
Computational Fluid Dynamics:
Sparse Linear systems

Aleksandar Donev
Courant Institute, NYU
donev@courant.nyu.edu

February 2013

A. Donev () Lecture III 2/2013 1 / 23

Outline

1 Sparse Matrices

2 Iterative Methods (briefly)

A. Donev () Lecture III 2/2013 2 / 23

Sparse Matrices

Banded Matrices

Banded matrices are a very special but common type of sparse
matrix, e.g., tridiagonal matrices

a1 c1 0

b2 a2
. . .

. . .
. . . cn−1

0 bn an


There exist special techniques for banded matrices that are much
faster than the general case, e.g, only 8n FLOPS and no additional
memory for tridiagonal matrices.

A general matrix should be considered sparse if it has sufficiently
many zeros that exploiting that fact is advantageous:
usually only the case for large matrices (what is large?)!

A. Donev () Lecture III 2/2013 3 / 23

Sparse Matrices

Sparse Matrices

A. Donev () Lecture III 2/2013 4 / 23

Sparse Matrices

Sparse matrices in MATLAB

>> A = sparse ([1 2 2 4 4] , [3 1 4 2 3] , 1 : 5)
A =

(2 , 1) 2
(4 , 2) 4
(1 , 3) 1
(4 , 3) 5
(2 , 4) 3

>> nnz (A)
ans = 5
>> whos A

A 4 x4 120 d o u b l e sparse

>> A = sparse ([] , [] , [] , 4 , 4 , 5) ; % Pre−a l l o c a t e memory
>> A(2 ,1)=2 ; A(4 ,2)=4 ; A(1 ,3)=1; A(4 ,3)=5; A(2 ,4)=3;

A. Donev () Lecture III 2/2013 5 / 23

Sparse Matrices

Sparse matrix factorization

>> B=s p r a n d (4 , 4 , 0 . 2 5) ; % Dens i t y o f 25%
>> f u l l (B)
ans =

0 0 0 0.7655
0 0 .7952 0 0
0 0 .1869 0 0

0 .4898 0 0 0

>> B=s p r a n d (1 0 0 , 1 0 0 , 0 . 1) ; spy (B)
>> X=g a l l e r y (’ p o i s s o n ’ , 1 0) ; spy (X)
>> [L , U, P]= l u (B) ; spy (L)
>> p = symrcm (B) ; % Symmetric Reve r s e C u t h i l l−McKee o r d e r i n g
>> PBP=B(p , p) ; spy (PBP) ;
>> [L , U, P]= l u (PBP) ; spy (L) ;

A. Donev () Lecture III 2/2013 6 / 23

Sparse Matrices

Random matrix B and structured matrix X

The MATLAB function spy shows where the nonzeros are as a plot

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 960

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 460

A. Donev () Lecture III 2/2013 7 / 23

Sparse Matrices

LU factors of random matrix B

Fill-in (generation of lots of nonzeros) is large for a random sparse matrix

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 3552

L for random matrix B

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 3617

U for random matrix B

A. Donev () Lecture III 2/2013 8 / 23

Sparse Matrices

LU factors of structured matrix X

Fill-in is much smaller for the sparse matrix but still non-negligible.

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 1009

L for structured matrix X

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 1009

U for structured matrix X

A. Donev () Lecture III 2/2013 9 / 23

Sparse Matrices

Matrix reordering

Matrix reordering cannot do much for the random matrix B, but it can
help for structured ones!

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 960

Matrix B permuted by reverse Cuthill−McKee ordering

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 460

Matrix X permuted by reverse Cuthill−McKee ordering

A. Donev () Lecture III 2/2013 10 / 23

Sparse Matrices

Reducing fill-in by reordering X

Fill-in was reduced by about 20% (from 1000 nonzeros to 800) by the
reordering for the structured X, but does not help much for B.

The actual numbers are different for different classes of matrices!

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 805

L for permuted matrix X

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 805

U for permuted matrix X

A. Donev () Lecture III 2/2013 11 / 23

Sparse Matrices

Importance of Sparse Matrix Structure

Important to remember: While there are general techniques for
dealing with sparse matrices that help greatly, it all depends on the
structure (origin) of the matrix.

Pivoting has a dual, sometimes conflicting goal:

1 Reduce fill-in, i.e., improve memory use: Still active subject of
research!

2 Reduce roundoff error, i.e., improve stability. Typically some
threshold pivoting is used only when needed.

Pivoting for symmetric non-positive definite matrices is trickier:
One can permute the diagonal entries only to preserve symmetry,
but small diagonal entries require special treatment.

For many sparse matrices iterative methods (briefly covered next
lecture) are required to large fill-in.

A. Donev () Lecture III 2/2013 12 / 23

Iterative Methods (briefly)

Why iterative methods?

Direct solvers are great for dense matrices and can be made to avoid
roundoff errors to a large degree. They can also be implemented very
well on modern machines.

Fill-in is a major problem for certain sparse matrices and leads to
extreme memory requirements (e.g., three-d.

Some matrices appearing in practice are too large to even be
represented explicitly (e.g., the Google matrix).

Often linear systems only need to be solved approximately, for
example, the linear system itself may be a linear approximation to a
nonlinear problem.

Direct solvers are much harder to implement and use on (massively)
parallel computers.

A. Donev () Lecture III 2/2013 13 / 23

Iterative Methods (briefly)

Stationary Linear Iterative Methods of First Order

In iterative methods the core computation is iterative matrix-vector
multiplication starting from an initial guess x(0).

Prototype is the linear recursion:

x(k+1) = Bx(k) + f,

where B is an iteration matrix somehow related to A.

