THE NOISY VOTER MODEL WITH GENERAL INITIAL CONDITIONS

PATRIZIO CADDEO AND EYAL LUBETZKY

ABSTRACT. We study the noisy voter model with ¢ > 2 states and noise probability 6 on arbitrary
bounded-degree n-vertex graphs G with subexponential growth of balls (e.g., finite subsets of Z%).
Cox, Peres and Steif (2016) showed for the binary case ¢ = 2 (and a wider class of chains) that, when
starting from a worst-case initial state, this Markov chain has total variation cutoff at ¢, = % logn.
The second author and Sly (2021) analyzed faster initial conditions for Glauber dynamics for the 1D
Ising model, which is the noisy voter for ¢ = 2 and G = Z/nZ. They showed that the “alternating”
initial state is the fastest one if 6 > %, and conjectured that this holds for all values of the noise 6.

Here we show that for every graph G as above and all 8, ¢ and initial states xo, the noisy voter
model exhibits cutoff at an explicit function of the autocorrelation of the model started at xo.
Consequently, for G = Z/nZ and ¢ = 2 (Glauber dynamics for the 1D Ising model), we confirm
the conjecture of [LS21] that the alternating initial condition is asymptotically fastest for all 6.
Analogous results hold in Z% for ¢ = 2 and all d > 1 (“checkerboard” initial conditions are fastest)
as well as for d =1 and all ¢ > 2 (“rainbow” initial conditions are fastest).

1. INTRODUCTION

The noisy voter model on a connected graph G = (V, E'), with noise parameter 0 < 6 < 1 and
q > 2 states, is the Markov chain (X;) on the space Q = {0,...,q¢—1}" (assigning one of ¢ different
states, or opinions, to each vertex), evolving in the following way. An independent rate-1 Poisson
clock is attached to every u € V. Once the clock at u rings, the value of X;(u) is updated as follows:
(i) with probability 1 — 6, the new value is X;(v) for a uniformly chosen neighbor v ~ u;
(ii) with probability 6, the new value is uniformly chosen out of {0,...,q — 1}.
Let p be the stationary distribution of this Markov chain (ergodic but not necessarily reversible).
The classical voter model is the special case § = 0, and ¢ = 2 (noiseless, binary), introduced in
the 1970’s independently by Clifford and Sudbury [5] and by Holley and Liggett [1 1] to model the

evolution systems with two competing population types; see, e.g., [13] for the rich literature on it.
The noisy voter model was introduced by Granovsky and Madras [10] in 1995, where properties of
the equilibrium pug were studied (cf. the recent works [, 21] on features of the stationary measure).

Our focus is on the asymptotic time it takes (X;) to converge to ¢ in total variation distance.
Denote the total variation mixing time to within distance € from pg by

tix(e) =inf {t >0 : ||P(X: € ) —pallyy <€} and tux(e) = H)l(%xtiﬂx(s).

In the context of a sequence of finite Markov chains {Xt(n)}, the cutoff phenomenon, discovered by
Aldous and Diaconis in the 1980’s [1, 2, 8, 7], refers to the situation where there exists a sequence t,
such that, for every fixed 0 < £ < 1, one has tyx(g)/t, — 1 as n — oo. That is, a sharp transition
along a o(t,) window occurs, whereby the distance from equilibrium drops from near 1 to near 0.
When cutoff occurs at t,, for t3)x—that is, starting from a sequence {xén)} of initial conditions—the
asymptotic mixing time from xg is well-defined as (1+ o(1))t,, independently of the choice of ¢, and
one can compare it to other sequences of initial configurations and characterize which is the fastest.

We will establish cutoff for the noisy voter from any xo on G with subexponential growth of balls.
1
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FI1GURE 1. Noisy voter model for ¢ = 3 on the lattice in dimensions 1 and 2, when revealing
the update history (from the final (top) state X; back in time to the initial state Xo = xg).

Consider the binary case ¢ = 2. Cox, Peres and Steif [6] proved in 2016 that for every sequence
of bounded-degree graphs G on n vertices and fixed noise parameter 0 < 6 < 1, the noisy voter
model has tyx(¢) = (355 +0(1)) log n for every fixed 0 < & < 1; that is, when started at a worst-case
initial state, there is cutoff at t,, = 2—19 logn (in fact [0] allowed a wider family of rules for selecting
the neighbor v ~ w in the voting update of Step (i) above). Their lower bound on t;x—the
asymptotically worst initial condition xp—was realized by a monochromatic (all-0 or all-1) state.

In the special case of ¢ = 2 and G = Z/nZ (the n-cycle), the noisy voter model is well-known
to be equivalent to Glauber dynamics for the Ising model on the 1D torus at inverse-temperature
f3, via the correspondence’ # = 1 — tanh(24). (NB. deleting but a single edge from G would break
this equivalence, and make the stationary distribution of the noisy voter model be non-reversible.)
Thus, said result of [0] recovers the 1D special case of the result [14] of the second author and Sly,
where it was shown that there is cutoff for the Ising model on the torus (Z/nZ)? in any dimension
d, at high temperature (covering all 5 at d = 1 and all 8 < . at d = 2; its companion paper [15]
generalized the method to arbitrary bounded-degree graphs with sub-exponential growth rate).
A later work [17] by the same authors established cutoff for the Ising model on (Z/nZ)? for all
B < B in any dimension d, using a different approach dubbed there information percolation (see
also [10, 18]) that carefully studies the space-time clusters of the nearest-neighbor interaction, rolled
backward in time. (See Fig. 1 for an illustration for noisy voter and Section 2.1.1 for more details.)
This opened the door to studying #33x for non-worst-case initial conditions xg, where very little
was previously known; e.g., it was shown there that for d = 1, a (1 — o(1))-fraction of the initial
states xg is asymptotically as slow as the worst-case one, whereas a random i.i.d. initial condition
is asymptotically twice faster.

Thereafter, the second author and Sly [19] investigated, for ¢ = 2 and G = Z/nZ (i.e., Glauber
dynamics for the 1D Ising model at inverse-temperature 3, equivalent to the noisy voter on Z/nZ
with ¢ = 2 and # = 1—tanh(2f)), mixing from specific deterministic initial conditions, and showed:

(a) started from the alternating x,; = (0,1,0,1,...), there is cutoff at t,, = max{ﬁ, ﬁ} log n;
(b) started from the bi-alternating xp, = (0,0,1,1,...), there is cutoff at ¢, = max{3, ;;}logn
(matching the mixing time from x,y; for § < % but strictly dominated by it for 6 > %),
(c) the initial state x,); is asymptotically fastest at high enough temperature (specifically, if 6 > %)
The authors of [19] conjectured that z,) is asymptotically fastest at every temperature (for all ).

1.1. Results. We show that the noisy voter model for every fixed ¢ > 2 exhibits cutoff under
general starting states, in arbitrary families of graphs with a sub-exponential growth rate of balls
(e.g., subsets of the lattice). Specifically, cutoff occurs at an explicit function of the autocorrelation

Hn an update of Glauber dynamics for the Ising model, if a site = has a neighbors with + spins and b neighbors
with — spins, the probability that the dynamics sets z to + is (1 4 tanh(80))/2 for o = a — b, hence the equivalence.
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of the model started at xg. Consequently, we confirm the conjecture of the second author and Sly
that, in the special case of G = Z/nZ, the initial state x,j; is asymptotically fastest for all 8 (or /).
More generally, for the noisy voter model on (Z/nZ)? with ¢ = 2 and any d > 1, the “checkerboard”
initial conditions are fastest; for ¢ > 2 and d = 1, the “rainbow” initial conditions are fastest.

Let G = (V, E) be a finite graph on n vertices. Our assumption on its geometry is the following
sub-exponential growth of balls property: there exist constants ¢y > 0 and « € (0,1) such that

| B, (1)] < coexp(r'™®) for every v € V and 7 > 1, (1.1)

where B, (r) denotes the ball of radius r, centered at the vertex v, with respect to graph distance.
Consider the noisy voter model on such a graph G with ¢ states and noise probability 6 € (0, 1],
and let xg be an arbitrary initial configuration. Denoting the degree of a vertex v € V' by dg(v)
and letting 7 (v) = dg(v)/(2|E|) be the stationary measure of a simple random walk on G, we
define the autocorrelation function of the noisy voter model

Zm ( xo (X (v) = o(v))—l), (1.2)

q

as well as an L? analog of it which will turn out to be nothing but a time-rescaled version of .Agl)

=S ) S (B (o )=i-7) (13)
veV j=0

Indeed, despite their seemingly different formulation, one has A§2) (x0) = Agi)(xo) (see Eq. (2.14));
hence, we will refer to both objects as the autocorrelation function (see Section 2 for more details).
A key quantity for the behavior of t}f is the time T}, required for .A§2) (xo) to drop below %

1 1 1
T, = 5inf{t >0 AW (xg) < ﬁ} - inf{t >0 AP (xg) < E}' (1.4)

Our main theorem states that waiting for the maximum between T}, and logn which will
correspond to a quantity Teorr as explained later (see Section 1.2)—is both necessary and sufficient
for the model to be mixed. That is, max{Ty,, Teorr} gives the correct asymptotic mixing time on
any family of graphs with limited expansion, under arbitrary initial conditions xg.

Theorem 1.1. Fiz 0 € (0,1] and ¢ > 2. Let G = (V,E) be a connected graph on n vertices
satisfying Eq. (1.1) for some ¢g > 0 and « € (0,1), and let xo be an arbitrary initial condition.
Then the q-state noisy voter model on G and noise pmbabz’lity 0 started from xq satisfies

Bi(€) = (1+ 0(1)) max { T, 75 “logn], (1.5)

where the o(1)-term is O(log*"‘/2 n) with a constant depending on €,0,q, ¢o, & (but not G or xgp).
In particular, for any sequence of connected graphs G\ with n vertices satisfying Eq. (1.1) for
the same «, ¢y, and any sequence of initial conditions x(()n), the g-state noisy voter model on G

with noise probability 0 has cutoff at max{TX(n), ﬁ logn}.
0

Theorem 1.1 shows that a dynamical phase transition in the parameter 6 can occur under certain
initial conditions xp: we will see that in the case of G = Z&, if xg is chosen by repeating a balanced
pattern of the ¢ colors, then T}, ~ m logn for some A\ < 1 (here and in what follows, we
let f,, ~ g, denote f, = (14 0(1))gy). It follows that t,;x changes from ﬁ logn to m logn

at some 6y € (0,1), implying a singularity in the analytical behavior of ify as a function of 6.
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FIGURE 2. When ¢ = 2, alternating/checkerboard starting configurations are asymptoti-
cally the fastest in all dimensions.

The full Eq. (1.5) was only known [19] for the 1D Ising model on Z, with periodic boundary
conditions and specific initial conditions xo. While [19] showed that t3yx > 14__02%) logn for all xg
(implying, via their analysis of the alternating initial condition x,;; = (0,1,0,1,...) € Z,, that it is
asymptotically fastest for 6 > %), the fact that one also has 30y > 1_4‘;(1) logn for all xy (implying
that x,; is always asymptotically fastest) was left there as a conjecture. Here not only do we
confirm this, but we extend the result to the noisy voter model on any bipartite graph with n = |V|

large satisfying Eq. (1.1) for some «, ¢p. Indeed, if G is bipartite with parts Vi, Vs, we can define

Xalt (V) = ]l{veVl} (1.6)
(see Fig. 2 for an illustration on Z%) and have the following.

Corollary 1.2. Fiz 6 € (0,1]. Let G™ be a sequence of bipartite graphs on n vertices satisfying
Eq. (1.1) for the same o, ¢y. Let Xax = xg?t) denote the alternating condition on G™ as in Eq. (1.6).
Then, for every fized 0 < & < 1, the binary noisy voter model on G with noise 0 satisfies
1+40(1)
: og
min{4 — 26,46}

thiik (e) = n, (1.7)

where the o(1)-term is O(log_"‘/2 n) with a constant depending on €,0,, ¢y (but not on G™).

Furthermore, if xg = xgn) 18 any arbitrary sequence of initial conditions, we have

£
lim inf ti”;fg(g) > 1,
n—oo 3% (¢)

thus Xa1 is the asymptotically fastest initial condition on G . In particular, for Glauber dynamics
for the Ising model on Z, (the case G = Zy) at any inverse temperature > 0, the alternating
wniatial condition xay 1S the asymptotically fastest initial condition.
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FIGURE 3. In Z2 with ¢ = 5, starting from the rainbow configuration (left) leads to slower
mixing compared to starting from the knight configuration (right).

FI1GURE 4. Rainbow configuration on Z,, for ¢ = 5. On Z,,, the rainbow initial condition is
asymptotically the fastest for all ¢ > 2 .

Corollary 1.2 shows that when ¢ = 2, alternating between the 2 colors (when possible) gives the
asymptotic fastest rate of convergence. In the case of the d-dimensional lattice Z¢ for any d > 1,
this results in “checkerboard” configurations being the fastest initial conditions. However, when
q > 2, the answer can become more complicated. Consider again the d-dimensional lattice G = ZZ:
we can define a generalization of x,; by cycling over the g colors in all directions, creating the
rainbow configuration (depicted in Fig. 3 on the left)

Xrbw(il,...,id)=i1+...+id (mod q), (z’l,...,z‘d)eZZ. (18)

It turns out that x,,, does not always achieve the fastest rate. Indeed, we will see in Section 3 that
d

Ty ™~ 2[1— (1 —6) cos(25)]

logn,

while for d = 2 and ¢ = 5, if we define the “knight” configuration (depicted in Fig. 3 on the right)
Xient (1, 7) =4+ 2j  (mod 5)
(taking after a chess knight move), then we will get

1]

Xt ~ T logn,
e 1 gy 8"

e < (1—=0)T,,, with § = % > 0 for all # < 1 and every n in this setting.
The reason for this is that when d > 1, there is more room to spread the colors while avoiding early
repetitions (which X1,y does not do effectively in d > 2, since we can encounter the same color we

and in particular T}

are currently at after making just two moves).
Nonetheless, we can show that when d = 1, ;1w = (0,1,...,¢—1,0,1,...,¢—1,0,1,...) (depicted
in Fig. 4) does indeed achieve the fastest possible rate (see also Fig. 5), as we next formulate.
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FIGURE 5. Mixing as a function of § in (Z/nZ)?. Left: d =1 and ¢ = 2 (previously known
lower bound in red, x,;; in orange). Right: d =2 and ¢ = 5 (X;bw in red, Xyt in orange).

