, we have A%(F) > K'(log L)*N,, /4, whence

Euyfe ®AP0) | gY Bdd] < e K08 1)/4

u,v
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FIGURE 8. The dropping points z/) and target balls B; around them in proving Lemma 5.4.
We lower bound the probability that I" : u — v hits each target ball along the way. Between
w*) and v(m/)7 the size of the balls decreases in order. It is now rare for a random walk
started from the orange ball around w*) to hit the much smaller blue ball around v(™).
Controlling this probability is easier if this transition occurs away from the bottom, hence
we first climb back up to height N}/S(log L).

It suffices to now show the key lower bound, which captures the dropping behavior of I" to the
equilibrium height of O(N,l/ 3):

A~

1 * a
Euyfe A7 D) | U Bdd] > e (o D), (5.2)
whence we can take K’ > 8¢* to conclude.

To prove this lower bound, we break I into three intervals I = I U Iy U I3 such that |I;| =
|I3| = N,%/g(log L)3*/2. Let Low be the event that the maximum height of the cone-points of I' in
the interval I is at most KN%/?’. Then, on Bdd N Low, the maximum height of I' in I is at most
KNM3 4 (log L)*°, in which case

ARD) 1

<
Nnp 7 Ny

N3(log L)b(|1 11| + | 13]) + ]%KN;/3|12| < (log L)*/? + C'K (log L)* .
Hence,

EUN[e—N%LA%(F) | G, Bdd] > e—(logL)3b/2—C’K(logL)aIf)UN(LOW | Bdd, G")
— ¢~ (g L)*/?=C'K(log L)* B (Low | Bdd, G, v € Cpts(T))

As long as a > 3b/2, the (log L)* term dominates the prefactor, which is in the form of the desired
lower bound in Eq. (5.2). It now remains to prove a lower bound of the same form for the probability.
We trivially have

P, (Low | Bdd,G",v € Cpts(T")) > P, (Low,G",v € Cpts(T') | Bdd) .

First, let G~ be the event that the minimum height of any cone-point of I is at least (log L).
Then, Bdd N GY c GY, so that

P, (Low,G",v € Cpts(T') | Bdd) > P, (Low, G, v € Cpts(T') | Bdd) .

By this move, we have reduced to a situation where all the events in question are measurable
with respect to Cpts(I'). Hence, we can turn to the marginal on Cpts(I"), which has the law of a

2D random walk with increment law P(z,y) = P10y (X(T) = (z,y) | |(z,y)| < (log L)*°). Let S
denote this random walk started at u when the measure referred to is Py (- | Bdd).
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Let
m := | (log L)3b/2 _ %(log L)b/2j , m' :=[(log L)3b/2 — (log L)b/2+1J ’

and define the points
ul) = (u1 + jN23(log L)%, ug — jN3(log L)~ ) (j=0,...,m),
v — (vl—jNg/g(logL) v2—jN1/3 (log L)~ ) (j=0,....,m),

so that, recalling |uy — Nfll/s(logL)b| < (log L)?, we have |u2 ™) KN1/3| = O(N, 71/3(10gL)_b/2))
(accounting for integer rounding in m), and similarly ]v2 ™) _ NY o gL| = (N%/?’(log L)~b/2)).
Further set
k= |(log L)* — (m+m/)(log )" = [log L — 51 , K = |(log L)* — (m+m')(log L) "] 1,
and define the points
o g ) J=1 ik,
W =
(™ + J LN L™+ G = RINA®) G =k 1R

so that the jump from w*) to v(™) is such that
(NZB] <™ W) < 9| N23).

We will control the probability that in time m + m’ + k’ + 1, the random walk S passes through
appropriately sized balls around the points u@ wl) v as illustrated in Fig. 8. That is, S will
first drop down along the points u) during the interval I;, then remain low at the points w(/)
along the interval I, and finally climb back up to v along the points vU) along the interval I3. We
defined separately the above points as u,w, v for ease of definitions and an emphasis on the above
geometric description, but it will be convenient now to just define one sequence of points z\9) such

that ‘
ul@) for0<j<m

2 = L wl-m) form<j<m-+FkK
VA R0 form K < j<m4+m + kK +1.
Now along this sequence, for 1 < j < m+m/+k +1, define a = E"(1.0) [X(T)1 | |X(T)] < (log L)),
the expectation in the z-coordinate of an increment. (The expectation in the y-coordinate is 0 by
the symmetry of the model.) Then define ¢; := é(zgj ) zgj 71)), noting that with the exception
of j = m+ k', we have ¢; < £;;1. Define B; as the ball of radius \/67 centered about zU) in 72,
except when j = m + k' (the index where ¢; > £;11), where we set B; to have radius \/m . For
convenience, define By = z(?). Observe now that for all j we have

79— 20| < /O . (5.3)
Indeed for j # m + k', we have by construction that [z0) — 20| < VG <\/lis1. For j=m+ K,

since we adjusted the radius of B; to be y/¢;11, we directly have [zU) — 20| < | /€,7.
We now show that there exists C' > 0 such that for any j and any zU) e Bj, we have

‘Z(jJrl)_E‘ ) [S( (4j+1) ‘<C\/ J+1- (5.4)

Indeed, we have

By [S(4j41)] = @) + fj+10415§j))
_ GO 10 L0 500

21
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The bound on the z-coordinates in Eq. (5.4) now follows from Eq. (5.3). For the y-coordinates,
7 - < B -2+ T - < 2/

using Eq. (5.3) and the fact that \zgjﬂ) - zgj)] < /Zj11 by the construction of the sequence z(/).
With Eq. (5.4) in hand, we aim to prove the following claim.

Claim 5.5. If we denote, for j =0,....,m+m' + kK,
pi(z,B) == P, (S(ejm € B, S(t)s € (329,320 V1 < €11 | de) ,

then there exists a constant ¢ = ¢(8) > 0 such that for every 0 < j < m+m/+ k' except j = m+k,
we have

m}gnpj(z,BjH)Zc forje{0,....om+m'+K}\{m+k -1}, (5.5)
zebh;
nelgl pj(z,Bj41) > c(log L)™? forj=m+k —1. (5.6)
€8,

Furthermore, we have

min p;(z, {v}) > eN;23(log L) forj=m+m + k. (5.7)
zeb;

Proof of Claim 5.5. By Eq. (5.4) and the local limit theorem for the Z? random walk in [38], there
exists some constant ¢; = ¢1() > 0 such that for every j and every z € B;,
A B.
P, (S(ﬁj.}rl) S Bj—f—l ‘ de) > Cl‘/—H‘ .
Jj+1
Recall that for all j # m + k' — 1 we defined Bj11 to be the ball of radius \/¢;11 about zU+D | For
that exceptional j = m + k" — 1, the radius is \/{j12 = erl/g(log L)7%2 = /l;11(log L)~/2. Thus,
we can infer from the above display that there exists some constant ca = ¢(3) > 0 such that
miBnl?’Z (S(4j41) € Bjt1 | Bdd) > ¢ forall j #m+k —1,
zeb;

and

min P, (S(lmr) € Bmw | Bdd) > ea(log L) ™0

ZEBm+k/71

Similarly, at 7 =m +m/ + £/, we may target the singleton {v} and obtain the lower bound

min  P(S(lyimrr1) = v | Bdd) > © = =

2€B,, 11 Crnpm/ +1/ 41 Ng/?’(log L)~b '

Turning to establish Eq. (5.5) for j # m + k' — 1, it suffices via a union bound to show that, for
every such j and all z € Bj, we have

P,( max [S(t)y — zo| > 325 | Bdd) < ¢2/2.
1<l
Indeed, by construction, for all j and z € B; we have z3 > (K/4)N71L/3 > (K/4)\/tj41 for all j, and
said bound readily holds for our random walk S(-) by Hoeffding’s inequality (for large enough K).
To establish Eq. (5.6), we use that the location of the transition point j = m + k" — 1 was chosen
precisely so that zs would then be suitably large. Namely, as B,,1/—1 is centered at z(mHE' =1 e
have zo = (1 + o(1)) (K — k‘)N,i/?’ =1+ 0(1))N5/3 log L for all z € B,,1x—1. In particular, for the
exceptional j = m + k' — 1 we have by Hoeffding’s inequality (recall £, = Ng/ % for this Jj) that

