Computational Fluid Dynamics, Fall 2018 Homework 2: Boundary Conditions for Advection-Diffusion Equations

Aleksandar Donev

Courant Institute, NYU, donev@courant.nyu.edu

Sept. 20th, 2018 Due Wednesday **Oct 3rd 2018**

1 Finite-Volume Discretization of Heat Equation

Consider constructing a spatial semi-discretization for the diffusion equation with constant coefficients

$$u_t = u_{xx},$$

on the domain 0 < x < 1 with Dirichlet BCs at x = 0 and Neumann BCs at x = 1. Use the manufactured analytical solution

$$u(x,t) = \exp^{-\pi^2 t/4} \cos\left(\frac{\pi x}{2}\right)$$

to obtain the specific forms of the initial and boundary conditions.

Write a finite-volume (flux based) second-ordered centered difference scheme and solve this equation up to time T = 1/4 (explain how you solved the ODEs and why, and be warned that you may run into some numerical issues) with different grid spacings, and:

- 1. Find the numerical order of convergence in the L_1 , L_2 and L_{∞} norms.
- 2. Find the local truncation error at the left and right boundaries, and if possible, use that to prove second-order accuracy in some norm.
- 3. **Optional**: Prove stability in some norm.

2 Boundary Layers for Advection-Diffusion Equation

Consider constructing a spatial semi-discretization for the advection-diffusion equation with constant coefficients

$$u_t + u_x = d u_{xx},$$

on the domain 0 < x < 1, for initial condition $u(x,0) = \sin^p(\pi x)$ where p = 2 is an exponent, and boundary conditions

$$u(0,t) = \sin^p(-\pi t)$$

$$u_x(1,t) = 0.$$

Observe that if d = 0 the exact solution here is $u(0, t) = \sin^p(\pi(x - t))$ which is the problem we studied in HW1 with periodic BCs.

Develop a finite-volume method (choose the advective/diffusive stencils, the boundary condition treatment, number of grid points, etc., and explain your choices) to solve the equation up to time T = 1.

- 1. Show the spatially-discrete solution at this time for $\epsilon = 0.1$, $\epsilon = 0.01$ and $\epsilon = 0.001$ and comment on your observations and experiences. Discuss what happens as $\epsilon \to 0$ with the PDE and its true analytical solution, and compare to your numerical method and the numerical solution. Is your method consistent for $\epsilon = 0$?
- 2. Repeat with a Dirichlet condition on the right, u(1,t) = 0 and comment on the differences repeating all of the steps you did for a Neumann BC.
- 3. Numerically (empirically) determine the spatial order of convergence for your discretization. Does it agree with theoretical expectations (explain what your expectation is)? What is the order of convergence for $\epsilon = 0$?
- 4. [Optional] Change the exponent to p = 100 and comment on any new observations you make. How much diffusion do you need (i.e., how small can d be) to get a sensible-looking solution now?