Theorem 1.3. Let G = Z,. There exists ¢ > 0 such that, for every q > 3, every 6 € (0,1] and
every initial state Xg,
C
AP (x0) > q% AP () (1.9)

Consequently, Ty, > Ty, + O(1), and thus xyy is the asymptotically fastest initial condition.

The results so far only pertained to deterministic initial states. The effect of a random initial
condition was explored in [17] for the 1D Ising model: instead of starting from a deterministic state
Xp, one assigns an i.i.d. uniform color to each site. This means starting from the initial configuration
U, the uniform distribution over €2, or equivalently replacing Py, (X; € -) with its annealed version
Py(X; € -) = ﬁ > xoeq Pxo (Xt € ). Denote by t . (¢) the mixing time of the chain started at U
(the time for Py4(X; € -) to be within ¢ of the equilibrium measure ¢ in total variation distance).
It was shown in [17] that, for any fixed 0 < £ < 1, Glauber dynamics for Ising on (Z/nZ) has

1
tZK/IIIX(E) ~ 10 logn

(that is, the bound in Eq. (1.5) but without the autocorrelation term T},). We can now extend
this result to the noisy voter model in the same setting as Theorem 1.1. Furthermore, as the lower
bound #%y > 17400(1) logn in Eq. (1.5) holds for all deterministic starting states, we can deduce that

the uniform initial condition is asymptotically fastest compared to all deterministic starting states.

Corollary 1.4. Fiz 0 € (0,1] and ¢ > 2. Let G = (V,E) be a connected graph on n vertices
satisfying (1.1) for some ¢g >0 and 0 < « < 1, andU be the uniform distribution on {0, ...,q—1}".
Then, for every fixred 0 < € < 1, the q-state noisy voter model on G with noise 6 started from U has

_ 1+o0(1)

tzl\//I{IX(E) 10 logn, (1.10)
where the o(1)-term is O(log_o‘/2 n) with a constant depending on €,0,q, ¢o, « (but not G), and
14 o(1
tMIX(E) — A logn, (111)
20
i.e., the asymptotic worst-case mixing time (attained by the monochromatic xo = 1) is twice slower.

Moreover, if G™ is a sequence graphs satisfying Eq. (1.1) for the same «, cq, then for any xq = x(()n)

lim inf b (€)
n—00 t%lx (5 )

)

> 1,

i.e., asymptotically, no deterministic initial state xq is faster than the uniform initial condition U.

(NB. Eq. (1.11) extends [6, Thm 1, Eq.(1.2)]—which was valid for all bounded-degree graphs—
from ¢ = 2 to all ¢ > 2, albeit for graphs that further have subexponential growth of balls.)
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1.2. Heuristics and main proof ideas.

The autocorrelation time. As mentioned above, in the binary case ¢ = 2, it was shown in [(]
that the worst-case mixing time for bounded-degree n-vertex graphs is (1 + 0(1))% logn, i.e., the
same as the chain where the noise probability is 1 (no vote-copying mechanism) and sites are
independently refreshed at rate 6 (a random walk on the hypercube). This can be understood as
follows: looking at the dynamics backward in time (as discussed in Section 2.1.1) shows that sites
coalesce into clusters (arising from the copying mechanism) that receive an identical color. Under
a monochromatic initial configuration xg, say xg = 1, a cluster roughly behaves like a single site,
attaining its color by either getting a noisy update (with rate €) or surviving the noise to accept
the color (in this case, 1) assigned by xg. In graphs with bounded degree, said clusters typically
have O(1) size, thus one sees cn clusters behaving as an infinite temperature (independent spins)
single-site dynamics that evolve at rate 6, leading to the aforementioned mixing time.

The role of the autocorrelation function AEQ) (xo) is to quantify the effect of a general initial
condition xg under the same assumption that the single-site marginals govern the mixing time.
Indeed, the high temperature nature of the noisy voter model and the worst-case intuition above
suggest that one could treat the latter as a product chain, and it is known that the total variation
(L') distance of a product chain can be bounded, from below and above, by the sum of (squares
of) the L? distances to equilibrium of its coordinates (see [15, Prop. 7]). This motivates the
introduction of the function .AEQ) (x0), which is nothing but that L? quantity for the noisy voter
model (see Eq. (1.3), where the sum over j is simply ¢||Px,(X¢(v) € ) — VH2L2(V) for v the uniform
distribution on {0,...,q — 1}). Hence, if we were to run n i.i.d. copies of the chain (X}),ev, and
take the value of each v € V' from its own dedicated instance X} (v), we would have cutoff at T}, .
This approximation turns out to be valid in the true model for sufficiently large 6 (and all q), as
confirmed by Theorem 1.1 for every initial condition xg. However, as the next subsection shows,
for some choices of x¢ and small §, the function AgQ) (x0) does not govern the mixing time.

The correlation time. One key feature that the heuristics of single-site marginals fails to capture
is, by its very definition, the correlations between sites in the equilibrium measure pg. This aspect
can be measured by the coupling from the past description of ug; deferring details to Sections 2.1.1
and 2.1.2, one can perfectly simulate ug via coalescing continuous-time random walks from every
site, which move at rate 1 — 6 and are killed at rate 6, generating a single uniformly chosen color
to their entire coalescent cluster as they die. Via this description, one can read the correlations
in pug from the coalescent clusters (conditional on the partition to clusters, every cluster has a
single uniform color, and distinct ones are independent). When attempting to generate Py, (X; € -)
via the same recipe, there is a time constraint: once we reach time ¢, the coalescing process ends
(surviving clusters take on the colors prescribed by xp).

With that in mind, let {u & v} denote the event that the continuous-time walks from wu
and v (moving at rate 1 — 6 and being killed at rate #) do not coalesce within time ¢ but do so
afterwards. The above discussion indicates that the quantities IP’(u &h v) must be suitably small
in order to avoid the situation whereby u,v are more correlated under pg than under Py, (X; € ).
We will see that, for graphs with subexponential growth of balls as per Eq. (1.1), averaging over
nearest-neighbors is enough to asymptotically characterize this effect. Namely, let

Toon = inf {t >0: Y Plusbo) < \/ﬁ} . (1.12)

wek



8 P. CADDEO AND E. LUBETZKY

Clearly, IP’(u &h ’U) < e 2% simply by asking that the two random walks survive (no killing)
separately in [0,¢]. For our class of graphs, a matching lower bound holds up to sub-exponential
corrections, thus Ty will reduce (up to lower order terms) to 4—19 log n, as featured in Theorem 1.1.

The intuition as to why 7o can govern the mixing time at sufficiently small 8 is the following.
Consider again the single-site marginals. When xg is monochromatic, these are only affected by
the noisy updates (at rate 6), whereas in general, a random walk on the values of xq (at rate 1 —6)
can also contribute to mixing (e.g., consider a “random-like” xg, where the colors are arranged so
as to resemble the effect of a noisy update). In view of their rates, the latter mechanism can have
a stronger effect when 6 is small, whence the single-site marginals can mix faster than the time it
takes the correlations to be created. In that scenario, Ty, < T¢orr, which means that at time 75, the
vertices are not sufficiently correlated and thus 7T, is only an under-estimate of ¢y;x. Theorem 1.1
confirms this intuition and shows that waiting for (the maximum between) T}, and Tcoyy is all that
is needed for mixing to occur.

Proof ideas, upper bounds. The work [06] proved an optimal worst-case upper bound for a large
class of 2-state noisy voter models, but one cannot hope for that approach to be applicable for
general xg, as we next explain. At the heart of that argument was a result from [9] on noisy trees
to view the backward cluster decomposition of the noisy voter model (explained in Section 2.1.1)
as a projection of an equivalent chain on “stringy trees,” breaking the dependencies between sites.
This elegant reduction provided a direct upper bound on the total variation distance via that of a
chain with n independent bits that can only change their initial value at rate # (i.e., a random walk
on the hypercube). At that point, xg becomes irrelevant, as by symmetry every initial condition is
equivalent to the monochromatic xo = 1 after said reduction.

Instead, our proof follows the approach of the later work [19], which analyzed the alternating
and bi-alternating initial configurations for the 1D Ising model. The strategy there was to develop
the backward dynamics of the Ising model for a short time, which suffices for the noise mechanism
to decouple poly-logarithmic clusters of sites; then, the model was treated as a product chain on
such smaller clusters, which could later be simplified to having size < L for some fixed L > 0.
Thereafter, the L'-L? reduction mentioned at the beginning of this section allowed the authors to
conclude the proof, thanks to the regularity of the lattice and the initial states xy considered there.

In our setting, the sub-exponential growth of balls assumption Eq. (1.1) allows us (with mostly
minor changes) to make a similar decomposition as in [19]—reducing to sub-polynomial clusters,
then to clusters of size O(1)—thus reduce the analysis of said clusters after an L'-L? reduction.
However, in the second part of the proof, the potential irregularity of G and xg and the general ¢ > 2
form a nontrivial obstacle. The work [19] showed that the mixing of these O(1) clusters is governed
by a competition between 1-point and 2-point correlations functions, which is easily resolved when
the initial condition xg is periodic; this is no longer the case for general G and xg. Our strategy
is to not treat these competitions separately per cluster, but rather combine them, reducing the
cumulative 1-point contributions to the autocorrelation function ¢ — .A,EQ) (x0). The latter is shown
to be completely monotone in Section 2, and that allows us to identify the global dominant term
out of Aiz) (x0) and e~%%t leading to an upper bound of either T, or ﬁ log n, respectively.

X0

Proof ideas, lower bounds. The t{x 2 Ty, part of Eq. (1.5) is achieved by taking a distinguishing
statistics that yields an expected difference of A§2) (xo) under P and .

The tyix 2 ﬁ logn part of Eq. (1.5) is more complicated. In [19], the analogous bound for the
alternating and bi-alternating conditions for 1D Ising was established using the Hamiltonian of the
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model >, o(i)o(i+1) as a distinguishing statistics. The proof relied on the fact that the alternating
configuration x,;; was a minimizer of the Hamiltonian, whereas general xg can lead to both smaller
and larger expected values of the Hamiltonian at finite time ¢ compared to equilibrium. Thus, this
approach did not generalize to arbitrary xg, and it was left as a conjecture that the bound would
hold more generally. Here we handle this lower bound in terms of site correlations, rather than the
analogous spin agreements or disagreements measured by the Hamiltonian:

(1) We consider a distinguishing statistics that measures the covariance between adjacent sites,
and show that the latter are always more correlated at equilibrium than at time ¢, with a
discrepancy of at least IP’(u FAS v), uniformly over xg;

(2) Using a result from [20] that bounds the escape probability of random walk from a set in
terms of its conductance, we show that under the sub-exponential growth of balls assumption

Eq. (1.1) the probabilities above are equal to e 20t+o(t) for ¢ ~ logn.

1.3. Organization of the paper. In Section 2, we prove properties of the two autocorrelation

functions Agl)(xo),Agz) (x0) that will be needed throughout the proofs of the main theorems. In
d

Section 3, we discuss specific applications of Theorem 1.1 on Zf,

as well as prove Theorem 1.3.
The proofs of Theorem 1.1 and Corollary 1.4 will be split between Section 4, where we prove the
upper bounds, and Section 5, where we prove the lower bounds. Finally, Section 6 is devoted to

concluding remarks on the new results, and open problems on generalizations / refinements thereof.

2. PROPERTIES OF AUTOCORRELATION IN THE NOISY VOTER MODEL

2.1. Notation and preliminaries. We refer to the spins/opinions/states at each vertex as colors.
So far we denoted the ¢ colors by {0,...,q— 1}. In Sections 2 and 5 it will be convenient to use as
labels the g-th roots of unity:

eq:{wj:e2”j/Q: j:(),...,q—l}. (2.1)

Given a graph G = (V, E), a deterministic color configurations on G will be denoted as x, or
xo when we wish to emphasize that the configuration should be thought of as an initial condition.
In contrast, states of the noisy voter chain at time ¢ will be denoted X; when starting from a
deterministic initial condition xg, and we will often use Y; when starting from pu¢g, the stationary
measure of the noisy voter model on G. We also use Y to indicate a single sample from pug.