P,( max [S(t)s — zo| > 225 | Bdd) < L™,
t<ljt1
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Finally, the last inequality holds true also for the final j = m + m/ + &k’ (in which case for all
z € Bj we have zo > (1 — o(l))NT}L/?’(log L)® vs. an interval length ¢; 1 = Ng/g(log L)7), thereby
establishing Eq. (5.7) and concluding the proof of Claim 5.5. |

Equipped with the above claim, we can now apply the Domain Markov property after every ¢;
steps of the random walk, and use the fact that the intersection over j of the events of the form
S(t)2 € [322, 325] imply Low N GY, so that Claim 5.5 obtains that

P, (Low, G, v € Cpts(T') | Bdd)) > emClmtm' K N =2/3 > g=c(log L)*
for some constant ¢ = ¢/() > 0 when a > 3b/2. This completes the proof of Lemma 5.4. [ ]

Remark 5.6. At this point, we have established that (a) w.h.p., when looking at the rectangle
delimiting an interval of length Ng/ 3(log L)* centered on the bottom boundary, the intersection of I'

with its left and right sides, denoted u, vV respectively, is at distance at most K Nﬁ/ ® from the bottom
boundary; (b) the law of I in said rectangle is that of a 2D random walk S(-) (cone-points), with i.i.d.
animal decorations between every two cone-points, started at u and conditioned (i) to hit v, and
(ii) that £,,, a subset of I' stays at nonnegative heights, thereafter tilted by exp(—.A%(F) /Np). The
subtle point is that the marginal on cone-points is not simply a 2D random walk bridge conditioned
to be nonnegative (and tilted by the area): the event that £, is nonnegative is not measurable
w.r.t. the marginal on cone-points, and could potentially have a delicate pinning effects. Further
disruptive is the area term: without random walk estimates, we cannot control the area and rule
out the case where it pushes I' towards the boundary. We wish to rule out these scenarios: indeed,
if this had been a standard random walk, entropic repulsion would repel it to height Ng, where
conditioning on £,, or Cpts(I") being nonnegative is basically the same. The strategy is as follows:

1. Show (in Lemma 5.8) that at +(loglog L)N?L/3 the height of I' is at most K.N2/* with
probability at least 1 — . (This would have followed from [25, §6.6 and Prop. 6.2] if
we had a random walk on cone-points, but the conditioning on nonnegative £, vs. cone-
points precludes that. Also note that the effect of £, vs. cone-point conditioning could
have alternatively been addressed by [27, Proposition 13|, but the area tilt precludes that
approach as well.)

2. Establish (Lemma 5.11) that, without an area term, in the above interval, I" stays above
height N? away from its two endpoints, except with probability O(N,°).

3. Deduce the same (Lemma 5.12) for the area-tilted I by showing that the area term
in the above interval is O((loglog L)%/?).

At the end of these steps, we arrive at a 2D random walk on the interval J (we may restrict attention

AL (D)
Np

to the cone-points), with endpoints at height at most KEN,%/ 3, conditioned to be above N? and
tilted by the area delimited by the random walk (rescaled by 1/N,,).

Thanks to Lemma 5.4, we move to Py (- | G, Bdd) with u; € [—%Ng/g(log L)*, —iN?l/g(log L),
Vi € [%Ng/g(log L)*, %Ni/g(log L)%, and ug, vy < KN%/?’. We next show that we can find two cone-

points o',V at the N3 scale (moving inwards from Ng/?’(log L)*) at height at most O(Né/g).
Define first the event

g(%'pts := {All cone-points of I" have height > 0} .
We start with a tightness result from [25].

Proposition 5.7 ([25, Section 6.6]). For every € > 0, there exists a constant K. > 0 such that
the following holds. For any u,v such that ug,ve < CNTIL/3, and for every fixed vertical line x = m
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in between u,v, the height of (the linear interpolation between points of) S at x = m is at most
KENTlL/3 except with probability ¢ under P, (- | Bdd, gé'pts).

Proof. The measure Py (- | Bdd, Gg,) is exactly an area tilted 2D random walk conditioned to
stay above height 0. This tightness result was shown in [25, Section 6.6], noting Proposition 6.2
there in order to extend the result to scales larger than N,%/ 3 (e.g., applying to the case when
vi —up = O(N3(log 1)?)). m

Lemma 5.8. Let E(K) be the event that at the first cone point after —(loglog L)Ng/g and the last

cone point before (loglog L)Ng/g, the height of v is at most Kan/g. Then, for any € > 0, there
exists a K. such that

PE’V(E(KE) | de,gu) > 1—c¢.

Proof. 1t suffices to prove that under Pggy, the first cone-point after —(loglog L)N,%/ ® has height
<K EN,%/ 3 except with probability €/2. Fix any § < 1/3, and let uL) be the last cone-point of ' such

that ugL) < —(loglog L)NTQL/3 (“to the left” of —(loglog L)Ns/?’) and ugL) < N°O. If there is no such
point, define u®) = @. Similarly, let v(*) be the last cone-point of ' with ng) > —(loglog L)Ng/3
(“to the right” of —(loglog L)NELB) such that véR) < N?. If there is no such point, define v(®) = v,
Then, the law of the cone-points of I' in between u®) and v(®) under the measure P is exactly
the area tilted 2D random walk from u(®) to v(®) conditioned to stay above N? (since the event
G" is implied by the cone-points staying above Ng and Bdd, and hence can be ignored in the

conditioning). We can now conclude by Proposition 5.7 after translating vertically by NZ. |

By Lemma 5.8, we can now move to Py (- | G, Bdd), where 0} = —(loglog L)N,?L/3 + (log L)%,
Vi = (loglog L)Nz/3 + (log L)%, and u), v, < KEN,%/g. Before we can appeal to the convergence
to Ferrari-Spohn shown in [25], we still need to handle the issue of having a floor with respect to
£, vs. a floor with respect to Cpts(I'). Furthermore, we want to show that even though u}, v}, are
potentially lower than O(N'/?), the entropic repulsion will bring the height back to O(N'/?) on an
interval [-TN2/3 TN?/3].

Up until Lemma 5.12, we now forget the area tilt. The next proposition from [27, Proposition
13] deals with the fact that our floor condition is with respect to £,, and not Cpts(I') when there is
no area tilt, capturing that fact that I' quickly repels away from the floor after which point the two
events are essentially the same. The statement in [27] assumed further that u and v are on the floor
at height 0, but as commented after [27, Theorem 3], such repulsion results are only easier when
the end-points are away from the floor. See also the comment before Proposition 6.3 regarding
Ising polymers vs. disagreement polymers.

Proposition 5.9 ([27, Proposition 13]). There exists a constant ¢(3) > 0 such that for all u,v with
ug, vo 2 0,

P'—'N(’Y - H-‘r | gélpts) 2 C(ﬁ) :
In particular, since v C Hy implies £, C H,, we have

PU,V(gu | g(L:lpts) Z C(B) .

In order to show entropic repulsion in the measure pﬁly\_//(‘ | GY,Bdd), we will use the following
random walk estimates from [20], recorded here for convenience.

Theorem 5.10 ([26, Thm 5.1]). Consider the 2D effective random walk S(-). Let 7¢ be the hitting
time of a set G C Z*. There exists a constant C > 0 such that, for every sequence &; that goes to 0
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arbitrarily slowly as £ — oo, and for all u,v € Z such that u/\/z,v/\/z € (0,d),

. ht(u)h™ (v
P(07u)(T(g’v) <TH_. <0 | de) ~ 0(622/2(),

where h™ are positive harmonic (in particular, asymptotically linear) functions.

Applying the above for ¢ = N,%/ 3(log log L), we show entropic repulsion to Ng .