For this method to be consistent, we must have that the actual
solution x = A−1b is a stationary point of the iteration:

x = Bx + f ⇒ A−1b = BA−1b + f

f = A−1b− BA−1b = (I− B) x

For this method to be stable, and thus convergent, the error
e(k) = x(k) − x must decrease:

e(k+1) = x(k+1)−x = Bx(k)+f−x = B
(

x + e(k)
)

+(I− B) x−x = Be(k)

A. Donev () Lecture III 2/2013 14 / 23

Iterative Methods (briefly)

Convergence of simple iterative methods

We saw that the error propagates from iteration to iteration as

e(k) = Bke(0).

When does this converge? Taking norms,∥∥∥e(k)
∥∥∥ ≤ ‖B‖k ∥∥∥e(0)

∥∥∥
which means that ‖B‖ < 1 is a sufficient condition for convergence.

More precisely, limk→∞ e(k) = 0 for any e(0) iff Bk → 0.

Theorem: The method converges iff the spectral radius of the
iteration matrix is less than unity:

ρ(B) < 1.

A. Donev () Lecture III 2/2013 15 / 23

Iterative Methods (briefly)

Spectral Radius

The spectral radius ρ(A) of a matrix A can be thought of as the
smallest consistent matrix norm

ρ(A) = max
λ
|λ| ≤ ‖A‖

The spectral radius often determines convergence of iterative
schemes for linear systems and eigenvalues and even methods for
solving PDEs because it estimates the asymptotic rate of error
propagation:

ρ(A) = lim
k→∞

∥∥Ak
∥∥1/k

A. Donev () Lecture III 2/2013 16 / 23

Iterative Methods (briefly)

Termination

The iterations of an iterative method can be terminated when:

1 The residual becomes small,∥∥∥r(k)
∥∥∥ ≤ ε ‖b‖

This is good for well-conditioned systems.
2 The solution x(k) stops changing, i.e., the increment becomes small,

[1− ρ(B)]
∥∥∥e(k)

∥∥∥ ≤ ∥∥∥x(k+1) − x(k)
∥∥∥ ≤ ε ‖b‖ ,

which can be seen to be good if convergence is rapid, ρ(B)� 1.

Usually a careful combination of the two strategies is employed along
with some safeguards.

A. Donev () Lecture III 2/2013 17 / 23

Iterative Methods (briefly)

Fixed-Point Iteration

A naive but often successful method for solving

x = f (x)

is the fixed-point iteration

xn+1 = f (xn).

In the case of a linear system, consider rewriting Ax = b as:

x = (I− A) x + b

Fixed-point iteration gives the consistent iterative method

x(k+1) = (I− A) x(k) + b

A. Donev () Lecture III 2/2013 18 / 23

Iterative Methods (briefly)

Preconditioning

The above method is consistent but it may not converge or may
converge very slowly

x(k+1) = (I− A) x(k) + b.

As a way to speed it up, consider having a good approximate solver

P−1 ≈ A−1

called the preconditioner (P is the preconditioning matrix), and
transform

P−1Ax = P−1b

Now apply fixed-point iteration to this modified system:

x(k+1) =
(
I− P−1A

)
x(k) + P−1b,

which now has an iteration matrix I− P−1A ≈ 0, which means more
rapid convergence.

A. Donev () Lecture III 2/2013 19 / 23

Iterative Methods (briefly)

Preconditioned Iteration

x(k+1) =
(
I− P−1A

)
x(k) + P−1b

In practice, we solve linear systems with the matrix P instead of
inverting it:

Px(k+1) = (P− A) x(k) + b = Px(k) + r(k),

where r(k) = b− Ax(k) is the residual vector.

Finally, we obtain the usual form of a preconditioned stationary
iterative solver

x(k+1) = x(k) + P−1r(k).

Note that convergence will be faster if we have a good initial guess
x(0).

A. Donev () Lecture III 2/2013 20 / 23

Iterative Methods (briefly)

Some Standard Examples

Splitting: A = LA + UA + D

Since diagonal systems are trivial to solve, we can use the Jacobi
method

P = D.

Or since triangular systems are easy to solve by forward/backward
substitution, we can use Gauss-Seidel method

P = LA + D.

Both of these converge for strictly diagonally-dominant matrices.

Gauss-Seidel converges for positive-definite matrices (maybe slowly
though!).

A. Donev () Lecture III 2/2013 21 / 23

Iterative Methods (briefly)

A Good Preconditioner

Note that the matrix A is only used when calculating the residual
through the matrix-vector product Ax(k).

We must be able to do a direct linear solver for the preconditioner

P (∆x) = r(k),

so it must be in some sense simpler to deal with than A.

Preconditioning is all about a balance between fewer iterations to
convergence and larger cost per iteration.

Making good preconditioners is in many ways an art and very
problem-specific:
The goal is to make P−1A as close to being a normal (diagonalizable)
matrix with clustered eigenvalues as possible.

A. Donev () Lecture III 2/2013 22 / 23

Iterative Methods (briefly)

In the Real World

Some general preconditioning strategies have been designed, for
example, incomplete LU factorization (MATLAB’s cholinc).

There are many more-sophisticated iterative methods
(non-stationary, higher-order, etc) but most have the same basic
structure:
At each iteration, solve a preconditioning linear system, do a
matrix-vector calculation, and a convergence test.

For positive-(semi)definite matrices the Preconditioned Conjugate
Gradient method is good (MATLAB’s pcg).

For certain types of matrices specialized methods have been designed,
such as multigrid methods for linear systems on large grids (PDE
solvers in Numerical Methods II).

A. Donev () Lecture III 2/2013 23 / 23

	Sparse Matrices
	Iterative Methods (briefly)