2.1.1. Duality with coalescing random walks. We now explain the classical duality between the
(noisy) voter model and a system of (killed) coalescing random walks (cf. [10]). Fix ¢o > 0, and
view the dynamics resulting in the state Xy, as a space-time slab with xg at the bottom and X,
at the top. Moving in space (on the graph G) will be dubbed horizontal, and moving in time will
be dubbed vertical. The following description constructs X, = {Xy,(v)}vev by looking at the
dynamics top-to-bottom (“backward in time”), rather than bottom-to-top (“forward in time”).
Let us start with a single vertex v € V. We can reconstruct the value Xy, (v) of the state of v
at time to as follows: starting from vy = v at the top, move down (backward in time) vertically
until the largest time ¢; < ¢ty where the vy received an update in the (forward) dynamics. (If no
such update exists, we conclude that Xy, (v) = xo(v).) If said update was noisy (which occurs with
probability #) and resulted in a new color w, we conclude that Xy (v) = X, (v) = w and we can
stop; if instead the update was a vote-copying one (with probability 1—80), then X;(v) must be equal
to X3, (v1), where v; is the neighbor of vy whose color was copied. We register this as a horizontal
move from vy to vy, and proceed to recover Xy, (v1) recursively (by examining the largest to < t1
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where v; was updated, and so forth). Letting so = 0 and s; =¢; —t;—1 (i > 1), the process defined
by Z? = v; for s € [s;, si+1) is a continuous-time simple random walk on G that starts at v, moves
at rate 1 — 0 and gets killed at rate . Hence, if we let w be a uniform color from {0,...,q — 1}
independent of Z, the value X;(v) can be coupled so that

w if Z? gets killed before time %
Xto( )= { : :

xo(Z¢)) if Z{ survives to time o

(Note that the probability that Z? survives the the bottom is e=%%.) All is left is to describe how
the different walks {Z"},cy interact with each other to determine the joint law of the {X¢,(v)}yev:
for any two vertices v, w, as long as Z¥ and Z¥ do not meet each other, their steps (or killings) are
due to updates occurring in the histories of distinct vertices and thus are independent of each other.
However, if Z? and Z¥ meet for the first time at time 7 (time top — 7 in the forward dynamics), the
process described above forces them to go through the exact same path (or be killed simultaneously)
from s = 7 until time s = ¢y (time 0 in the slab). Hence, if two walks Z¥ and Z% ever meet, they
proceed together from that point onward and thus coalesce into a single walk. In particular, if
the walks from v and w coalesce before time s = ¢y (that is, before reaching the bottom), then v
and w inevitably obtain the same color (i.e., X;,(v) = Xy,(w)). This holds in the same way for
any number of vertices, meaning that any number of walks can coalesce into a single one, and the
vertices such walks started from all receive the same color (a uniform one if the single walk resulted
from the merging encounters a noisy update before reaching the bottom, or the value of xg at the
final location of the walk otherwise). See Figure 1 for an illustration of this dual description.

2.1.2. Dependence on the initial condition and coupling from the past. The duality explained above
shows that X; depends on the initial condition xg through the final locations of all the surviving
walks (and their merging histories). In particular, if the walk Z? started from a vertex v gets killed
before time ¢ (i.e., before reaching the bottom), then the value X;(v) (as well as the values X;(wj;)
at time ¢ of all the vertices w; whose walks Z% merged with Z? before the killing) is independent of
the initial condition xg. As a consequence, if all the walks started from V' die out (with or without
coalescing with the other walks) before reaching the bottom, then X; becomes independent of xg.
This observation gives us a recipe to perfectly simulate the stationary measure u¢, a special case
of the coupling from the past (CFTP) method (see [12, §25]): take the walks {Z?},cy defined above
(that is, coalescing random walks with killing, running backwards in time from all vertices), but let
them run until killed (without stopping them at time ¢ whence they would reach the bottom slab,
hitting xp). With probability 1, all of them will have died out at some point in the past (either
coalescing with other walks or not). Then, the resulting Y = {Y(v)},cv obtained by assigning
a uniform color to each cluster (each group of vertices whose associated random walks coalesced
before dying) will be a perfect sample from ug. (From the perspective of CFTP, the coalescing
random walk representation of the noisy voter model defines a grand coupling of the chains from
all initial states, and if t — T is a time where all walks coalesce, so do all the chains at time ¢.)
This description of ug allows us to couple Py (X; € -) to pug by simply running the same
coalescing random walks backward dynamics from time ¢, stopping at time 0 to realize X; from xg
and then continuing back in the past to realize Y ~ ug. In doing so, X; and Y will be identical
at the vertices whose associated random walks have died before reaching time 0, but possibly not
at the vertices v that reached it, since in that case X;(v) takes the xo value at the final location of
Z? while Y (v) will take an independent uniform value. As observed in [17], when starting from the
uniform initial state U, the value of X;(v) can be coupled to Y (v) even if Z! survived to time 0, so
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long as it does not get to coalesce with another particle before being killed (one can simply match
the value of U to that of Y); this governed the behavior of #/, in Glauber dynamics for the Ising
model on Z/nZ, and will play the same role here for every ¢ > 2 and every G as per Corollary 1.4.

2.2. Alternative representations of autocorrelation. Let G = (V, E) be a finite connected

da(v)
2]

for v € V. We consider the L% inner product space on C¥ with respect to ¢, via the Hermitian
inner product

graph, and let mg be the stationary distribution of simple random walk on G, i.e., mg(v) =

— Z f(v)mwg(v) for f,g: V — C. (2.2)

veV
Given x € CV, we define its k-th power x* = (x(v)¥),cy as the configuration obtained by taking
k-powers component-wise (NB. Qf;/ is closed under this operation, as €, is a multiplicative group).

Proposition 2.1. Let G = (V, E) be a connected graph on n vertices. Fix an initial state xq € Q:t‘]/‘
Let a1,... 1, be an L*(mg)-orthonormal basis of eigenfunctions of the transition matriz P of
the discrete-time simple random walk on G, and let A1, ..., A, be their corresponding eigenvalues.
Further define

m=1-(1-0)\ forl=1,....n. (2.3)
Then, for everyt > 0,

q—1 n

A (x0) ZZFG )| By [ X (0)*]]* Z;ZZKXISWOWGI%QW- (2.4)

k 1veV k=11=1

Consequently, for any s > 0, we have
(2)
e—(4—29)s SAt(Jg)s(XO) < 6_298, (25)
A (xo)

and in particular qql e~ (4-20)t < _Ag)( 0) < Lt 1 e 20t

Proof. Recalling the definition of At from Eq. (1.3), one has

AP x0) = Y 76 (0) (X B (Xelw) = w)?) — 7). (2.6)

veV wely q

Note that if X; denotes an i.i.d. copy of X; (started from the same xg), we have

D P (Xi(0) =w)” = 37 Py (Xe(v) = Xil0) = @) = Py (Xe(0) = Ke(v))

wely wely

Since ZZ;E wh = qly,qy for w € €, taking w = Xi(v)X(v) ™' = X(v) Xy (v) (recall | X;(v)| = 1)
shows that

q—1 q—1
Pyoo (X3 (v) = Xy (v)) = 2 > E[X(0) X (0)k] = ; ST EX (o))
k=0 k=0

Combining the last two displays with Eq. (2.6), the £ = 0 summand cancels the —% term, yielding

q—1
AP (x) = (11 S e (0) B X (0)F]

k=1veV
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Recalling the coalescing random walks representation of Section 2.1.1, on the event that the
continuous-time random walk from v is killed before reaching time 0, the contribution to Ex, X;(v)*
is % Zwe% w”® = 0. Thus, if W; denotes a continuous-time simple random walk moving at rate 1 —6
(and without killing), and H; the semigroup associated to such a walk with rate 1, then

| [X2(0)]|* = €2 By [xo(W2)¥]|* = €2 (H gy (v) (H1 _gyok) (v)

which, when combined with the last display, gives

q—1
AP (xg) = L2 Z<H(170)txga H 10X m6
q k=1
Recall that 1; is an eigenfunction of the discrete-time transition matrix P with eigenvalue A;; hence,
it is an eigenfunction for H; = e *U=F) with eigenvalue e~ =2 Writing x§ = 37", (<E, 1) n ¥
via the orthonormal basis {1} in L?(ng), we arrive at

q 1 n q 1 n

2 _—20t— 21 /\ 1 9 2 1 9)\
ZZ x071/}l ng l ZZ|X0;¢I TI'G‘ l)a
k 11=1 k 11i=1

establishing Eq. (2.4). The inequalities in Eq. (2.5) readily follow by noting that e~27** is minimized
at Ay = —1 (whence v; = 2 — 0) and maximized at A\; = 1 (whence ; = ). Finally, the upper and
lower bounds on A§2) (xo) follow from Eq. (2.5) (applying it for s = tp and ¢t = 0 to bound Ag) (x0)

using that AéZ) (x0) = (¢ — 1)/q by definition). O
Two simple consequences of Proposition 2.1 are the following.

Remark 2.2 (7, maximized at the monochromatic 1). As the monochromatic initial state 1 is
an eigenfunction of the discrete-time random walk with eigenvalue A = 1, the identity in Eq. (2.4)
(noting 1* =1 for all k = 1,...,¢q—1), along with the bounds on A?) (x0) in Proposition 2.1, show

-1
4=~ 201 > A§2) (x0) for every xg and t > 0;

AP () ="

hence, by definition, T}, <717 ~ % logn holds for every xg.

Remark 2.3 (T}, minimized at x,; for a bipartite G and ¢ = 2). Since G is bipartite, x,; is an
eigenfunction of the discrete-time random walk with eigenvalue A\ = —1, thus Proposition 2.1 shows

1
.AEZ) (Xalt) = 56_(4_29)t < .,41(52) (xp) for every xg and t > 0;

hence, by definition, T}, > T ﬁ log n holds for every xg.

alt

Plugging the lower bound on 7}, from Remark 2.3 in the asymptotics for ¢}y given in Theorem 1.1
establishes Corollary 1.2. Combining the upper bound on 7T, from Remark 2.2 with Theorem 1.1
implies Eq. (1.11) in Corollary 1.4 for all ¢ > 3 (the case ¢ = 2 was established in [0]).

2.3. Eigenfunctions of the noisy voter model. As in Proposition 2.1, let 1,...,%, be an
L?(ng)-orthonormal basis of eigenfunctions of the (1-step) transition matrix P of discrete-time
simple random walk on G with corresponding eigenvalues Aj,..., A, and let v, = 1 — (1 — 0)\;.

Foreveryl=1,...,nand k=1,...,q — 1, define a function \Ifl(k) : C}I/—Mbe

T (x) = (<, ) - (2.7)
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With this notation, Eq. (2.4) reads

n o q—
AP ZZ 109 (x) 220t (2.8)

=1 k=1

While the noisy voter model is, in general, a nonreversible Markov chain, the following result shows
that e~ inherited from the spectrum of the random walk on G, appear as eigenvalues for it.

Proposition 2.4. Foreachl=1,...,nandk=1,...,q—1, the function \I’l(k) s an eigenfunction
of the noisy voter model, with eigenvalue 1 — ~y;/n for the discrete-time chain (each step updates a
uniformly chosen vertex), or e” " for the continuous-time model (each vertex is updated at rate 1).

Proof. Let | € {1,...,n} and k € {1,...,q — 1}, and first consider the discrete-time noisy voter
model, letting & be the 1-step transition matrix of this chain. If x € (C;/ is any initial state, then

(P90 = B[0P (1)) = (E[XE ), = (1= D]+ 0Pk

where the last equality used that, in each coordinate v € V' of the vector Ey[ X f], the following holds:
(a) with probability 1—1, a different vertex is selected for the update, whence X1 (v) = x(v); (b) with
probability %, a noisy update occurs at v, contributing % Zwe% wk = 0 to the expectation; (c) with
probability 1%9, a vote-copying update occurs at v, contributing (Px¥)(v) to the expectation.
Recalling that P is real symmetric (thus Hermitian), we have that

(PxF) o= (< Py = NOE )
and combining the last two displays now shows that
vey _ (1 L @=0)NN, LN g (R)
(PUN)0 = (1=~ + =) 6 e = (1= 2) ().

For the continuous-time noisy voter model, where the updates occur at rate 1 per vertex, the
associated semigroup is 4 = exp[—(I — Z)nt], thus \I/l(k) is an eigenvector with eigenvalue

exp {— (1 - (1 - ﬂ))nt} =exp (—t) ,
n
as claimed. 0

Note that, while the eigenfunctions {¢;} are L?(7g)-normalized, the eigenfunctions {\I/l(k)} are
not normalized in L?(uq) (their variance under yug is not 1). The following gives an exact expression

(k)

for the variance of ¥, and shows that when the vertices in G have bounded degrees (and more

generally, if the ratio of maximal and minimal degree is O(1)), all these variances have order .

Proposition 2.5. Foreachl=1,...,nandk=1,...,q— 1, we have
Var,g (9;") Z 76 (0)*[a(0)]* (1~ (1 = O)he(v)) (2.9)
vEV

with hg(v) = #(v) Y won P(U e w) and {v e~ w} the event that two independent continuous-time
random walks from v and w, which move at rate 1 —0 and are killed at rate 6, coalesce before dying.
In particular,

727@ )2Jebi (v)[? < Var,,, () <fZ7TG )[4 (v) |2 (2.10)

vGV UGV
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Furthermore, if we let M := max, dg(v)/ min, dg(v), then we have

0 6 M M
— < —< nVaruG(\Il(k)) < — < —.

2.11
20 = My P)=5 (211)

Proof. Let & be the transition matrix of the discrete-time noisy voter model (where each step
updates a uniformly chosen vertex), and recall from Proposition 2.4 that \I/l(k)
of & with eigenvalue 1 — % Let Yy be distributed according to the equilibrium measure pg, and

let Y7 be the configuration after one step of the discrete chain started from Y. Letting

0% = Varyg (¥(7) = B, [P (v0) 2]

is an eigenfunction

(using here that E,,, [\I/l(k) (Yo)] = (E[YY], ¢l>7rc =0 as Yp(v) is uniform on &, for each v), we have

B [0/ (1) = 0P (0] = By [1917 0)] + By 107 (V1) 7] — 2R(E,s [ 0P (0) 9P ()] )
= 20— 2R (B [0 0 By [0 0] ).