Lemma 5.11. Fiz a constant 0 < § < 1/12, and consider the event Repel that in the interval

J = [—(log logL)N;f/3 + N¥ (loglog L)Nz/3 — N, all cone-points of T' lie above height N?.
Then, there exists C' > 0 such that

Py v (Repel | G2,Bdd) > 1 — ONJ .
Proof of Lemma 5.11. By Proposition 5.9 (and Lemma 5.2) it suffices to prove that
Py v (Repel® | Geyye, Bdd) < C'NJ.

Set ¢ = N2/* (loglog L). Since u), v < K, N3 = o(y/V} —u}), we are in the regime of Theo-
rem 5.10. We follow the computation of [26, Lemma 3.6] (except simpler in our case, as we have

already moved to the setting of the effectlve random walk). We can sum over the first cone-point
z below height ¢° in the interval J and apply random walk estimates, obtaining

ES&
Py v (Repel® | Geys, Bdd) < Z Z /(77 < 00 | GEys, Bdd)
zZ1= 7@4»@86 z2=0
/— 486

_ Z Z TZ<7'V/<7'H < oo | Bdd)

21— 01085 230 (T < m_ < oo | Bdd)

- ZZ”” Z (73 < T < 00 | Bdd)P, (7 < mu_ < oo | Bdd)

Pﬁ (7'\7/ <TH. <0 | de)

Z1 —7@4»@86 z2=0
5_586

< C€3/2+6 E €5 . 65
- 71 =—0}(88 (Zl + £)3/2 (E - 21)3/2
0
1 1
< 200% : z
21%;385 (21 + 02 (1—)32
. 1
< 2003 E —
- 3/2
21 =—0+{89 (Zl + E) /

< 4003004 — 40079

The first two lines follow by a union bound and conditional probability, noting that the event
Ti_ < 0o occurs with probability 1 as the random walk has no drift in the y-coordinate. The
third line follows by the markov property, and the fourth line uses Theorem 5.10. The rest of the
computations are purely algebraic, requiring only that 6 < 1/8. |

We can now add back the area tilt to obtain entropic repulsion in the measure Py v (- | G-, Bdd).
Lemma 5.12. For the event Repel defined in Lemma 5.11,
Py v (Repel | GY,Bdd) > 1 —o(1).
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Proof. We have

R Ap(T) .
Ey [6_ Nn TRepel ‘ gu, de} Ey v’[]lRe el® ‘ gu7 de]
Py v (Repel® | G, Bdd) = — P < ’ P 5.8
w(Repel | )= = — a0 (5:8)
Eywle” No | GY, Bdd| Ey e~ No | GY, Bdd]

The numerator is < CN?J by Lemma 5.11. To lower bound the denominator, we wish to show
that with at least constant probability in 155/7\—,/(' | GY,Bdd), the maximum of T' is at most
O(an/?)\/W), for then we will have a lower bound on the denominator by e—c(loglogL)*/*
which is negligible as eclloglog L)*/2 N,‘i. By Proposition 5.9 again, we can lower bound this
probability under f’a/7\—,/(~ | g(%'pts, Bdd) instead. Yet this is now a 2D random walk whose start and
end-points are of a lower order than the square root of the horizontal distance between them. By

[26, Theorem 5.3], this converges to a Brownian excursion, where the bound on the maximum is a
well known fact. |

Proof of Theorem 5.1. As per Steps 1 to 4 in the strategy outlined at the beginning of this section,
by Lemmas 5.2, 5.4, 5.8 and 5.12, we can move to the measure Py v (- | Repel, G-, Bdd). As noted
in the proof of Lemma 5.12, we can reveal the first and last cone-points @”,v” in .J, and by the
linearity of the cones we have |uf — Th|, [v§ — v4| < N®. On the interval J in between o and v,
the event Repel N Bdd already implies G-, so we have reduced to the measure Pg» g/ (- | Repel, Bdd).
At this point, we have an area-tilted 2D random walk bridge conditioned to stay above height Ng
with increment law P(x,y) = p'io (X(T) = (z,y) | |(z,9)| < (log L)*°), as we have removed every
constraint on I' that is not measurable with respect to Cpts(I'). By the exponential tails on the

increments in Proposition 3.19, changing the increment law to P"C0) (X(T') = (z,y)) only changes

the law of the random walk in total variation by e=¢1°8 L™ Moreover, the endpoints t”,v" satisfy

V! — @/ > TN?3 for a constant T sufficiently large depending on K., and df, v} < KEN,IL/g. In
particular, we have reduced to the starting point of [25, Sec. 6], where it was shown that the area-
tilted 2D random walk bridge above a floor with increment law P'to (X(T') = (x,y)) converges to
FSs, (see [25, Eq. (6.55)]) in the limit L — oo followed by T" — oo.

Thus far we have established that, w.h.p., for every fixed n > 0, the process Y,,(t) is stochastically
dominated by a process Z,,(t) (the 2D random walk with an area-tilt) that weakly converges to FS,,,
as L — oo. Moreover, as the lower level-lines are w.h.p. below the randomly constructed @, the
proof in fact showed that, w.h.p., Y,,(¢) =< Z,(t) conditionally on £ for k > n (and in particular,
conditionally on the rescaled portions of these level-lines, Yj(t) for k& > n). Hence, the stronger
statement concerning the joint law follows from the next elementary fact.

Fact 5.13. Suppose Yi,... Y, Z1,... Zm are R%-valued random variables such that Y, = Z, for
each n. Suppose furthermore that for each n, conditional on {Yy,k > n}, we have Y,, < Z,. Then,

the joint law satisfies (Y1,...Ys) =X (Z1,...,Z,,) where {Z}7"_, are independent with Z,, 4 7.

Note that here we conditioned on the lower level-lines £; for k > n; we cannot condition on
the upper level-lines £ for k& < n (unlike the proof of Theorem 6.1, the matching lower bound for
Theorem 5.1, where we condition on the upper level-lines but cannot condition on the lower ones).

The reason for this is that, in our proof, we construct a rectangle () of height Ng/ 3 surrounding
the typical location of £,,, and while it is positioned so as not to intersect the lower level-line £,,41,
it will impede on the support of £,_1. (The necessity for such a rectangle, as opposed to one of
height (say) N'/3(log L)°, is that the latter entails pinning issues with the top side of @, and the
present tools cannot resolve those when said boundary is random and wiggly.) |

Remark 5.14. In the proof of the convergence of the area-tilted 2D random walk to FS, in
[25, Sec. 6], the initial hypothesis that the height of the endpoints (our uj,v)) is replaced by
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[25, Eq. (6.55)], requiring that they would belong to [CEN%/?), K5N5/3]. Said assumption qualifies
for an application of a coupling tool ([25, Prop. 6.2]). At this stage, both here and in the setting
of [25], the heights of the endpoints could potentially be O(N%/ 3). This is not an issue for their

argument, as the proof of [25, Prop. 6.2] remains valid even without the assumption of the cgan/ 3
lower bound.

Alternatively, it is not difficult to show that one can move from the assumption uf, v < Kger/ 3
to ug,vh € [c‘ENﬁL/?’7 KEN%/S] with probability at least 1 —e. Indeed, it suffices to consider u” (then
applying the same argument to v" by a union bound). Let g5 be the maximum integer such that
uy > g5 with probability at least 1 —e. If liminf; . giNn_l/3 > 0 then u” satisfies the sought
condition (with ¢, as this liminf value). Otherwise, we may apply the same logic to the “last”
cone-point u”’ in the interval of length NZ/3 starting at u” (i.e., the cone-point x with maximizing
x1 — uf out of those with x; — uf < N3/3), looking at the maximum integer h3 such that uf > h
with probability at least 1 —e. If liminfr,_ o A5 Ny /3 S 0, we may use u”’ as our desired endpoint.
It remains to handle the case where uf,uf < SLNA? for 5p = o(1) (for 65, = (g7 V hi)N{l/?’).
For such u”,u”, by [26, Thm. 5.3|, the 2D random walk with no area-tilt converges to a Brownian
excursion. Consequently, we claim that there exists some ¢. such that the cone-points at the

middle of this interval—concretely, take the first cone-point w such that w; —uf > NTQL/ 3 /2—are at

height at least CEN%/ ? with probability at least 1 — . Indeed, we may bound the complement as in
Eq. (5.8): the denominator is uniformly bounded away from zero, e.g., we may bound it from below
by 3 exp(—A) where A is the median of the area of a standard Brownian excursion B; (0 < t < 1),
whereas the numerator is bounded by P(B; /; < ¢€).