Since B, [0\F (V1) | Yo] = Ey, [07 (V1)) = (1 = 2)¥{" (v5) by Proposition 2.4, we deduce that

K k M 2y
B [07 (1) — 0 (vp) 1] = 202 — 2(1 — Do 2 7027

that is,
n

2y
To compute the latter, denote for brevity

T =P w) - vV (%) = (v - v, )

Var,, (W) = Zg, (v m) - oM ()] (2.12)

and consider the two events &,, £} describing an update at v € V' in the first step: a noisy update
per &, and a vote-copying update per &/. Since Y1g, = (Uk (v))ﬂg(v)wl(v), with U independent
and uniformly distributed on €,, we have |T|2]lg = |(U/Yo(v))F — 12(ma(v)ihy(v))?, thus

Eyue| T 1e, = ma(v)*[tn(v Z W =12 = 2716 (0) [y (v)[* -

w€¢q

On the event &), we have Y1g = (Yo(J)* — Yp(v)*)me(v)ey(v), with J independent and uniformly
distributed on the neighbors of v in G, thus

B, T1g; = ma(@)2in (@) 3 By [[¥o(w)* — Yo(o)*?]

dg(v) —

= 2 ()" ne) s D Bl o w)

wn~v

since sampling Yy via CFTP (as described in Section 2.1.2) results either in {v «~ w}, on which
Yo(v) = Yp(w), or in {v «% w}, on which Yy(w), Yp(v) are independent and uniformly distributed
on €4, contributing 2 to the expectation (recall the case of &, ) Combining the last two displays,

Buo T = 2 30 ma(o 0P (0+ (1= 0 s ST Blw o w)
,ch *leh(v ( - dgl(v vaww>
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which, via Eq. (2.12), yields Eq. (2.9). Since 0 < hg(v) < 1, we get Eq. (2.10), and Eq. (2.11) follows
from the facts 7~ < mg(v) <X, 9 <y <2-0<2and 3, 7 (v) [P (v)]> = |]1/)l||%2(m) =1. O

Remark 2.6. Consider the “magnetization” eigenfunction ¥ associated to the eigenfunction ¢» = 1
of the random walk transition matrix P, corresponding to A = 1 (and v = 6):

T(x) =Y x(v)ma(v).

v

As noted in the proof of Proposition 2.5, we have EMG\I/(Y) =0, and so
Var, (U(Y)) = Epg [[¥(Y Z?TG )re(W)E[Y (0)Y (w)] = Y w6 (v)me(w)P(v o w)

with the last identity using that Y(v), Y (w) are independent and uniform on €, when {v « w},
so EY (v)Y (w) 1wy = 0, and elsewhere Y (v) = Y (w), so that EY (v)Y (w)1{yenwy = P(v & w).
By Proposition 2.5, we have Var,, (V) < (1/6) >, ¢ (v)2 thus we can conclude that

Zﬂg(v)ﬂ'g(w (v e w) 9 ZTI’G . (2.13)

This will be used in Section 5 to bound the variance of certain statistics.

2.4. Classical autocorrelation. Fix an initial configuration xg. The point-wise autocorrelation
of X is routinely defined as

Z”G (1{& (v)=x0(v)} ~ 1)

which in the case ¢ = 2, where ¢, = {£1}, can also be written as >, m¢(v)xo(v)X;(v). The
function .Agl)(xo) from Eq. (1.2) is nothing but E,,[A(0,?)], and we will now argue that

AP (xg) = A5 (x0) - (2.14)
To see this, recall that 1¢x,(v)=a0(v)} = % Z;E X¢(v)¥xq(v)¥ (used in the proof of Proposition 2.1),
via which we can rewrite A(0,?) as

‘1

E t7XO 71'Ga

)
this then becomes, using the representation x* = 3, \Ill( (x)1y for the orthonormal basis {1},

qg—1 n

)= LS ) ).

120
By Proposition 2.4, we have that
By [0 (X0)] = e (x0),

and it thus follows that
qg—1

31U (xp) [P

k=11=1

AN (xg) = By

Q\»ﬂ

establishing Eq. (2.14) in view of Eq. (2.8). (In particular, one can express all our results in terms
of Aff) rather than Agz); we chose to use A§2) to emphasize the role of L2-mixing in the analysis.)
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3. APPLICATIONS FOR THE LATTICE

3.1. Lattice patterns. In this section, we let G be the d-dimensional lattice (Z/nZ)?. Recall from
Eq. (2.1) that we are identifying the ¢ colors with the set &, of g-th roots of unity. We can define
a general class of configurations that are periodic in every lattice direction as follows: for a given
vector v = (vi,...,vq) with v; € {0,...,q — 1}, let

Xy (J1s - - ja) = eXrinvatetiava)/a, j= (.- ja) €ZZ (3.1)

(NB. we assume that n is a multiple of ¢, so that the above patterns do not break at the edges).
For example, taking v = 1, we see that x1 (not to be confused with the monochromatic state 1) is
equivalent to the rainbow configuration from Equation (1.8):

Xrbw(j17--'7jd) :Xl(jla"'ajd) = 627ri(jl+m+jd)/q7 (jlv"‘ajd) S Z1d1 (32)

Observe that for every v and k, one has x¥ = x,, and that x¥ is an eigenfunction of the discrete-time
simple random walk on G (normalized in the sense that ||z%|| [2(rg) = 1) with eigenvalue

Ay = ilzd:cos (27Tkvi> .
i=1

q

Hence, for configurations of the form x,, Proposition 2.1 yields the exact expression for .A§2):

192
AP (x,) = . Y200t (3.3)
k=1

For a given v, if we let
Ay i =max{\g, : k=1,...,9q— 1},
then by our definition of T}, in Eq. (1.4) we have that

d
21— (1—6)A)

T., = logn + O(1),

and Theorem 1.1 will imply that

d

d 1
2 logn 0<f<b,:=1— 5=+,
s ~ - logn = a6 198 - =N
2min{l — (1 — 0)\;, 260}

(3.4)
logn 6,<60<1.

d
20—(1—-0)17)

This shows that as long as A} < 1 (whence x, is faster than worst-case), the behavior of t}}x as
a function of 6 always changes at 6, = (1 — A})/(2 — \}) € (0,1) (a dynamical phase transition,
marking the value of § below which the correlation quantity Tcorr, rather than Ty, governs tyyx).

Example 3.1 (Rainbow initial condition on Z%). For any d > 1 and ¢ > 2, the rainbow initial
condition X = x1 for the noisy voter model on ZZ has \§ = cos(%”), so by Eq. (3.4),

d %logn 0<0<6,

logn: d 9

txrbw

M 2min {1 (1 - 6) cos(2X), 26}

with 6 =1—-1/(2 — COS(%F)).

In the special case ¢ = 2, x;by i the alternating condition x,;; = x1 and has A\j = —1, the lowest
possible value of any A}; thus x; achieves the optimal T}, ~ 4%‘20 logn for ¢ = 2 (as we have already
established, more generally for any bipartite graph G, in Remark 2.3).
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(NB. ty5 is asymptotically optimal in dimension d = 1 over all choices of a (deterministic)
initial state xo, as was stated in Theorem 1.3; we will establish this in the next subsection.)

In higher dimensions that is no longer the case; e.g., as mentioned in the introduction, for
d = 2 and ¢ = 5 one can consider the “knight” initial condition x, for v = (1,2); there, one has
A; = 3(cos(%E) — cos(%)) = —1 (with an equal Ay, for all k = 1,2,3,4), whereas A} = cos(2E).
More generally, we have the following.

Example 3.2 (Knight initial condition on Z%). For every (d,q) with d > 2 and ¢ > 5, as well as for

¢ = 4 in dimensions d > 3, the knight initial condition xyn; = xy for v = (1,...,1,2) has A} < Aj.

Thus, by Eq. (3.4), tyix from an initial state xg = Xyt is asymptotically faster than from xg = Xypy-
To see this, write ¢, = cos(%), so that A\g1 = ¢ and Aj = ¢;. With this notation,

Aoy = %Ck + éCQk .
Let k' = 2k (mod ¢), and note that if k' # 0 and g # i then Mgy < max{ck, i} < Aj. Indeed:
e The case k' = 0 occurs if and only if ¥k = ¢/2 (for ¢ even), whence ¢, = —1 and ¢ = 1, so
A = —1+2 <0 (strictly if d > 3) and A} = ¢1 = cos(%r) > 0 (strictly if ¢ > 4); thus, A\gy < ¢1.
e The case ¢y = ¢, = ¢1 can occur only if 27 /q = %77, i.e., when ¢ = 3, precluded by assumption.
Note that, for ¢ = 4, one can readily write the explicit values of A, for v = (1,...,1,2) (as ¢ is

simply 0 if k is odd and (—1)%/2 if it is even), yielding i = —1/d for d > 3 (and A} = 0 for d = 2).

3.2. Optimal initial condition in 1D. In this section we establish Theorem 1.3, showing that
the rainbow initial state X,y is optimal in dimension d = 1 for all ¢ > 2.

Proof of Theorem 1.3. Once we prove that Agz) (Xrbw) = O(.A?) (x0)) for every xg as per Eq. (1.9),
the fact that Ty, < Ty, + O(1) will readily follow from Eq. (2.5) of Proposition 2.1.

Xrbw —

From the discussion in Section 3.1 (specifically, Eq. (3.3)), we have

q—1
AEQ) (Xetr) = (1]2 o~ 20-(1=0) cos( 252Nt ~2(1—(1=6) cos( %))t
k=1

Hence, to prove Eq. (1.9) it remains to show that, for some absolute constant ¢y > 0,
2 C0 —2(1-(1-6 27 y)¢
AP (xg) > L (1=(1=0) cos(FNt (3.5)
Note that Proposition 2.1 already gives such a bound for ¢ = 2, as we have A§2) (x0) >
Hence, we can assume ¢ > 3 through the remainder of this proof.
We will identify the vertices of G = Z/nZ with 0,...,n — 1, and let

wz:<eXp(2”TW)>n_l (1=0,....,n—1)

J=0

_q_—(4-20)t
q—1

(the I-th n-dimensional Fourier vector), which form an L?(7g)-orthonormal basis of eigenfunctions
for simple random walk on G, with corresponding eigenvalues
A = cos (2£) ((=0,...,n—1).

Next, let
n—1

k) — (<X§’¢l>’f@)z:o . (k=0,1,...,q—1), (3.6)
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i.e., v*) is the discrete Fourier transform (DFT) of xk, up to a factor of 1/n from ng in (-, ).

That is, if F is the DFT matrix, i.e., the symmetric matrix whose columns are 1, then v*) = %Fxlg .

We stress that v(¥) have are unit vectors in L? by Parseval’s identity:

n—1 n—1 n-l nol
S WBEWE =D 1 g = (6 xb)ng = D G Pra i) = D ma() =
1=0 1=0 J=0 J=0

Recalling Eq. (2.8), which wrote AEQ) in terms of \I/(k) (x) = (x¥, ) ne from Eq. (2.7), we have

qf —
Al(f 722 |2 —2(1-(1-0)A\)t (3.7)

=1 1=0

Q| =

Our goal will roughly be to show that the coefficients |v(¥)(1)|? for I < (1 + o(1))n/q have large
enough mass ¢, so that by the monotonicity of A\; we would get AEQ) (x0) = cexp[=2(1—(1=0)A, /q)t].
Now, let ©; denote the circular shift (0;x)(j) = x(j — ), and define

I/l(k) = @lu(k) .

We want to exploit the fact that the state x.1, yields an optimal basis in the following sense:

(k) B .
{Vl k=0,....q—1 — 5k%+l k=0,...,q—1 if Xg = Xrbw
1=0,...,n/q—1 1=0,...,n/q—1

(in the above and in what follows, §; is the indicator function 1;_; ), while taking the same
shifts with other initial configurations necessarily yields correlated vectors in the sector {do, . .. (5%}
(which, as we will soon see, correspond to the coefficients that we are trying to bound from below).

To do so, let ® denote circular convolution (i.e., (x®y)(m) = Z?;& x(7)y(m — j) with the index
of y taken modulo n), so that

Vl(k) = V(k) ® 51 s

and recall that, if X = Fx and y = Fy are the DFTs of x and y, then (X,y) = n(x,y), and F(x®y) = X-y,
the point-wise product of X and y. In the right hand above, v%) = %Fxlg and & = (Y1, Y1)y = %le,

so Fu(k) = % and Fé; = 1/;, implying that Fyl(k) = % -a);. Tt then follows that

k ke 1 k % L =0y = 1
<Vl(1 v, Vz(22)> = 5<FV1(1 v, FV1(22)> = g(F(V(kl) ® oy,), F(vk2) @ 6y,)) = E<X§l X0 )
1 _ _
= {6 ) = T — ) (38)

where we are reading both k1 — k9 and I; — I modulo n. This shows that the Fourier coefficients
v(®)(1) describe the correlations between the vectors {Z/l(k)}. To leverage this, consider the collection

By:={": k=01,...,¢—1,1=0,...,N -1}, (3.9)
for N < n to be fixed later (in Eq. (3.11). The correlations between u,v € By satisfy the following:

> luwP= 3 pERG-nP= 3T R )P

u,veBN k1,k2€{0,...,q—1} k1,k2€{0,...,q—1}
uF#v I1,l2€{0,...,N—1} I1,l2€{0,...,N—1}
(k’1,l1)7é(k2,l2) k1#k2

q—1
=aqy Z N =P P, (3.10)

k=11=—(N— 1)
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where the first equality is by Eq. (3.8); the second one used that (0 (1) = &y (as x) = 1 = ), so

we only get a contribution from ki = ko if [{ = [y , disallowed in the first summation; finally, the

transition between the lines counted the multiplicity of each k = k1 — ko and [ = Iy — I as follows:
e there are ¢ pairs (ki, ko) realizing every k = ki — ko # 0 (for every kq, take ko = k + ky);

e there are N — |l| pairs (I1,[2) realizing every | =ly —l; € {—(N —1),...,N =1} (for [ > 0,

takel; =0,...,N—1—land ly =l +I; for | <0, take lp =0,...,N—1—|l] and I} = la—1).

To get a lower bound on the above coefficients, we use the following simple lemma, which is a

variant of, e.g., [3, Lem. 9.1] and [22, Lem. 2] (those lemmas give bounds on max;x; |(vs,v;)| for

unit vectors v; € R™ as opposed to the version below that considers },, {|vi, v;)|? for v; € C", but

the same proof applies to our setting here, and we include it for completeness).

Lemma 3.3. Let vi,..., iy € C" with ||vi|| =1 for alli. Then 3 , [(vi, vi) |2 > 7.

Proof. Consider the Gram matrix G = ({v;,v;))"#’,. As it is Hermitian with rank at most n

7,j=1
(G = B*B for an n x (n+7) matrix B), the matrix A = G — I has real eigenvalues {);}}f/" in which
A = —1 has multiplicity at least (n+r) —n = r. By the assumption that the v;’s are unit vectors,
its diagonal is all-zero, whence its Frobenius norm ||A||y = 1/tr(A*A) has ||A|? = D it (i, vj) |2
At the same time, ||A[|2 =", A? > r, as required. O
Choose now n n
N="y 3.11
q + 15+ (1—-0)t (3.11)

noting that

)
)

2nN 27 27 4w
<—< —+ =< —

g~ n g 15~ 5
since ¢ > 3. Then By from Eq. (3.9) has ¢N unit vectors in C", and therefore, by Lemma 3.3,
qn
S P =gN —n=— "
e 15+ (1—0)¢
u#v
which, when combined with Eq. (3.10), gives
-1 N-1 n
Z — [N OP > (3.12)
=5 15+ (1 — 0)t
as well as, after plugging the trivial bound N — |[| < N into the last display,
! 1 n q
E(2 > . = ) 3.13
D Z |” OF 2% B30-0n " Brera—on (3.13)

k=1]=—(N—
In order to use these two estimates, we first bound AEQ) (x0) from Eq. (3.7) via

q 1
AP ) 2 S Z o,

1.5 I=—(N—
and observe that, for each —N <[ < N,

~21=(1=ON) _ =21 (1-0) cos(2Z)t o (2<COS (27;|l|) ~ cos (?)) (1- 9)t>

> 2o (142 cos () o (22 ) )1 - )
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Writing « = 2 N/n € [27/q, 47 /5] and y := 27(N —|l|)/n € [27/n, z], in this range we have
T
oY < cos(z —y) —cos(z) <y.
q

(The right inequality holds as cos(+) is 1-Lipschitz; for the left one, when y < x/2, the mean value
theorem supports the lower bound d,y for 6, = min{sin¢ : % <é< %w} > 7/(2q), and if y > x/2
then we have the lower bound cos(z/2) — cosx > d,42/2 > 4y/2 for the same J,.) It follows that

q—1 N-1

1 x N —|l] =?
./41(52) (XO) > 7672(17(179) cos(%))t |V(k) (l)‘Z <1 + 7” . 1(1 - 0)t>
q k=11=—(N—1) " 9
1 2r q 2 (1-0)t
> 7672(17(179) COS(T))t L S
4 5+q+(1—0t ¢ 15+(1—0))"
where between the lines we used Egs. (3.12) and (3.13). Finally, as cos(-) is 1-Lipschitz,
2N 2 2
2T > B e
cos (5-) 2 o5 ()~ 5 —a
and therefore
. 2 _ —0)t
(2) S 1 o(1—(1-0) cos(2z))t q ™ w 74nm
A (xo) 2 Je B P ) VAR T C RV (e '

If (1 —0)t <1 then the first term in the maximum is at least 1/7, whereas if (1 — 0)t > 1 then the
second term in the maximum is at least 72/(16¢). The last exponent is at least e~*", and when
combined, this establishes Eq. (3.5) and thus concludes the proof. u

4. UPPER BOUNDS

In this section, we prove the upper bound in Theorem 1.1, from which the upper bound in
Corollary 1.4 will readily follow (see Remark 4.14).

Fix 6 € (0,1] and g > 2. Let G = (V, E) be a graph on n vertices satisfying Eq. (1.1) for some
fixed «, ¢p, and let xg be an initial configuration on G. (We do not require that G' to be connected
for this part of the proof.) Define

A (1) = [[Pxo (Xt € ) — pclly

and
tp := max {TXO, 4—10 logn} , (4.1)
t1 := to + b1 (log n)l_% for b1 =3/6, (4.2)
to :=t1 + by(log n)l_% for by =2/6. (4.3)
The goal will be to show that
&9 (t2) < Ce3008m)' % (4.4)

for some C' > 0 depending on 6, ¢, &, ¢y (but not xo and G).

Remark 4.1. If one wanted to write an upper bound that would hold for every n (as opposed
to n large enough), and at the same time keeps the constant prefactor C' > 0 reasonably small,
the following could be done. Using the representation detailed in Section 2.2, one can show that
tox(e) < 07 (logn + log(1/e)), since we can couple X; to the stationary distribution on the event
that all the walks (Z?),ey have died (occurring with probability at least 1 — ne™%).



THE NOISY VOTER MODEL WITH GENERAL INITIAL CONDITIONS 21

To prove Eq. (4.4), we follow the recipe of the analogous upper bound proof in [19], with some
modifications due to the fact that we are working with a slightly more general model and on an
arbitrary geometry, rather than on a lattice. The last part of the proof instead relies on the complete
monotonicity of Aﬁz) (xo), proven in Proposition 2.1.

Throughout this section, we will be making ample use of the duality with coalescing random
walks and the couplings discussed in Sections 2.1.1 and 2.1.2. Hence, for the fixed time t2, we can
look at the dynamics on [0, #2] backwards in time and analyze the walks {Z{ },cv sc(o,t,]- We refer
to the locations of the walks at some time s (or t3 — s in the forward dynamics) as the histories of
the walks at time t5 — s. We also refer to the collective locations of the walks that have not been
killed by time s (or t2 — s in the forward dynamics) as the surviving histories at time to — s.

4.1. Reducing the total variation distance at time ¢3 to a product measure at time t;.
In this subsection we will establish the following result that, by analyze the backward dynamics in
the interval [t1, to] from Egs. (4.2) and (4.3), reduces di$,(t2) to the total variation distance between
the projection of X3, on certain subsets V; and the product measure of ugly;.

Lemma 4.2. Call a collection of subsets of vertices {V;}" (for m = m(n)) good if, for all i, j,
|Vi] < coexp [(logn)lfg] ,  distg(V;, V;) > (logn)Hﬁ,

«3

where B := %ﬂ If Xt(i) are i.i.d. copies of Xy, and Y are i.i.d. copies of ug, then

‘HPXO t1 (Vi) € ) - HP(Y(Z)(V;) c )
=1

Remark 4.3. We will in fact show a stronger statement, where the maximum over {V;} is replaced
by an expectation over random collections {V;} that are good with an extra indicator that the
surviving history at time ¢; is precisely | J,; V; (see the event E defined in Lemma 4.6 and Eq. (4.5)).

+0(n™).

TV

. (t max
TV( 2) {Vi}, good

Remark 4.4. We will reduce to good collections {V;} where each V; is a subset of some ball B, (r)
whose size is at most ¢ exp|(log n)k%]. Since the proofs in later subsections will only rely on the
sizes of the V;’s and their pairwise distances, we did not include this in the criteria for being good.

We begin with an elementary observation that, in order for the random walk (Z?) to reach
distance at least r from its origin v, its first » updates must be moving updates (having rate 1 — 0)
as opposed to a killing one (having rate 6), the probability of which is at most (1 — )" < ™.

Fact 4.5. For every fired k > 0 and 8 > 0, the probability that that at least one of the n random
walks (ZV)pev travels a distance of at least k(logn)'*? is at most nexp[—0x(logn)+7].

The next lemma will show that the surviving histories at time ¢; are typically good.

Lemma 4.6. Let {V;} be the sets obtained by starting with a singleton per surviving walk at time ty,
and repeatedly merging Vi, V; if distq(V;, V;) < (log n)*P. Let E be the event that {V;} is good.
Then, we have P(E) > 1—O(n™?).

Proof. For any v € V, let F, be the event that ZV (the random walk started at v in the backward
dynamics) does not leave B,(1 log"™ n) for s € [0, by (log n)'=2], and let F = Nyey Fo- By Fact 4.5,

P(F)=1-0(n"1).
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Next, we want to show that with high probability, there exists an annulus of logarithmic thickness
around any v € V such that all walks started at the vertices in such annulus are killed by time
ba(logn)'~2 (that is, before reaching ¢; backwards in time). For ~ := g+ “72, define the annuli

Ay(k) = By(2k - 2(logn) ™)\ By((2k — 1) - 2(logn)'*#), k=1,..., L (logn)".

Note that for fixed v, the annuli {A,(k)}x>1 are at graph distance at least 2(logn)!*# from each
other, and that

|Ay(K)| < | B, (4k(logn)+3)| < cgexp ([2k - 2(log n) +0]' %) < coeﬂog")“*“”“‘“) — cpellosn)’®

by Eq. (1.1) and using k < £(logn)” and (1+ 8+ 7)(1 — «) = 1 — &. For each v and k, let G 1
denote the event that all the walks started at A, (k) are killed by tlme by(logn)'~2. Then, since a
single walk survives in such time with probability exp[—@bz (log n)l_%], a union bound yields

P(G5 ) < | Ay(k)le002008m" % < pemlowm) ™
via the aforementioned bound on |A,(k)| and the choice by = 2/6. It follows that

P(G X
P(szc),k | F) < };(;’;) = 2¢p exp [ _ (logn)l_i] ‘

1
for large enough n. Let G, = ,‘;ng )’ G, i, be the event that all the walks started from at least one
of the annuli A, (k) are killed by time b2 (log n)l_%. Then, noting the events G, ;. are conditionally
independent given F' (as the random walks from different annuli cannot coalesce under F), we get

H(ogn)" 1
! < ogn
= 1T #@ln < (2epe o' ) SO mmottntonny 2 _ pm10),

where we used the fact that 1 — /2 4+ v =14 «?/2.
Hence, if G = ),y

(with 1 < k < 1(logn)?) whose random walks are killed by time bs(log n)'~2, a union bound gives

G, is the event that every vertex v € V' is surrounded by some annulus A, (k)

P(F°UGY) <P(F°)+ > PGS | F)=0(n"?).
veV

On the event F'N G, at time t1 every surviving walk must be

(1) within $(logn)*™# of its initial position, and
(2) surrounded by an annulus A of thickness 2(logn)'™8, that is contained in a ball B of size

at most coe(log ")177, such that all random walks started from A were killed by time ;.

This implies that, on F N G, every surviving vertex is within a ball of size at most cge(°8 n)'~2

and is surrounded by an annulus, vacant from walks that survived to time ¢, of thickness at least
(2 -3 — 3)(logn)'*F = (logn)' 7. It follows that F NG C E, and so P(E) > 1— O(n™?). O

To reduce ||Py, (X, € ) — pcllrv to [|Px (X, (U Vi) € -) — |y for the well-separated surviving
components {V;} whose existence was addressed in Lemma 4.6, we will use the update support
notion from [14, 15]. This notion takes a much simpler form in our setting of the noisy voter model
compared to the Ising model. We include the proof of the following simple lemma—taken verbatim
from [15]—both for completeness, and to justify a slightly generalized version of it (for a product
of multiple chains), which we will later need and follows from the same argument.
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Lemma 4.7 (Special case of [15, Lem. 3.3]). For anyt >t > 0 and any set W of vertices at time t
in the space-time slab, sz denotes the (random,) history of W at time t, we have

HPXU(Xt(W) € ) e rW”TV < E |:HPX0(X1?(W) € ) — kG rVAVHTV} ’

where the expectation is with respect to the update sequences along [f, t]. Furthermore, if {Xt(i)} are
i.i.d. copies of the dynamics, and 7; € [0,t] are stopping times for their backward dynamics, then

HHPXO (x( T 1w <IE[HHIP’XO Xo )~ Tkt -

Proof. Consider two instances of the dynamics, X; and Y}, started at xg and pug respectively. As
explained in Section 2.1.2, we couple the backward dynamics of Xy, Y; using the same update
sequence. Given the cumulative set of updates J;, in the interval [£,t], the configurations X;(W)
and Y;(W) at time ¢ become deterministic functions fr, (Xt(W)) and fr, , (Yt(W)) (with the same

f7;,) of the configurations at time ¢ restricted to the surviving history W (as the killed histories

are accounted for by ]:i,t)' Hence, for any set of configurations I' and a realization of Fis
P (Xe(W) €T | Fy) = Puo (f7,, (X;(W)) €T),
Pue (Xt (W) €T | ]:tt) uc(ffﬂt(YE(W)) el).
Thus, [Py, (X¢(W) € ) =Pug, (Yz(W) € -)|lvv = maxp (Py, (X¢ (W) € ) =P, (Y3(W) € T)) becomes

ma [ (IPXOU;“(XAW)) € T) ~ Py (fr,, (Y(1)) €T)) dP(F;,)
< [ max (B (£, (51) € T) = g £, (V1)) € T)) dB(F;)

s/\ |

where in the last inequality we used that a projection can only reduce total variation distance.
For the generalization, note first that we can replace ¢ by t — 7 follows from exactly the same
proof, as we may replace Fi+ everywhere with the stopped o-algebra F, for the backward dynamics.
(Issues pertaining to the event {7 = s} having probability 0 can easily be avoided by running the
discrete backward dynamics while tracking the cumulative associated rescaling time in tandem.)