6. LOWER BOUND
Our goal in this section is the following bound on the distance of £,, from the bottom side of Ay..

Theorem 6.1. In the setting of Theorem 1.1, fixt n > 0 and K > 0, let p,(x) be the mazimum
vertical distance of £,, above x—i—(%, 0) for —N3/3 <z < N,%/g, and set 02 > 0 as per Definition 3.20.
Then every weak limit point Y, (t) of the process Y,(t) := Nn_l/gpn(tNg/g) (t € [-K,K]), as
L — oo, satisfies

Y, >~ FS,, .

Moreover, for every fized m, every weak limit point (Y, (t))n<m of the processes (Y, (t))n<m satisfies

(Yn)ngm = ® Fsan .

n<m
Since pp () is a decreasing function of ¢, en route to proving Theorem 6.1 in this section we may
apply monotonicity arguments that are increasing (e.g., raising the heights of boundary vertices).
Fix T > K (eventually we will take T" — o0). Let R be the 3TN x Nﬁ/?’(log L) rectangle
centered at x = 0 such that the bottom side of OR coincides with the bottom of 0Aj. Let

A= (—TN,%/g, 0) and B = (TN?L/?’, 0). We start with a simpler analogue of Lemma 4.7, the proof
of which we also postpone to Appendix B.

Lemma 6.2. For R, A, B, as defined above, assume we know that w.h.p. under WRL, all of R lies

in the exterior of £,—1 (for n = 0, there is no assumption). Then, there exists a WRL -measurable
distribution on connected regions @ C R with marked boundary conditions & satisfying Items 1 to 3
below, such that the following holds. If Ay is the area of the interior of £, intersected with Q, and

Ay is the area above the (H —n) level-line in Q under Wé, then Ay C Az w.h.p. under W%L.
(1) Q is simply connected,
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3TN,}

1
N} log L

2T'Ny

FIGURE 9. An instantiation of the domain ) used in the proof of the lower bound oo £,,.
The bottom boundary of @) coincides with the bottom boundary of Ay. The two gray points
on the boundary mark the change in boundary conditions from H —n —1to H — n. In
contrast with Fig. 7, the conditioning on ¢, > 0 is present in all of Q.

(2) dist(0Q,0R) < (log L)?, and the bottom side of OQ coincides with the bottom side of OR,
(8) The boundary conditions & assigns height H —n — 1 on the straight line between A and B,
and H —n on the remainder of 0Q).

Let @, ¢ be any domain and boundary condition satisfying Lemma 6.2 (see Fig. 9). It now suffices
to prove Theorem 6.1 where £,, is the H —n level-line in 7T§2. We start by showing the lower bound
for £9 so that w.h.p. the y-coordinate of £y is O(N&/s) above the interval [—%TNE/?’, %TNIQ/?’].
This justifies the assumption in Lemma 6.2 for n = 1, since Nll/3 < N&/ge_cﬁ\/ log L/ loglog L 1,
Eq. (2.3). We can then prove the lower bound for £, and proceed inductively.

In the rest of this section, we will use “height” to refer to the vertical distance above the bottom
of Ar. Let G™ be the event that £, stays under the horizontal line H at distance 2(log L)? below the
lowest point on the top side of ). Then, ﬂ'g = Wé?( | G"). We can now follow the same preliminary

steps as in Section 5 to move to a polymer model. By Lemma 4.13, we can condition further on
the event G; defined there, so that by Proposition 2.3 (and Eq. (3.4)) we have

. Ag(v) | ~
w0 16760 xemp (= 6500+ 247 4300 ) = o). (6.)
By Eq. (4.9) we can move to the polymer model with weights 4¢).qq and partition function
ZBaeiABIG) = Y ahoi(n)-

YEPQ(A,B)NG™

Forgetting the area term for now, the first step is to control the effect of the interactions with the
bottom of @), effectively eliminating any potential pinning effects. This was shown in the half-space
H in [27] for Ising polymers. However, as mentioned in the end of the introduction there, the proof
is more robust and allows for more complicated geometries in «y (e.g. our connected components of
bonds), and more complicated energies (e.g. our £5(7)), as long as the polymer model in question
features the Ornstein—Zernicke results found in Lemma 3.11 and Proposition 3.19. The particular
structure of the Ising polymer model is only used to show that the increment measure has 1 — g
mass on three basic irreducible components (see [27, Definition 18]), which simplifies the proof of
certain random walk estimates. The same is true for the class of polymer models considered in
this paper, for the same reason that allowed us to transfer the results of [17] in Section 3: the
assumption in Eq. (3.8) that e decays exponentially in S () implies that the lowest energy
disagreement polymers coincide with those of the Ising polymer setting, and the increase in entropy
of other polymers is negligible compared to their energy.
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Proposition 6.3 ([27, Theorem 2|). There exists a constant C () > 0 such that

g2, 12(AB) < 28 (A, B) < C(8) 2%, 12(A.B).

In our setting, we will need the following corollary.
Corollary 6.4. For the above defined Q and endpoints A, B, one has
Z4,0A,B|G") = (1 +0(1)Zg, u, (A B).

Proof. First note that by a simple Peierls argument (mapping the polymer to the straight line
between A, B), we can rule out the event that |y| > 1.1|B — A| regardless of what the domain or
interaction with the boundary. In particular, this implies that

Z5 u (AB|G) =(1+0(1)Z5 (A, B|G),

and by the decay of the ® functions (since by the above Peierls argument we can assume on G'
that v stays (log L)? away from the top and sides of dQ, and the bottom side of dQ coincides with
O0H), we also have

Z3u (A, B|G7) = (1+0(1)Z5o(A B|G).

Combining the last two displays results in
Z4o(AB|G") = (1+0(1))Zi1, u, (A, B|G"). (6.2)
Next, to eliminate the conditioning on G'', we turn to 2ﬁ+ 2 and argue that

i, z2(AB G > (1—0(1)Zy, 52(A,B). (6.3)
Indeed, suppose first that the domain restriction induces only that the cone-points have nonnegative
heights (instead of also forcing all of v to be nonnegative). Then, [20, Theorem 5.3] shows that I
with weight g, and partition function Z7, ,,(A, B | height(Cpts(I')) > 0) converges weakly to a
Brownian excursion upon rescaling, whence the probability of reaching height N,/ 3(log L) is o(1)

by standard estimates on the Brownian excursion. We can then use Proposition 5.9 to translate
the same result to the our setting with a partition function of Zﬁ+ 42, broving Eq. (6.3). We now

deduce the analogue of Eq. (6.3) for interactions in H as opposed to Z?:

Ziy, m, (A, B|G") = (1 - 0(1)) Zji, u, (A, B). (6.4)
Indeed, recall that Lemma 3.18 implies that events that have a probability of o(1) in the measure
associated to Zg y (A, B) also have probability o(1) in the analogue for Zy, 72 (A, B) as long
as the two partition functions are up to a multiplicative constant apart; PropoAsition 6.3 provides
exactly that hypothesis. Since Zjj, y (4, B | G") is a subset of the sum in Ziy, m, (A, B | g,
Eq. (6.4) yields

Ziy, m, (A, B|G") = (1-0(1))Zii, m, (A, B),
which, after combining with Eq. (6.2), completes the proof. |
Proof of Theorem 6.1. First observe that we can replace Ag(y) with —|D1[, the area below 7, in

Eq. (6.1) by just a renormalization. Now we are in the same setting as in [7], and we recall the proof
of [7, Theorems 7.1] to show the necessary adjustments. For convenience, let P&U,P&U denote

the measures on I' associated to Z7};, E‘T}U respectively. For the case of the Ising polymer model
with no area tilt Pﬁ+,H+v the authors prove that w.h.p.,

(1) T’ has a linear length and number of cone-points ([7, Lemma 5.7], also proved here in
Lemma 3.11),
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(2) The left, right, and irreducible components of T have size no more than (log L)? ([7, Lemmas

5.5, 5.8]), and
(3) The cone-points of T stay above height N? in the interval [A; + N2 By — N*9] ([7, Lemma
5.11]).
The proof of the above inputs relied only on results from [27] and the product structure from

the Ornstein—Zernicke theory, both of which we have in our disagreement polymer model, whence

their results translate immediately to our setting in Pﬁ+,H+ for general disagreement polymers.