For a product chain (Xt(i))gil with individual stopping times 7; for the backward dynamics Zs(i),

Pro (Xi(W) € ) = P (V;(W) € 1)

d]P)(‘Ff,t) ’

TV

we expose the stopped chain ZS(ZA)TZ, in each coordinate, and the required result follows. O
Proof of Lemma 4.2. Applying Lemma 4.7 with ¢/ = t1, t = to and W =V, we write W' =V} as
prescribed in Lemma 4.6, and further apply that lemma to find that

8, (ts) g]EU Po (Xu (VD) €)= nalyw| E] L 0™, (4.5)

and in particular,

9 (ty) < max Lt O(n™?). (4.6)

{Vi} good

Py (X, (UVi) €) = ety

Consider some realization of a good {V;}™,, and let us examine the dynamics in the interval [0, ¢1].
Running the backward dynamics from time ¢1, we couple the vector (X, (V;)), with (Xt(f) VN,

where the Xt( ) are i.i.d., by letting the random walks and noisy updates generating the two vectors
be identical as long as no walks from two different V;’s meet. Should the walks from V; and V;
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meet, we let them coalesce normally under (Xy, (V;), X, (V;)), and instead let them stay independent

under (Xt(f) (V3), Xt(f ) (V;)). Consequently, the two vectors are identical if no two walks from different
Vi’s meet, which happens for example if no walk travels more than (log n)Hﬁ . Hence, by Fact 4.5,

1 m —
o (X0, (), Xy (Vi) € ) = B (X[ (V) XV (V) € )| < 0n™0).
For the same reason (using P, in lieu of Py, for the {Y(V;)}), we get that

HMG lur, v — (rely, ..o x Mvam)HTV <O0(n~1).

Combining the last two inequalities shows that for every good {V;}7,,

| N HIP’XO Oy e ) -T[PrOm) <)
i=1

which together with Eq. (4.6) concludes the proof. O

]Pxo th UV :U'G Uvi

4.2. L'-L? reduction at time ¢;. Thus far we have reduced &’ (¢2) to the total variation distance
m

between two product measures, namely (X( )(V))z 1 and (ugly, )iz, for a good collection {V;}i;.
In this subsection, we bound the latter as follows.

Lemma 4.8. The following holds for every good collection {V;}™ . Let 7; be the minimum s > 0
where the backward dynamics, started at time t1 from every v € V;, has its surviving history reach
size at most 3 at time t1 —s, or T; = t1 if the backward dynamics reaches time 0 before this happens.
Further let U; be the surviving history at time ;. Then there exists some C = C(q,8) > 0 such that

HHIP’XO (xO ;) HNG <CE[Zj

+0 (6—8(10g n)

2
Xo t1 T ) ) — HG rUi 1
v

Proof. We first examine the event {7; < t;}. The probability that 4 fixed vertices vy,...,v4 in V;
have each of the Z3’ survive to time 0 without ever coalescing is at most

{T¢<t1}:|

1«
2

&
o0t < 1 —1200gm)~ %
n

9

using Eq. (4.2). Since [V;] < ¢gexp [(log n)l_f] we thus have

. 4 o
]P)(TZ' _ tl) < ("j|>e—40t1 < c70€—8(logn)177 :
n

and can conclude from a union bound over the m < n sets V; that

P ( max 7; < t1> =1- O(eiS(lOg")li%) .

1<i<m

We now apply Lemma 4.7, using the stopping time 7; for Xt(i), inferring that

DICAESICEDES | I MY )1 CHCHMAERES | (2
HHPXO Xt(ll T Ui H:U‘G

We now wish to use the L!-L? reduction for product chains (we only need one side of it here):

<E

y

+O(e8oem' ™y gy

{maxi Ti<t1}




THE NOISY VOTER MODEL WITH GENERAL INITIAL CONDITIONS 25

Proposition 4.9 ([15, Prop. 7]). Let X; = (Xt(l),...,Xt(m)) for mutually independent ergodic
chains with stationary distributions m;. Let m = [[7" m and My = 1", ||IP)(Xt(i) €-)— 7Ti||%2(m).
Then |[P(X; € -) —|lvv < VI for any t > 0; in particular, if My — O then |P(X; € ) — 7|y — O.
Conversely, if My — oo then ||P(Xy € +) — mllrv — 1.

Remark 4.10. The upper bound in Proposition 4.9 is straightforward and, as seen in that proof,
holds more generally: if v = [[7", v; and m = [[;%, m; then v — 7llwv < ot [|vi — TI'Z‘H%Q(T))UQ.

By Proposition 4.9 (we apply its upper bound as per Remark 4.10), we infer from Eq. (4.7) along
with Jensen’s inequality that

HHPXO (X2 (07) HMG

for the random variable M = >, ||v; — mHLg(m) with v; = Py (X4, 7 (Us) € -) and m; = pgly,-
Observe that we deterministically have

vi(x) — v; — T v; — il |Us]
||Vi 7TZ||L2 Z | ) i )| < ” ) ZHOOH ) ) ZH < 2(0> @ ”Vl N Wi"%va
x€€

SB[ rcey] +O(0 ) )

i ( min, 7;(x
using that min, 7m;(x) > (6/q)IVil, since any configuration x can be obtained by letting the first

update in the backward dynamics of each vertex v € U; be a noisy update (with probability €) that
assigns the new value x(v) (with probability 1/q). As |U;| < 3 when 7; < t1, we get

> |F

which, together with Eq. (4.8), completes the proof. O

3
[mt]]-{maxz Tz<t1}] < 27

2
XO t1) Ti (U'L) € ) - MG rUl TVIL

{Ti<t1}] ’

4.3. Reduction to the autocorrelation AgQ). With Lemma 4.8 in mind, define

. 2
IP)XO (Xt(l)_Tz(UZ) € ) —HG rUi TV

The final ingredient in the proof will be to establish the following.

(Ui t) = | (4.9)

Lemma 4.11. The following holds for every good collection {V;}7,. Let U; and 7; be as in
Lemma 4.8. Then, for some C = C(q,6,cq, x) > 0, the &%, (U;, t) from Eq. (4.9) satisfy

[0 4
-3

Zd Ui tt — 70 L ciy | < C(1+ 13)et008W 2 (AP (xg) v e 41) 1 O(n~?) |

To obtain this bound, we will aim to reduce the quantity Y ., & (U;, t1 — Ti)21{7i<t1} to one
involving single sites, rather than subsets U; of size at most 3.

Remark 4.12. Roughly put, the main obstacle in this part of the proof is that, given the generality
of xg and G, the function s — di$,(U;,t; — s) can be highly irregular. Rather than treating the
terms in this sum individually, our strategy will be to reduce their total to the function ./452) (x0),
which, as we showed in Proposition 2.1, is completely monotone. To do so, we will need to sum
%, (U;, -) at identical times, and so we need to account for the fact that the times {7;} have different
distributions. We overcome this by first replacing the U; with deterministic sets, then bounding
the densities of the 7;, and finally reducing the analysis to single sites, thus to Ag) (x0)-
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While the sets V; were well-separated (at distance at least (log n)'*+#), the U; might not be.
However, they are so with high probability; namely, if V;/ is the (log n)*P-thickening of V;, i.e.,

U B, ( (logn) 1+B> ,
veV;
then Fact 4.5 (used with x = 1) shows that every Uj is contained in V; with probability 1—O(n~10).
Note that because distg(V;, V) > (logn)!*?, the V' satisfy
distq(V/,V}) > 1 (log n)t*o .
Then, if US C V/ denotes the subset of V/ that maximizes ;3 (U;,t1 — s)? (note that U; is not

determined by 7;, while U" is), we have

m

E ) @(Uits — 70)*Lir<ty) <ZE (U] 11— 73)* L ciy] +O(n710). (4.10)
=1 i=1

Next, we would like to integrate over the 7; and reduce to common times for every i. The probability
of 7, > s is at most bounded by the probability that at least 4 walks started at V; survive up to time
s, which is at most (l‘f‘)e*‘ws. Then, if we are to have 7; € (s,s + h), it must be that along that
interval we remain with exactly 4 surviving walks (a single coalescence or noisy update before 7;
occurs), which then receive at least one update. The number of updates from that point is at most
a Poisson(4h) variable, and hence the probability it is nonzero is at most its mean, 4h. Therefore,

P(r; € (5,5 + h)) < dcletlosn)' ™3 =105y, (4.11)

Hence, if F; denotes the distribution function of 7;, then
t1
E[d% (U7t = 73)* Lrcny] < / &R (U7t — 5)°dFi(s)
0
_a [l
< 4Cé€4(10gn)l 2 / d);(\)/(Us ) 67498(18 (412)
0

(note that in the latter expression, Uf is a deterministic set for each s given V;). Hence,

ZIE (U7t — 1) Ly cryy] < Acgetlos™ 2 / (Z &O(US ty — 5)2) e 4%5ds.  (4.13)
We now use the following;:

Lemma 4.13. Let {W;}7, be subsets with |W;| < 3 and distc(W;, W;) > 3(logn)' P, and let A
denote the maximum degree in G. Then for every t > 0,

m

Zd)T(Q/(Wi,t)Q < 18¢An (tQ.AEQ) (XO) + (t + 1>6740t> + O(nfg).
i=1
Proof. Let & denote the minimum r > 0 where the backwards dynamics, started at time ¢ from

every v € W;, has its surviving history shrink to a single (random) vertex v; at time ¢ —r. We have
that P(§ > t) < ('Vgil)e*%t, and applying Lemma 4.7, we get

& (Wi t) <E [ (vis t — &) Lge,<y] + P& > 1) < E [ (03, — &) gg,<pp] + 3
Just as at the beginning of Section 4.3, if W/ is a (log n)*P-thickening of W;, that is,

U B, (% (logn) Hﬁ) ,

veW;
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then v; € W/ for every 4, with probability at least 1 — O(n=19). Thus, if v; denotes the vertex
v € W/ that maximizes d}%(v,t — r), then we can bound

E (&% (vi,t — &) Ligien] < E[2R0f' .1~ &)’ Ligcn| + 00 ™0).

Exactly as in Egs. (4.11) and (4.12), we have P (& € (s,s+ h)) < 2h(‘V2Vi|)e_205, and so, if we let
G; denote the distribution function of §;, then

t ¢
E [déf{,( & ,t— fi)ﬂ{gigt}} S/o & (vf, t — r)dGi(r) < 6/0 dé‘{,(v{,t—r)efzardr.

Combining the last 4 displays, along with (a + b)? < 2(a? + b?) and Jensen’s inequality, we get
t 2
&9(W;, 1) < 72 (/ a9, (vl t — r)e—29’“dr) +18e7 4 1 O(n™19)
0

t
< 72t/ &0 (ot — )2 e dr + 18719 + O(n19).
0

This yields

m t  m
39 (Wi t)? < 72t / (Z & (o7t — r)2)e—4‘”dr +18ne~ 4% 1 O(n™9). (4.14)
i=1 0 ti=1
Since diste (Wi, W;) > 1 (logn)'*#, we have distq (W], wi) > 1(logn)*P > 0 by our definition of
the W/. In particular, the vertices {v]} are all distinct for any fixed r, and so we may replace the
sum over v; (¢ =1,...,m) by one running over all n vertices:

m

DA Wt =) <Y A (0t =) S20E] Y me(v)d (vt = 1),

i=1
using that 2| E|rg(v) = dg(v) > 1. Observe that di¥ (v, s) is nothing but the total variation distance
of the single-site marginal X;(v) from the uniform distribution:

di (v, 5) = (; 3 P (Xs(v) = w) - 1(>2 <I 3 (Pa(Xu(v) =w) - 1)2,

wel,

which, upon recalling the definition of Ag)(xo) from Eq. (1.3), implies that

m

DA (]t =) <

=1

EA (x0) -

l\D\bQ

Revisiting Eq. (4.14), and writing |E| < An/2 (noting in passing that the maximum degree A is
less than c¢pe by Eq. (1.1)), we get

Zd (Wi, t)? <18qAn< / AP )49Tdr+e4at>+0(n9).

Now, by Proposition 2.1, there exist a; > 0 with >, oy = A[()2) (x0) = qT and exponents y; € [#,2—6]
such that Aﬁ),,(xo) =S, ae™21t=) and so it follows that

t t t
/ .A,Ei),,(xo)e_éwrdr = Z ozl/ e 2m(t—r)=40r g, Z al/ (e72mt ¢ 6_49t)d’l”
0 [ 0 [ 0

-1
= tAP (xg) + E—— . te~ 40t



28 P. CADDEO AND E. LUBETZKY

=2y (t—r)—40r e—(2'yl/\40)t

where we used e . This concludes the proof. ]

Proof of Lemma 4.11. Using Lemma 4.13, we deduce from Eq. (4.13) that

m a t
Z E [&9, (U]t — 7'@-)2]1{”@1}] <Ct? gAllogn)' ™2 n/ (Agf)_s(xo) + e 0t=9)ye=495q5 L O(n7?).
i=1 0

(4.15)

Put s = by (logn)'~2 for by = 3/0 as per (4.2), whence t; = to+s. Writing .AEQ) (x0) = S age 2t
as in the above lemma, with oy > 0 and ), oy = q%ql < 1, we use that 1+ q_il < 3 to bound

Agf)_s(xo) 4 W0(ti-s) < 32 e~ N0 (ti—s) _ 320” (e*Z’Yltl v 6749151) (2 A 46)s
=1 =1

<3 (Aﬁf) (x0) V ne_46t1> el

Plugging this in Eq. (4.15), the integral there is bounded from above by 3t1(A§f) (xo) Ve~ 01) 5o
m
S CE[B(UT 1 — 1) L cyy] < Ot 40080 2y (,45? (x0) V e*‘“’tl) +0(n™).
i=1

Combined with Eq. (4.10), this completes the proof. O
4.4. Proof of upper bound in Theorem 1.1. Combining Lemmas 4.2, 4.8 and 4.11, we get
&9 (t2)? < Ot} 64(10’5”)1_%72 (.A,Ef) (x0) V 6_46t1) + O(e_S(IOg”)l_%) .
By definition of ¢; in Eq. (4.2) and T}, in Eq. (1.4), using Eq. (2.5) from Proposition 2.1 yields
n (A,f)(Xo) v 6—49t1) < o~ 2001 (logn)' %
Hence, the choice by = (3/0)(logn)'~2 shows that
49, (t)? < O(ti’e_mog”)l_%) < Ce_(log")l_% ,

for some other C' > 0 depending only on 6, ¢, ,cy. This establishes Eq. (4.4) and concludes the
proof of the upper bound. O

Remark 4.14. The proof holds verbatim if we replace xg with the uniform initial condition /.
However, as A£2) (U) = 0, the Ty, part can be dropped, thus the upper bound in Eq. (1.10) follows.
5. LOWER BOUNDS

5.1. Autocorrelation lower bound. In this section, we show the {0y >

~

Ty, part of Eq. (1.5).
Let G be a graph satisfying Eq. (1.1) for some «, ¢g, and fix a configuration xg. We will show a
stronger bound: there exists some CT = C1(6, ¢, «, ¢g) > 0 such that, for every e > 0, if

1
th =T, — %log(l/e) yeil (5.1)
(where T}, is as in Eq. (1.4)), then

[P (X4t € 1) — pllov > 1 =€, (5.2)

and in particular, £9, (1 —¢) > 1.
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To establish this, define the statistics
« 1
R =) _7a(v) Y av,w,t(l{xw):w} - *) ) (5.3)
veV wely q
where

1
Ayt = Py (Xt (v) = w) — p forallve V and w e €.

Notice that E,,[R{°(Y)] = 0 (since P, (Y (v) = w) = 1/q for all v,w), whereas E, [R*(X})] is
nothing but the autocorrelation:

2
B lRE(0] = X 160) 3 s = S m6(0) 3 (BalXet0) =) = 1) = A x)

veV wely veV wely
as given in Eq. (1.3).
We next need a bound on the variance of R;°(X;):
Claim 5.1. There exists Cy = Co(0,q, &, ¢p) such that

Co

C
Varg, (Ri°(X0) < —2 AP (x0), - Varg (R (V) < A7 (o).

Proof. 1t will be convenient to work with the following formula for R;°(X}), equivalent to Eq. (5.3):

RXO ZWG Z athﬂ{xv—w}a

veV wedy

indeed, the equivalence is due to the fact that Zw Ayt = 0 for every v and t. We thus have
VarXO ’R,X Xt Z Z 7TG au,w1,tav,w2,t COon(ﬂ{Xt(u):wl}v ]l{Xt(v)zwz})

w,vEV wi,w2€Cy

<ZZ“(“) (v) M | Covi, (1 1 )
> G lyes 2 Vxo {Xt(u)=w1}s “{X¢t(v)=w2}/| »

u,v wi,w2

which, by the symmetry between (u,w;) and (v,ws), is in turn equal to

> ma(u)ag o > 7a(©) [Covg (Lix, = 1{X0(0)=wa})]

u,w1 v,w2
= ZWG mmaXZ\COon (Lexow)=wr}s Lixi(o)=wn})| -
U w1

(In the last inequality we used mg(v) < A/n where A < ¢pe is the maximum degree of G.)
We next argue that the last sum over v is bounded by some C(0, co, &) for all u,w;,ws. To see
this, let X/ be a an independent copy of X}, whence

| Coviy (L, (=1 }» T (v)=w2}) | = [P(Xe (1) = w1, Xi(v) = w2) = P(X(u) = wi, X{(v) = wa)

and let 7 be the minimum time s > 0 in the backward dynamics where the walks (ZY) and (Z?)
coalesce. We can couple (X;(u), X;(v)) with (X;(u), X/(v)) in such a way that the two pairs are
identical if 7 > t (the walks do not meet until until the backward dynamics reaches time 0). Under
this coupling, the expression for |COVXO(]1 (X (u)=wr }> If Xt(U):w2})‘ simplifies to

IP(X¢(u) = wi, X¢(v) =wa, 7 < t) — P(Xy(u) = wi, X{(v) =wo, 7 < B)| <P(r <1).

Note that P(1r < t) < P(1 < 00) = P(u «~ v) (the probability that the walks started at u and v
meet before any of them dies). If distg(u,v) = r, then in order for the walks at u and v to possibly

)
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meet, the first  updates that either of them receive must be non-killing (with probability 1 — @
each), and so P(u «~ v) < (1 — 6)" < e~%". Hence, using Eq. (1.1),

H&gxz ‘COVXO(H{Xt(u):un}v ]l{Xt(v):wz})| < Z ‘{U : diStG(uv ’U) = T}le_er
v r>0

l—o__
< ¢ E e’ or =C
r>0

In conclusion,

‘o _AC
Varg (R0(X,)) < 21 @}y = =AY (x0).

The same proof works for Var,, (R;° (Y)), notmg directly that under the same coupling as above
’ COV,LLG(]]-{Y(U):wl}v H{Y(v):wg})‘ < ]P)(T < OO) = P(u o U) < exp[—ﬂ diStG(u7 U)] )
the same upper bound we used for the covariance when estimating Vary, (R;°(X})). O

We are ready to prove Eq. (5.2). Recall that E,,[R°(X;)] = .Al(f) (x0) > 0=E,,[R;"(Y)], and
define the set of configurations

1
Et = {x eey RO < 2A§$><x0)} :

By Chebyshev’s inequality,

2 e
Aiﬂ(xw) _ AVan (R (X)) _ 4Gy
= 2 = 2
2 AP0 T AR (x0)
using Claim 5.1 (with Cy from that claim). Recalling from Eq. (5.1) that ¢! = T}, — 5 log(1/¢) —
we see that if CT = % log(8Cp) then the sub-multiplicativity of A®), as per Eq. (2.5), yields
4Cy

Py, (X, € Ef) < =
o (X ) nA%i(Xo)eze(Txofﬂ)

Pao (Xt € B1) = Py (R (Xir) — B[R (Xir)] < =

)

| ™

with the last equality following from the definition of A®) in Eq. (1.3). Similarly,

AP (x 4Var,,(R? (Y
PuolY ¢ BY) = By (RI(Y) - B[R (V)] > 20 00)) ¢ DV R 1)) 2
2 A(Q) (x0)2 2
tt \20
Combining the last two displays gives
[Po (Xt € +) — pclloy > P#G(Y € ET) — Py, (X4t € ET) >1—¢,
thereby establishing Eq. (5.2). O

5.2. Correlation lower bound. In this section, we show the t§hy = 49 logn part of Eq. (1.5) and
Eq. (1.10). Because the proofs of the two are essentially the same, we simply prove Eq. (1.5) and
describe in Remark 5.3 the single modification needed in the case of a uniform initial state U.

Let G = (V, E) be a connected graph with |V| = n satisfying Eq. (1.1) for some constants «, ¢g.
We will show that there exists a constant C* > 0 depending only on (6, «, ¢) such that if

1 «
th = 0 logn — C*(logn)t~2 , (5.4)
then, for all initial states xq,

P (X: € ) — piglley > 1 — O(e2e8m' ™2y (5.5)
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implying in particular that, for every 0 < e < 1 fixed, ti5x(1 — &) > ¥ provided n is large enough.
For fixed xg, t, we consider the following distinguishing statistics:

R;O (X) = Z (H{x(u):x(v)} — Pxo (Xt(’l)) = x(u))) . (56)

u~v
(Notice Ey,[R¢(X;)] does not simplify to 0 but to >, [Px, (Xe(u) = X¢(v)) — Py (Xi(u) = X{(v))]
for an i.i.d. instance of the chain X}.) By the routine fact ZZ;E wk = qli,—=1) for all w € €y, we
can equivalently write R;°(x) as

12

R0 = = 3030 () ) = x(u) By X)) (5.7)

k=1 u~v

(NB. we omitted the k = 0 term, as it has no contribution). Then, as E,,, [V (v)¥] = % > wee, Wk =0
forall k=1,...,q— 1, we have

B[R (V)] = B[R} (X0)] ZZ(COV#G £ (0)*) = Covey (Xu(w)", Xi(0)")) - (5.8)

k 1 u~v

While the left-hand is clearly real-valued (e.g., via Eq. (5.7)), a-priori the individual terms we sum
over in Eq. (5.8) might not be. The next claim shows that they are nonnegative real numbers
bounded from below by the probability that two random walks coalesce after time t.

Claim 5.2. For every xg € Q , every two vertices u,v € V and allk=1,...,q—1,
Covue (Y ()P, Y (0)F) — Covi (X (w)*, Xy (0)F) = P(u &5 v) € Ry, (5.9)

where {u & v} denotes the probability that two random walks (Z),(Z?) started at u and v with
killing rate 6 (and moving rate 1 — 0) do not coalesce until time t, and then coalesce after time t.

Proof. Let T be the first time that the walks started from u and v coalesce in the backward dynamics
(with 7 = 400 if either walk gets killed before coalescing). If Xj(v) denotes a variable that has
the same distribution as X;(v) but is independent of X;(u), we can couple (Xy(u), X¢(v)) with
(X¢(u), X/ (v)) by letting the two corresponding random walks Z, Z!" in the backward dynamics
started at v be identical for s < 7, and then run independently for s > 7. When doing so, one has
(Xi(u), X (v)) = (X¢(u), X{(v)) when 7 > ¢, and thus

Covg (Xu(w)*, Xe(0)F) = B [Xe(u Xe(0)F — Xe() X[ (0)F]
= By, [ (X Xu00)F — X () X[0)F) 1<y

=P(r <t) —E,4 [Xt( )EX{(v)k 1{T<t}]

where the final identity follows from the fact that X;(u) = Xi(v) on 1{;<p.
On the other hand, recall that pug can be perfectly simulated by letting the walks from V' run

forever in the past until all of them are killed, and noting that if two walks do not coalesce (because
one gets killed first) they independently get a uniform spin (with 0 mean, again by é > w=0).

Thus,

wel,
——k
Cov,e (Y ()5, Y (0)F) = By, [Y(u)’fY(v) } = P(r < ).
By definition, P(t < 7 < 00) = P(u &h v), so it follows that

Cove (Y (), Y (0)F) — Covy (X (u)F, Xe(0)F) = P(u &5 0) + By [Xe(u)* X[ (0)F L rpy]
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The proof will be finished if we prove that Ey, [X;(u)* X/ (v)*1 {(r<t}] is real-valued and nonnegative.
Indeed, if F; denotes the o-algebra associated with the stopping time 7 for the backward dynamics,
we have

B [ X () X[0)F ey | = B [B [ X (@) X[0)F | 72| 14|
= By [B [Xemr () X[ ()P | ] 1z ]

where w, denotes the vertex at which the walks from u and v meet at time 7 (note that w; is
Fr-measurable). Finally, since X;_,(w;) and X;__(w,) are conditionally independent given F,

Exg [E [ Xir (w0, XT_(w,F | Fo| oy | = B |[EXir (w,)* | )L rcy] € Ry,
as claimed. 0

Remark 5.3. To handle the uniform initial condition I/ rather than a deterministic xg, redefine
the statistics R;°(x) in Eq. (5.6) simply as
Z ]l{x (uw)=x(v)} *

u~v
Then, Eq. (5.8) holds true for the new statistics when we replace xo by Y. Moreover, in that case
we have, in lieu of Claim 5.2, that

Cov e (Y (u)F, Y (0)F) — Covyy(Xi(u), X (0)F) = P(u &5 v) .
The remaining part of the proof in this section then holds verbatim once we replace xo by U.

Applying Claim 5.2 to Eq. (5.8) shows that, for all ¢ > 2 (replacmg L py 1 5 in the lower bound),

EMG[R);O(Y)] B[R (X1)] > ZP UWU (5.10)

'lLN’U

In light of Eq. (5.10), we aim to show that P(u FAA v) ~ e~ 2% for every uv € E (Claim 5.5 below),

so that one has >, ., P(u & v) ~ ne~ 2%, whereas Vary, (R;°(X¢)) and Var,,(R;°(Y)) are O(n)
(see Claim 5.1 below); at that point, the proof will be concluded by Chebyshev’s inequality.

Note that in order for the walks started from u and v to coalesce after ¢, both of them need to
survive separately until time ¢, which incurs in a cost of e=2%* for survivability alone. Our next goal
is to show that under the assumption of Eq. (1.1) and connectedness, for nearby vertices u, v the
cost for the remaining conditions (the two walks avoiding each other until time ¢ and coalescing
later) is sub-exponential in ¢ < logn. This, together with Claim 5.2, will yield the required lower
bound. The key for this will be a result from [20], which bounds from below the probability of a
random walk failing to escape a set S through the conductance of S.