We can then use Corollary 6.4 (with Lemma 3.18) to obtain that the same results hold w.h.p. in
oo 16M).

To reintroduce the area tilt, we first replace Ag(y) in Eq. (6.1) by —|D1| by just a renormalization,
which does not change the above measures. Then, the same argument leading to Eqs. (6.3) and (6.4)
(i.e., using convergence to Brownian excursion and then Proposition 6.3) proves that for some
constant ¢ = ¢(T) > 0,

. —|D1|/Ny,

Eﬁ+,H+[e | 1|/ ] 2 C.
(See also [7, Claim 7.4] for more details.'’) Again Corollary 6.4 and Lemma 3.18 implies the same
lower bound with respect to Ef) (- | G"). This in turn implies that the events in Items 1 to 3 hold
w.h.p. in PgQ(- | G'), as per a computation analogous to Eq. (5.8). Finally, as in Remark 5.3,
this allows us to replace |D;| with the area below the linear interpolation of the cone-points of T’

at the cost of a multiplicative 1 4 o(1) to the weight.
The consequence of all of the above is that in Pg (- | G™), upon looking at the first and last

cone-points u, v in the interval [A; + N2, B; — N], the law of Cpts(T) in between u, v can be coupled
to an area-tilted 2D random walk bridge conditioned to stay above height Ng, with increment law
given by P(z,y) = P00 (X(T') = (z,y)). The convergence to the Ferrari-Spohn diffusion FS,, in
the limit L — oo followed by T'— oo now follows by [25, Sec. 6].

Thus, we have established that w.h.p., for every fixed n > 0, the process Y,,(t) stochastically
dominates a process Z,(t) (the 2D random walk with an area-tilt) that weakly converges to FS,, .
As noted in the induction below Lemma 6.2, the upper level-lines are w.h.p. above the randomly
constructed @, so the proof in fact shows that w.h.p., Y,,(¢) = Z,(t) conditionally on £ for k < n
(and in particular, conditionally on the rescaled portions of these level-lines, Yy (t) for k& < n). Hence,
the stronger statement concerning the joint law follows from Fact 5.13 (for the other direction of
stochastic domination, which is easily deduced by multiplying the random variables by —1).

Note that this conditioning is in the reverse direction as in the proof of Theorem 5.1, and we
cannot instead condition on the lower level-lines £ for £ > n. Indeed, revealing £,1 reveals a
wiggly boundary at O(Nyll/ 3) with only size (log L)? perturbations, which appears to be no different
from the flat boundary we have in the construction of () at the macroscopic level. However, our
proof relies strongly on the depinning proved in [27], and it is unclear how to extend those results
to the case of a wiggly boundary. |

7. EXTENSION TO ALL |V¢|P MODELS

In this section we prove Theorem 1.5, extending Theorem 1.1 to |V¢|P models for fixed p > 1.

100 ore work had to be done in [7] to show convergence to a Brownian excursion because the 2D random walk there
was not symmetric in the y-coordinate, and hence the authors could not directly apply [26, Theorem 5.3]. Our setting
does feature this symmetry, so we cite [20] for the convergence.
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7.1. Large deviations. The following analogues of Egs. (2.3) to (2.5) for 1 < p < 2 ([35, Thm. 5.1])
and 2 < p < oo ([35, Thm. 5.5]) are known:

~(p) _ _
oo (G0 = h) <exp|— cﬂh(p_l)M} , (7.1)

A (Go=h-1) "
exp [— C1Bhp“} < 7P (¢ =h) <exp | — C2Bhp/\2} : (7.2)
RO (62 = | ¢ =h) Sexp | - cﬁh@—l)“} . (7.3)

As was the case for p = 2, our proof will require a refined version of Eq. (7.3), namely that one
appearing below in Eq. (7.6) below. Let Br(x) be the ball of radius R centered at the site z.

Theorem 7.1. There exists a constant C = C(p) > 0 such that the following holds for any domain
V that contains Br(o0), where R = ChP~! for 1 <p <2 and R = Ch for 2 < p < co. Let z be such
that Bry1(z) C V. Then there exist absolute constants co,c1,c2,cs,ca > 0 such that

%g))@bo = h)

exp [— coﬂh(pfl)/\l} < ~ < exp _ clﬁh(pfl)/\l} , (7.4)
Ty (¢o =h —1) )

exp [— cQﬁhp/\Q] <7 (g, =h) <exp| - c;;Bhp“} , (7.5)

A (02 = h | do=h) < exp [ — el 7] (7.6)

Remark 7.2. In Remark 1.7 we defined the set 2 of exceptional values of L (extending Remark 1.3
for the ZGFF) as thl[[%LhaLh]] where Lj, = [55/%&@)(% = h)]. For this choice, for every h we
have 31 c anp. ) 1 = O(h) = o(log Lj,)—i.e., & has zero logarithmic density—as Eq. (7.5) shows

- 1~(p) - 1 1 (2N 3)
limp, 00 =470 (¢o) = h) = 00. (Precisely, 7 > pesnping 5 = O((logn) 7 7 27) for all p > 1.)

The extensions of the large deviation estimates in Eqs. (7.1) to (7.3) to a general domain V'
containing Br(o0) follow immediately from their proofs in [35], which we summarize below. Looking
at the 1 < p < 2 case, the proof begins by showing that the outermost 1 level-line loop containing
the origin (denoted I'1, not to be confused with the notation for animals used previously) has size
at most ChP~! except with probability e‘ﬁhpil, via a Peierls map argument which holds in any
domain V. Hence we obtain

Claim 7.3 (extending [35, Lem. 5.3]). Suppose ¢, > 1. Let I'y be the outermost 1 level-line loop
surrounding the origin o. There exists a constant C = C(p) > 0 such that for any domain V
containing o,

Py > ChPY | g > h) < e PP

This is used in [35, Lem. 5.4] to show the large deviation rate by comparing to the real-valued
energy minimizer ¢* in a similar (but simpler) strategy as in the p = 2 case. The lower bound of
Eq. (7.2) is established by taking the probability of a single ¢ which is an integer valued approxima-

tion to h¢*, and is supported on Br_1(0), thus holding also on ?r\g)). The upper bound of Eq. (7.2)
was proved by revealing I'; and using monotonicity to set the boundary conditions outside I'; to
0, and hence follows from Claim 7.3. The proof of Eq. (7.1) also uses the same revealing strategy,
combined with a map argument which holds in any domain. Thus, we will have Theorem 7.1 for
1 < p < 2 once we prove the lower bound in Eq. (7.4) (stated as Lemma 7.5) and the conditional
probability bound in Eq. (7.6)'!.

HHere we mention how the proof of Eqs. (7.1) and (7.2) extend to ﬂ/p) for 1 < p < 2; the same is valid for (7.3), but
we will need a stronger version of that inequality (namely, Eq. (7.6)) anyway.
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For the 2 < p < oo case, the lower bound of Eq. (7.2) was again proven by taking a single ¢*
with ¢} = h that has probability at least e~Ph which is already supported on Br(o). Both the
upper bound of Eq. (7.2) and the bound on the ratio of Eq. (7.1) then apply a map argument,
which holds in any domain, together with [35, Claim 5.7], which refers only to the energy of a set
of level-line loops. Thus, Theorem 7.1 for 2 < p < oo will be established upon proving the lower
bound in Eq. (7.4) (stated as Corollary 7.8) and Eq. (7.6). One extra ingredient which will be
needed for this is to bound the effective support of solutions to the large deviation problem (see
Lemma 7.7) in Br(o) where R = Ch for a sufficiently large absolute constant C' > 0.

Remark 7.4. We emphasize that for extending the results of [35] for 2 < p < oo, only the lower

bound of %80)( o = h) requires a restriction on V', which is that it must contain the support of

a particular ¢* defined as ¢*(z) = (h — ||z||1) V 0. In particular, we can take R = v/2h, with no
dependence on 3. Then to prove the additional lower bound on Eq. (7.5) and the bound in Eq. (7.6),
we increase R to some other constant Ch, as needed to capture the outermost 1 level-line loop. If
instead R had the form CBh, then our proof of the upper bound for points near the boundary of V'
in Lemma 7.10 would fail.

Lemma 7.5. Fiz 1 <p <2, and V as in Theorem 7.1. There exists a constant ¢ > 0 such that
forall h > 1,

A2 (¢ = 1)
7P (¢ = h — 1)

> exp [ — c,Bhpfl] i

Remark 7.6. The proof of Lemma 7.5 is valid for all p > 1, though its lower bound of exp[—cBhP~!]
is weaker than the matching upper bounds of exp(—cfh/logh) for p = 2 and exp(—cfSh) for p > 2.

Proof of Lemma 7.5. 1t is easy to see that we have

#7 (min g, < 0] ¢ = h) < 5.

Indeed, by the upper bound of Eq. (7.4), we have that 7?@(% =h)=(1+ 0(1))%&?)(% > h), so
it suffices to prove the bound when the conditioning is instead on ¢, > h. But by FKG, we can
then forget about the conditioning entirely, whence the bound is immediate by a standard Peierls
argument.

Now we can write

%8’)(@, —h-1)<(1 +55)%8’)(¢o =h—1, ming, >0).

On this latter event, we can raise the height of the origin by 1, mapping to the set {¢ : ¢, = h},
and this changes the weight of ¢ by a factor of at most e*f(h"—(h=1)") < e4ﬂphp_1, so that

(9o = h— 1, ming, > 0) < P2 (9, = h). u

We now look to prove the lower bound of Eq. (7.4) for 2 < p < co. For each configuration ¢
with ¢, = h, let T';(¢) for 1 < i < h be the outermost ¢ level-line loop surrounding the origin o,
dropping ¢ from the notation if it is clear from context. For a collection of such loops {I';}, define
the energy of the collection by

(L)) =) AL,

where A, denotes the number of I'; in the collection that contain the dual bond e. Let the weight
of I'; with respect to {I';} be defined as

W) =D Al/A=) AP

eGFi GGFZ'
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(The weight depends on the full collection {I';} and not just I';, but we will omit this from the
notation for simplicity as it will be obvious from the context.) Observe that &({I';}) = >, # ('),
and that |T;| < #/(T).

Lemma 7.7. Fizp>1 and V as in Theorem 7.1. Then, there exists constants C,c > 0 such that
forallh >1,1r > Ch,
AP W (D)) > | ¢ = h) < e (F-O=Ch)

Proof. By a standard Peierls argument (enumerate over the h level-line loops {I';}, where a length-k
loop intersects (say) a horizontal ray from the origin at distance at most k),

(ST} > C1h?, ¢ = h) = e~ (C1/28*
and hence the lower bound on 7 (¢, = h) in Eq. (7.5) implies that
A(EWTY) > C1h? | ¢ = h) = e (1)

provided that C1/2 > co + 1 for ¢ from Eq. (7.5). Hence, we can assume that &({I';}) < C1h?,
whence by pigeonhole principle there exists some I';+ such that #/(I';«) < C1h. Now consider the
map T on the set {¢ : ¢, = h, &({T;}) < C1h?} that takes the collection {I';} in ¢, deletes the
outermost contour I';, and adds a copy of I';». This map preserves the fact that the origin is at
height h. Calling this resulting collection {I';(T'(¢))}, we obtain that

1. #®(1(9))
3 log == = E({TN(T(9))}) — E({Ti(#)}) < =#(T1(9)) + > (Ac+1)P - AP
™y (@) e€lx (¢)

) + Z (A + 1)P71
e€l;x (p)
< ¥ (Ti(¢)) +p2P~'Cih
— —#(T1(8)) + Cah.
Moreover, the multiplicity of this map is such that for any given v in the image of T,

{¢: T(¢) =, # (T1(8)) = k}| < hks",

for some absolute constant s > 0, since given the image 1) we can read off T({I'i(¢)}), and re-
construct {I";(¢)} if we know What i* and I'y are. There are h choices of i*, k choices for the
length |I';| = j < k, and s7 < s* choices of loops of length j which surround the origin. Hence, if
# (1) >r > Ch, we can apply a Peierls argument with this map to obtain that

Y, W=y Y 3 At

P:po=h, k>rpelm(T)  ¢ipo=h,
E({Ti})<C1h2, E({Ti})<C1h?,
W(l1)=>r W (L1)=k,
T(¢)=y
< Z Z /\(p) ﬁ(k—CQh)hk,sk
k>r ¢elm(T)
< e~ (BCa)r=Cahzlo) () (7.8)
Combining Egs. (7.7) and (7.8) concludes the proof. |

The constant C used for R = Ch in Theorem 7.1 should now be taken to be the maximum
between 2C from Lemma 7.7 and the constant needed previously from [35] (which was just to
ensure that the the single ¢ used to lower bound Eq. (7.2) is supported in Br(0)).
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Corollary 7.8. Fix 2 < p < oo and let V be as in Theorem 7.1. There exists a constant ¢ > 0
such that for all h > 1,
7P (0o = h)
A (G0 =h—1)
Proof. By Lemma 7.7, there exists C' such that
70 (g, = h—1) = (14 0(1))7P (¢, = h— 1, #(T')) < Ch).

On the latter event, consider the map 7'(¢) = 1) which raises the interior of I';(¢) by 1. Then, we
have

> exp[— cﬁh] .

—; log W%)(]E)T(@) = Z (Ac+1)P — AP
Ty () e€T1 ()
< p2P 1Y (T1(9)) .
As this map is injective and maps into the set {¢ : ¢, = h}, we obtain
70 (6o = h— 1, #(T1) < Ch) < 7 (95 = h)e P
for C" = p2r~1C. [

Finally, to show the bound on the conditional probability in Eq. (7.6), we begin with a simple
(p) (p)

lemma comparing 7y, to /TFBR(O)'

Lemma 7.9. Let V O Bgr(0) be as in Theorem 7.1. Then, there exists eg — 0 as 3 — oo such that
. jp%”)wo = 1)

TBp(o0) (@0 = 1)

Proof. For any Vi C Vs, it is a straightforward FKG argument (see [35, Eq. 3.14], or the proof of
Lemma 2.8) to show that

< o8l

T (g0 = h) > e~ HVNVeRE) (g > 1y (7.9)

Moreover, by a standard Peierls argument, (see, e.g., the proof of [35, Clm. 3.6]) one obtains that
for any V, h > 0,

A (00> 1) < 7 (60 = h). (7.10)

Combining the above two displays immediately implies the lower bound.

For the upper bound, by Lemma 7.7 it suffices to upper bound %‘(f)(W(Fl) < R, ¢, = h) (noting
the comment about the constants after Lemma 7.7). The event #'(I'y) < R implies |I';| < R,
which in turn implies that there is a chain of sites with height ¢, < 0 contained inside Br(0) which
surrounds the origin, whose length is at most R. By monotonicity, the heights along this chain can
be raised to 0. That is, calling the interior of this chain A, we have argued that

RO (1) <R do=h) <RPW(T1) <SR do2h) < max 70 (¢ > h).