Before applying said result in our setting, we prove the existence of “good” balls with limited
expansion around every v € V. For a set of vertices S, the conductance ®(S) of S is the ratio

[E(S, 59
Vol(S) '

where |E(S,S¢)| is the number of edges connecting S to its complement S¢ and Vol(S) is the

B(S) =

sum of the degrees of vertices in S. The next lemma shows that, for every graph G = (V, E) of
subexponential growth of balls as in Eq. (1.1) and every vertex v € V', we can find a ball B,(r) in
every scale with conductance at most O(r~%).
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Lemma 5.4. Let G be a graph satisfying Eq. (1.1) for some ¢y > 0 and o € (0,1). Then, for every
integer r,, > ¢ and every v € V, there exists r € [ry,,2r,] such that

0B _ 8
[By(r)| — re
where By(r) is the ball of radius v in G centered at the vertex v, and 07 B,(r) = By(r + 1)\ B,(r).
In particular, its conductance has ®(B,(r)) < 8Ar~%, where A < cpe is the mazimum degree in G.

Proof. Denote T, = 2r,, and suppose by contradiction that the claim is false, so that there exist
some v € V and r > ¢y such that

|0F B, (r)] 8 .
—_— > — f 1lre , .
Bo(r)] pr or all r € [r,,T,]
We can then write

+B, (3, — A
3@ = 5@, - ) (1+ SR E T s e, ) (14 )

and iterating this argument shows that

Th—1 Tn—1
= s 8 < 8
|By(Th)| > |Bu(zn)] Tl_r[ <1 + 7no(> > ryexp [TZI; log (1 + 7“‘") } .

Noting that log(1 + 8z) > 2x for all 0 < x < 1 and that %ﬁ;w > % for all 0 < o« < 1, we find

= _ = 4 7, _ _o—(1—) ,__ _ . -~
e iy log(148r=%) & 25 e o 2 [T ddr _ 2R — () T S (E0) T

Having arrived at | B, (T,)| > rn exp[(T,)! ™% with r,, > o, this contradicts Eq. (1.1) as desired. [J
For a set of vertices S CV, an integer k£ and a distribution v on S, define
p2% (S, k) = P, (lazy random walk remains in S for k steps) .

(Here and in what follows, a lazy random walk refers to one that stays in place with probability %)
Oveis Gharan and Trevisan [20, Prop. 8] proved that on for any graph G, if mg is the restriction of
the stationary distribution 7g to S (i.e., mg(v) = dg(v)/ Vol(S) for v € S), then

PR (S, k) > <1 - <I>(2‘9))k :

This extends to a continuous-time random walk with rate A: by a time-rescaling, said walk is
equivalent to a continuous-time lazy random walk with update rate 2\. There, the number of
updates by time ¢ is N; ~ Poisson(2At), and given N; = k one can apply the bound on p'fr’gy(S, k).
It follows that the probability pS°"(S, ¢, A) that a continuous-time random walk with rate \ started

TS
from v € wg stays completely inside .S until time ¢ satisfies
P A) 2 B (1 - 0(8)/2)N | = e7 PN, (5.11)

We will use this to prove the following:
Claim 5.5. For everyt =t(n) > 0, any edge uv € E and any integer r,, with ¢g < 1, < 1—10 diam(G),
IP’(u & v) > exp [ — 20t — Cir,, — Cgr;“t] ,

where C1,Cy > 0 are constants depending only on 6, «, ¢q.
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Proof. The strategy will be the following: let the walks Z¥ and Z¢ from u and v, respectively, move
quickly to two suitable locations, confine them to separate balls until time ¢ using Eq. (5.11) for
each of them and then let them quickly coalesce after time t.

Applying Lemma 5.4 for u and r,, yields r € [ry,2r,] such that S := B, (r) has ®(S) < 8Ar~*.
Let 0, denote the point mass distribution at x, and consider pg‘;’"t(S, t,1 — 0), the probability that
the continuous-time random walk with moving rate 1 — 6, started at z € S, remains in S for time ¢.
From Eq. (5.11), we see that the vertex u. maximizing p§°™(S,t,1 — 6) over x € S must satisfy

pgz:t(sa t7 1 - 0) Z p:l'(;nt(87 t) ]- - 9) Z B_SAT_‘X(l_e)t * (5'12)

By connectedness of G and the fact that diam(G) > 10r,,, there exists a (shortest) path from the
edge uv to a vertex at some distance > 4r,. Assume without loss of generality that such a path
starts at v and (being a shortest path) does not visit u, and let w be a vertex along this path
with distg(u, w) = 4r, + 1. Applying Lemma 5.4 for w and r,, yields some 7’ € [r,, 2r,| such that
S’ := By (r') has ®(S) < 8Ar~% (note that SNS’" = () thanks to the condition distg(u, w) = 4r,+1).
As argued above for By, (r), there must exist w, € S’ such that

PSS 1,1 — ) > e BATN IO (5.13)

. >t
We can now realize a sub-event of {u oS v} as follows:

(i) force the first distg (v, w) + distg(w, wy) + diste (u, uy) (< (4r, + 1) + 21y, + 21, = 8r, + 1)

cumulative updates that Z2 and Z? receive in the time interval s € [0,¢] to move Z? from

v to w to w, (while avoiding u), and then move Z¥ from u to u, (the probability that each

update is non-killing and moves the specified random walk along the specified path is at
least (1 —6) - % - %, where A is the maximum degree of G);

(ii) for the remaining time until ¢ (if not surpassed already in the previous step), force the two

walks now at u, and w, to stay inside the disjoint S = B, (r) and S’ = B,,(r’) and receive

no killing updates (the non-escape probabilities are bounded from below by Eqgs. (5.12)

and (5.13), while the non-killing probability is bounded from below by e~2%%);

(iii) force the next cumulative updates that Z¥ and Z? receive (after ¢) to make the two walks

coalesce by going through the minimal path between their current locations (the distance

between them is at most 8r, 4+ 1, and the probability that each sequential update is non-

killing and makes the correct move along the minimal path is at least (1 — 6) - %).

Hence,
1—g)\%n* (o 1—0\*n*!
IP’(u FA v) > (2A> 6—29t6—8A[r +(r) "] (1-0)t <A>
1— 6\ —a
S 20t —16Ar;, *(1-0)t
> e ( — ) e ,
giving the desired bound for C; = 20log (%) and Cy = 16A(1 —6). O
Using Claim 5.5 with
T, = (logn)l%a < (logn)'~2 (5.14)

(noting r,, = o(diam(G)) as every graph G with maximum degree A has diam(G) > loga_;(n)—2),
whereby r,, < r;*logn and so both error terms in that claim will have the same order for t = t},
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it follows from Eq. (5.10) that, for all ¢ < i logn and every sufficiently large n,

n6729t

X0 o X0
B RE (V)] = BRI ()] 2 10 (515)

for some fixed C' = C(6, «, ) > 0 (e.g., take C' = C; 4+ Ca/(40) for C1, Cy from that claim).

The final ingredient is an upper bound on the variance of the distinguishing statistics R}°.
Claim 5.6. Set Cy = 2A2/0, where A is the maximum degree in G. Then for every t > 0 and xo,
Vary, (R{*(X:)) < Con, Var,,(R{*(Y)) < Con.

Proof. Denoting R (X) = Lixw)=x(v)} — Exo[L{x(u)=x,(v)}]; We have

Vary, (R?O (Xt)) = Z COVXO (RU1,U1 (Xt)7 RUQ,UQ (Xt)) :

U1~V1L,U2~V2

Let X/ be an independent copy of X;. As in the proof of Claim 5.2, we couple the random walks
(Z¥2, ZV2) with their counterparts (Z."2, Z'"?) so that they are identical until time 7, the first time
(if finite) that the backward dynamics has one of the random walks started from {ui,v;} meet
with one of the walks started from {ug,v2}. (Beyond that time, we run each chain independently.)
In particular, the 4-tuples (X;(u1), X¢(v1), X¢(ug2), X¢(v2)) and (Xy(u1), Xi(v1), X (us2), X/ (v2)) are
identical if 7 > t. Letting {x «~ y} denote the event that two walks started at = and y with killing
rate § and moving rate 1 — 6 meet before either of them dies, we get

COVXO (Rulﬂ)1 (Xt)7 Ru2f02 (Xt)> = EXO [Rul,vl (Xt)Ruz,vz (Xt) - Rulﬂ)l (Xt)R'UQfUQ (Xé)]

= EXO [(RUhUl (Xt)Ru2,v2 (Xt) - Rul,m (Xt)RUQ,UQ (Xé)) ﬂ{TSt}]
< QP(T < t) .

Relaxing {7 <t} into {7 < oo}, followed by a union bound, shows
P(r <t) < P(ug e uz) + P(uy &~ v9) + P(vg e ug) + P(v1 e v3).
and combining the last three displays yields
Vary, (R (Xy)) <2 da(u)da(u)P(uy o ug)

u,u2

Using Eq. (2.13), we thus find that
AQ
Vary, (Rt Xt E dG < 777, =Cyn.

As this holds for any t, we may take t — oo and arrive at
Var, (R°(Y)) < Con,
as required. i
We are ready to prove Eq. (5.5). Define the set of configurations
Bt ={xe e} : RY(X) > (B[R (X)) + By [RY(YV)) 2}

Recalling from Eq. (5.4) that tf = 4—19 logn — C*(log n)l_% and plugging it in Eq. (5.15), we see that

Buc I (V)] B R (X0 2 e [(200° = C)logn)' ).
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for the constant C(6,q, &, cg) > 0 from Eq. (5.15). Letting C* = C/(26) + 1, this results in the
lower bound (1/C)y/nexp|(logn)'"2]. We now combine this with Claim 5.6, and deduce from
Chebyshev’s inequality that

4 Varg, (R (X))
(Epe [RE (V)] = Ex [REY (X1)1)?

P, (X, € EY) < < 16Cp exp [— 2(log n)lf%} .

Similarly,
4 Var,, (R (Y))
ProlV # ) < R ] - B[R (P

and it follows that

< 16CH exp {— 2(log n)l_%] ,

)17£x/2

[Py (Xt € ) — piclloy > Pup (Y € E¥) — P, (X, € E¥) > 1 — 32Cpe2(osn ,
thereby establishing Eq. (5.5). O

6. CONCLUDING REMARKS AND OPEN PROBLEMS

Our main result, Theorem 1.1, established that the noisy voter model, for every choice of the
parameters 6, g, exhibits total variation cutoff from any sequence of initial conditions x(()n) provided
that the underlying graphs G have subexponential growth of balls as per Eq. (1.1), (Previously,
cutoff was only known for ¢ = 2 and only from worst-case and a few other periodic initial states.)
We characterized the fastest initial state xo on ZZ for all d at ¢ = 2 and for d = 1 at every g,
demonstrated that this optimum is nontrivial for large d, ¢ (e.g., at d = 3,q = 4,0ord = 2,q = 5), and
showed in Corollary 1.4 that it cannot asymptotically outperform the uniform initial condition .

It would be interesting to extend this to bounded-degree graphs that do not satisfy Eq. (1.1):

Question 6.1. Let G™ be a sequence of bounded-degree connected graphs on n vertices. Does the
noisy voter model on G\, for all fixed ¢ > 2 and 0 € (0, 1), exhibit cutoff from every sequence x(()n) of
initial states (i.e., is there a function T;, so that tiix(¢) = (1+0(1)) T3 (xy (n )) for all fixed 0 < & < 1)?

Is the uniform 1n1t1al state always asymptotically as fast as the deterministic optimum miny, 7}, (xo)?

A concrete class of graphs to study would be a typical random d-regular graph for fixed d > 3.
We remark that we used the condition in Eq. (1.1) in an essential way in both the upper bounds
and the lower bounds. In the upper bound, it allowed us to reduce the surviving history of the
sites, over a negligible time period of o(logn), to a collection of well-separated (good) subsets (see
Lemma 4.6). This supported the coupling to a product chain in Section 4.1, and further played
a role in the reduction to the autocorrelation function in Section 4.3. In the lower bound, the
subexponential growth was used to control the variance of the test function in the bound 3y 2 T,
(see Claim 5.1), and to identify sets S with a small conductance ®(S) so as to bound the escape
probability of the random walk from them en route to the bound £y = 49 logn (see Lemma 5.4).

Another interesting open problem is the cutoff window. The work [6] showed cutoff with an O(1)
window from a worst-case starting state on any graph G when ¢ = 2 (as did [17] when G = Z,,
the 1D Ising model); i.e., tyx(e) — tmix(1 — &) = O(1) with an implicit constant depending on &.
Our new results on a general xo only focused on the asymptotics of £y (as did those of [19]). For
example, on G = Z%, our proof arguments will only show that tyx(g) — tyx(1 — €) = O(loglogn).

Question 6.2. Let G be a sequence of connected graphs on n vertices satisfying Eq. (1.1). Does
the noisy voter model on G™ for every fixed 6 € (0,1) and ¢ > 2, and every sequence of initial

(n)

conditions x; , satisfy i« () — tyix(1 — €) = O(1) with an implicit constant depending on &7
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We conclude with an open problem on the noisy voter model on a class of graphs G = G™ in
which max, dg(v)/ min, dg(v) — oo as n — oco. (We only considered G with max, dg(v) = O(1),
and even the worst-case initial state analysis of [0] required max, dg(v)/ min, dg(v) = O(1).)
Namely, as we mentioned the random d-regular in the context of Question 6.1, it is natural to ask
what the behavior would be on its counterpart, the Erdés—Rényi random graph G(n, p) for p = d/n.
Note that with an unbounded degree ratio, Eq. (2.11) no longer gives that Varuc(\I/l(k)) = 1/n, and
it is then plausible that the correct generalization of Theorem 1.1 would be given in terms of the

variant of AEQ) (xo) where the functions \Ill(k) (as per Eq. (2.8)) are normalized in L?(uq).

Question 6.3. Address the analogue of Question 6.1 for noisy voter model on a typical instance
of an Erdés—Rényi random graph G(n,p) with p = d/n, for all fixed d > 0, ¢ > 2 and 6 € (0, 1).
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