0€ACBR(0)
|OA|<R

The upper bound now follows by applying Eq. (7.9) for V} = A, V5 = Bg, along with Eq. (7.10). W
Proof of Theorem 7.1, Eq. (7.6). With the above lemma in hand (replacing Claim 2.7 from the case

p = 2), the proof follows from the same argument used to establish Eq. (2.8) in Theorem 2.5, with
the only difference that one defines the two events £ and Es for

A= L6§ilh“p%1j

)
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with ¢; > 0 from the upper bound on 57\8’)(@1)0 = h)/%‘(f)(gbo = h —1), now given by (7.4). Note that
for this choice of A we have

ARP=DAL — AP = PG5
As was argued in Eq. (2.9), one can iterate the upper bound of Eq. (7.4) and thereafter apply
Lemma 7.9 to arrive at the analogue here:

7P| ¢ = h) < exp ( —(c1 — 0(1))5Ah<p1>“) .

(NB. We apply Lemma 7.9 for R = ChP=DA whence the term €% from said lemma is absorbed
in the o(1 )—term in the above exponent.) Proceeding as we did below Eq. (2.9), one then has

P (0= h| o =h, By, ES) < (1+ep)e OVTOND = (14 gg)e” ("398,
where the constants here, apart from the p-power of the interaction, were unchanged as we did not
alter the definition of E1 and Fy (but only the definition of A). For the same reason we further get
D@ > h+ Al gy =h, Br, Ey) > (1—cg)e 08

and
exp(—(c1 — o(1)) BARP—DAL)

A (0> h+ Al gy =h, By, By) < T2
Ty, (B2 | ¢o = h, E)

combining to yield

A(p (B2 | ¢o =h, E1) < (14+€5)exp (ﬁ(zl “6PA — (c1 — O(l))h(p_l)/\l>A>

< exp ( — (01/3)6Ah(p_1)/\1) ,
as required. |

Analogously to Lemma 2.8 from the p = 2 case, as a consequence of extending the large deviation
results to an arbitrary domain containing Br(0), we obtain an upper bound on the probability that
¢ > h even for points x close to the boundary.

Lemma 7.10. Fiz 1 <p <2, or 2 <p < o0o. There exists eg — 0 as B — oo such that, for every
V CZ?, x €V, and h sufficiently large compared to 3,

R (60 = h) SRY (90> )10 (7.11)

Proof. Consider first 1 < p < 2. Here we take R = ChP~!. Let V' = V U Br(z). By Eq. (7.9), we
have ,

78 6y > h) > e B2 (6, > 1),
using the fact that OV \ OV’ C Bg(x) so that [0V \ dV'| < mR2. Combining with Lemma 7.9 to

~(p)

compare both 7’ and 7rc(>o) with 7,7 )( ) We obtain that

7P (g, > h) <7D (¢ > h)eoN"

By the lower bound of Eq. (7.5) and the fact as h — oo, h??~2 < hP in the regime 1 < p < 2, we
have that
esg0h2p’2 < %gg) (¢0 > h)o(l) 7

where o(1) is as h — oo. We conclude by combining the above two displays with the translation
~(p)

invariance of o .
For 2 < p < 0o, we can apply the same logic as above with R = C'h to obtain that

R (60 2 1) <D0 > W
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In this case, the error term is of the same order as the large deviation with respect to h (both are
exp[O(h?)]). We instead use the €5 term to ensure that the error is sufficiently small. That is, by
the lower bound of Eq. (7.5) for 2 < p < oo, we have

eEﬁCh2 S %(()g) (Qso Z h)Eﬁ ,

and the proof concludes by the translation invariance of %5};). |

We now have all the tools needed to prove the crucial bound on the probability of having a floor
(analogous to Lemma 2.9), which results in the area term in the cluster expansion. Recall the
definition of H®) in Eq. (1.8).

Lemma 7.11. Fix 1 <p<2or2<p<oo. Fiz0<d< % andn >0, let V C Z? be a connected
region, let F C V be a subset satisfying |F| < L(log L)*° and |0F| = O(L'~°), and set h = H®) —n,
Then, for B sufficiently large,

AP (60 = ~h, Vo € F) = (14 o(1)) exp ( 7 (0, < ~N)|F]) .

Proof. The proof follows exactly as in Lemma 2.9, only plugging in the estimates above when
needed. We summarize the crucial relationships between the exponents in Theorem 7.1 for the
reader’s convenience.

To lower bound the left hand side, we firstly need that the exponent in (the lower bound of)
Eq. (7.4) is of a smaller order than in Eq. (7.5). This ensures that for each finite h = H® to
h=H® _p, ?r\gg)(fﬁo > h) = Lo 4 fact used throughout the proof. To control points near
OF', by Lemma 7.10, we have that for all z,

70 (p, < —h) < L71Fes

which replaces Eq. (2.18). The €3 in place of o(1) is not an issue as we only needed something
smaller than ¢ for the application in Eq. (2.19) (though it does mean that for every choice of §, we
need to take a sufficiently large /3). The rest of the proof of the lower bound just involved FKG
and coupling to infinite volume, holding exactly in the same manner.

The upper bound was a more involved “grill” estimate. The key equation to prove (analogous
to Eq. (2.24)) is

~ _eBRP N FET\ &
Y (@ N ) {¢a = —h} | fH) <exp (= (1— e T RD (9, < ~mIQL1),  (7.12)
zeQ)
J
where the definitions of Dj, ng , F; all remain the same. The exponent is motivated by the bound

on the conditional probability in Eq. (7.6). Indeed, the justification for the above equation is to
use Bonferroni’s inequalities, with the main term to estimate being

> F(6s < —h, ¢y < —h) < (log L)* exp(—cBI"" )R (6, < ~1)|QY,
x,yEQ’ij
0<dist(z,y)<log? L
and this follows directly from Eq. (7.6), Eq. (7.5), and the lower bound on Eq. (7.4). We highlight
that when justifying this point, as was done in the proof of Lemma 2.9, one needs that
(a) the probability exp[—cBhP~1) 1] given in (the lower bound of) Eq. (7.4) is of a larger order

than the probability exp[—cShP" ﬁ] from Eq. (7.6), and is thus absorbed (see Eq. (2.25));
(b) for h = H®) —n, which satisfies h < (8log L)/®"2) by Eq. (7.5), the same exp[—cShFP—D 1]
term from the (lower bound of) Eq. (7.4) outweighs the (log L)¢ pre-factor.

The remaining computations are unchanged. |
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We can now establish the cluster expansion law. We use the same definitions of disagreement
polymers as per Definitions 2.1 and 2.2, with the exception that the energy of ~ is now defined to

be
E3(v) = BY_I(Vo)el”.
ecy
With this definition, we have the following analog of Proposition 2.3.

Proposition 7.12 (Cluster expansion with a floor for |V¢|P). In the setting of the |V P model

for fixed p > 1, with 71'8))’5 replacing ﬂ'é and &g as above, the statement of Proposition 2.5 holds

unchanged.

Proof. The proof is identical as in Proposition 2.3. The cluster expansion without a floor only
requires that Eg(y) > A(y), where .4 (7) is the number of bonds in v, and we have this. Obtaining
from this the cluster expansion with a floor requires only the area estimate of Lemma 7.11. [

Proof of Theorem 1.5. With Proposition 7.12 replacing Proposition 2.3, we can proceed through
Sections 3 to 6 just as in the case p = 2, since the only property needed from the polymer model
was that the energy &% (7) satisfies Eq. (3.8). Otherwise, the only properties we used of the actual
measure mp were the FKG inequality and basic Peierls arguments. We simply highlight that in
part (b) of Theorem 4.4, the initial upper bound on the displacement of the (H —n — 1) level line is
obtained by the estimate of the ratio N,11/N,, coming directly from the upper bound in Eq. (2.6),
now replaced with the upper bound in Eq. (7.4) at h = H () — . What is needed is that this ratio
is smaller than (log L)" for any x > 0, which holds for all 1 < p < 0. [

APPENDIX A. MONOTONICITY OF |V¢[P MODELS WITH NON-UNIFORM FLOORS AND CEILINGS

It is well-known that the |V¢|P measures enjoy the FKG inequality for any p > 1; we will use
this fact in the presence of non-uniform floors and ceilings, and we include the short proof for
completeness.

Claim A.1. Let Wg;),g,a,b be the |V@|P model (p € [1,00) and B > 0) on a domain V with boundary

conditions & and arbitrary floors and ceilings a,b € (ZU{+oo})V (i.e., az < ¢ < by forallz € V).
This measure satisfies the FKG lattice condition. In particular, if £ < &, a < a’ and b < b/

! ! /
pointwise, then W‘(f)’g’a’b < ﬂ‘(f)é a'b’

Proof. Write m = ﬂg)’g’a’b for brevity. It suffices (see, e.g., [23, Thm. 2.22]) to verify the condition
T(P1V @2)m(d1 A p2) = m(d1)m(2) (A.1)

for two configurations ¢1, ¢o that differ on exactly 2 sites x,y € V. We may further assume that =,y
are nearest-neighbors (or there is equality in Eq. (A.1), as all interactions are nearest-neighbor).
Writing a; := ¢;(x) and b; := ¢;(y), we may further assume without loss of generality that a; > as
and by < by (or else again there is trivially an equality). The above then translates into showing

\al — bg‘p + ‘0/2 — bl‘p < ]al — blfp + ’ag — bg’p.
Writing &k := a1 — b1, Ay := a1 —a > 0 and Ay := by — b; > 0, this is equivalent to

|k — AplP + |k — Ag|P < |k — Ag — Ap|P + |E|P.
If A, > Ay then we have [|[k— Ag|P — |k — Ay — ApP] /Ay < [|k]P — |k — Ap|P]/Ap by the monotonicity
of slopes due to the convexity of the function z — |z|P for p > 1. Similarly, when A, > A, the
monotonicity of slopes implies [|k—Ap|P — |k —Ag — ApP]/Aq < [|E[P — |k —Ag|P]/Aq, thus Eq. (A.1)
holds in both cases. The final conclusion of the claim is a consequence of FKG in 7799 Lablip E=¢,

whereas the statement for £ # £ follows as we may implement £ via a, = b, = &, for all x € 9V
(in the measure on V U 9V with, say, 0 boundary conditions). |
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APPENDIX B. RANDOM BOUNDARY CONSTRUCTION

In this section, we prove Lemmas 4.7 and 6.2. We begin with the following fact, which follows
easily by a Peierls argument.

Observation B.1 (e.g., [35, Eq. (4.2)]). Let C. be the connected component of x of sites y with
¢y < H —n—i. W.h.p. under ¥, the interior of £,4,—1 does not contain x with |Ci| > (log L)%

Proof of Lemma 4.7. Start by revealing all of ¢[,,\p. Now on R, we will continue to reveal ¢ at
certain sites and lower some of the revealed heights in order to obtain @), £ in the manner described
below, and this defines the m’{j—measurable distribution on Q.

As the procedure will reveal all of ¢[ge, the boundary conditions & leave two cases to consider:
first, that £,, does not intersect R at all. Then, either R is entirely in the interior of £,, or entirely
in the exterior, and the requirement that A, B € OR are in the interior of £, rules out the latter
possibility. Hence, A; is all of @, so Ao C A; deterministically. In the second case, £, intersects R,
in which case § implies that the restriction £, [ coincides with the H — n level-line in ﬂg. In this
case, the law of £, has also been changed due to the lowering of heights in the revealing procedure.
However, since the area inside a level-line is an increasing function of ¢, we obtain that As C Ay
by monotonicity.

The procedure to construct @, £ is as follows:

(1) Call 'R, 0?R the top and bottom arcs of IR from A to B, respectively. For every x on
O'R with ¢, < H—n—1, reveal the connected component C} of sites y with ¢, < H—n—1
containing x. Similarly, for every 2 on 0?R such that ¢, < H —n — 2, reveal the connected
component C2 of sites y with ¢y < H —n — 2 containing x.

(2) By maximality, the sites in the outer boundary of C! have height > H — n, which we can
drop by monotonicity to be exactly H —n. Similarly, the sites in the outer boundary of the
C2 have height > H — n — 1, which we can drop to be exactly H —n — 1.

(3) The remaining sites in 'R all have height > H — n, which can be lowered to H — n by
monotonicity. Similarly, the remaining sites in 92R have height > H —n — 1, which can be
lowered to H —n — 1.

(4) By construction, every z € 'R is now either at height H — n, or enclosed in a boundary
of sites with height H — n. Similarly, every x € %R is at height H —n — 1 or enclosed in a
boundary of sites with height H — n — 1. Hence, the union of these sites at height H — n
and H —n —1 enclose a simply connected domain @ satisfying the conditions of Lemma 4.7
except for Item 3. (Here, we use Observation B.1 to ensure Item 2.)

(5) To obtain Item 3, let A©) = (Ago), Ago)) be the rightmost point on the left side of Q) such

that Ago) = Ay + (log L)® + (log L)?2. We start the following iterative procedure starting
with A, Look at the (logL)? x 2(log L) rectangle with A©® + (1,0) as the midpoint
of the left side of the rectangle. If there is no point in 9@ which intersects the rectangle,
then set A’ = A, Otherwise, let A be the the rightmost intersection of dQ with the
rectangle. Then, repeat starting with A, continuing until we set A’ = A®) for some k.
This procedure must stop after at most (log L)? steps because each AU+D g to the right of
A® | while dQ only deviates at most (log L)? distance from the left side of 9R. Moreover,
the change in the y-coordinate from A® to AG+D) is at most (log L) at each step, so that
| A, — A?(JO)| < (log L)®. In particular, A, > As + (log L)?, so that by Observation B.1, Ay
lies on the arc of 0@ with boundary condition H — n.

(6) Repeat the above procedure analogously on the right side of @ to obtain the point B.

Finally, lower the boundary conditions from H —n to H — n — 1 on the arcs of () between
Aand A, and B and B’
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The fact that € (A’B’) C Q follows because of the assumption that A, B are at least distance
Vi (log L)? away from the top or bottom of R, and the shifts by up to (logL)® to A’, B’ are
irrelevant as £1 > (log L)5. It is straightforward to check that the remaining conditions in Item 3
are now satisfied by A’, B’. [

We turn now to prove Lemma 6.2, which is essentially the same as Lemma 4.7 but with reversed
monotonicity. The minor complication is that the C; components we wish to reveal now will now
be of the form {y : ¢, > H —n + 1}. The Peierls argument that deletes the contour 9C, would
now want to shift the sites in C, down, but this may run into problems with the conditioning that
¢ > 0. This was handled in [35], which we recall here.

Observation B.2 ([35, Theorem 2|). With high probability under TFRL, foreach h =0,...,H, there

is at most one h level-line of size > (log L)%, and there is no H + 1 level-line of size > (log L)?. In
particular, if Cy is the connected component of x of sites y with ¢, > H —n + 1, then forn > 1,
w.h.p. the exterior of £, 1 does not contain x with |Cy| > (log L)?. For n = 0, w.h.p. there are
no points x with |Cy| > (log L)?.

Proof of Lemma 6.2. As described in the beginning of the proof of Lemma 4.7, by monotonicity it
suffices to construct ), § via a procedure which reveals ¢ [y under 7T9\L raises some of the revealed
heights. The procedure to construct @, ¢ is as follows:

(1) Call 'R the top and sides of OR. For every z on 'R with ¢, > H —n + 1, reveal the
connected component C of sites y with ¢, > H —n + 1 containing =.

(2) By maximality, the sites in the outer boundary of C, have height < H — n, which we can
raise by monotonicity to be exactly H — n.

(3) Call 9R the bottom side of OR in between A, B. Call 3R the remainder of the bottom
side of OR. Since all the boundary heights on >R U 93R are 0, by monotonicity we can
raise the boundary condition on >R to H —n — 1 and on 8°R to H —n.

(4) By construction, every z € O'R is now either at height H — n, or enclosed in a boundary
of sites with height H — n. Hence, the union of these sites at height H — n with >R and
>R enclose a simply connected domain @ satisfying the conditions of Lemma 6.2, using
Observation B.2 to ensure Item 2. |
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