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This and most of the other homeworks will be in 1D and therefore very simple and quick to do
computationally in MATLAB. You could easily solve them with a very fine grid (say 1024 points) (or very
small time step size for later homeworks), but you will learn nothing from that: Every convergent method will
solve a smooth problem very accurately if you make the space-time grid fine enough. However, the goal here
is to learn about the issues that will also appear in 2D and 3D, where it would be very challenging indeed
to do a simulation with a 10242 grid! So please think carefully about how you choose the grid size. The goal
is always to make the grid size and time step size as large as possible while controlling the error, so we can
solve large problems over a long time in 3D. So explore how much you can reduce the resolution until
problems appear, and try to explain/understand when problems appear and why. The goal here is to
think about how the theory in class connects to this specific problem, not to solve the (trivial!) problem itself.

Also important: Please do not use any specific form of input functions I give in the solution. For example,
the initial condition below is [sin (mc)]loo. Do not use this specific form in your solution. For example,
do not give an exact analytical solution to the PDE for this specific form. These homeworks are exercises
in numerical analysis and not PDE analysis. Do everything numerically and write your code in a way
that one can easily change the specific functions appearing in the problem specification.

Please make an effort to write good code. Again, think about how easily this code could be modified to
solve a similar but different problem (e.g., if the advection velocity is space-dependent as well); a modular
well-designed code will be reusable, will not have repeated

1 Advection-Diffusion Equation in 1D

Consider numerically solving the advection-diffusion equation
w + auy, = (d(x)uy),

on the periodic domain 0 < x < 1, for a = 1 and initial condition (remember not to use the specific
analytical form of this in your solution, rather, treat it as some general smooth periodic function given
to you by a problem-specific input)
. 100
u(z,0) = [sin (mx)] ",

on a uniform grid.
Here we focus on spatial discretization, and do not discretize time but rather study the consistency and
stability of the semi-discrete approximation

w' (t) = Aw (t) + g(t), (1)

where A depends on the choice of the spatial discretization.

Find some way to solve (1) with sufficient temporal accuracy. Ideally, we want to solve it “exactly”,
i.e., to numerical roundoff, so try that instead of using Matlab’s ODE solvers as the lecture notes suggest.
Explain what you did and indicate which norm(s) you used.

Hint: Use the Discrete Fourier Transform (DFT) to diagonalize the system of ODEs (1) and then solve
it numerically using the FFT algorithm.



1.1 Pure advection

Consider pure advection, d = 0 and:

1.

Compare the numerical solution w(t = 1) to the exact solution u(z, 1) for the first-order upwind scheme,
the second-order centered scheme, and the third-order upwind biased scheme, for several smartly-chosen
grid resolutions. Comment on your observations, in particular their relation to artificial dissipation and
dispersion as discussed in class.

. Compute the relative global error ||e(t)]| = [[w(t) — un(t)|| / ||wn(t)]| at time ¢ = 1 for different grid

resolutions (think about how you choose them!), and estimate the spatial order of accuracy empirically.

. Plot the evolution of the relative global error ||e(t)|| = ||Jw(t) — wn(t)]| / ||wn(t)]| over the time interval

0 <t <10 for the first-order upwind scheme and the second-order centered scheme, and compare to
the theoretical estimate from class.

1.2 Advection-Diffusion

For this part choose one or several “good” spatial discretizations and write down the scheme you used (I
should not need to look in the code). For each scheme, explain what its advantages and disadvantages
are, and what its theoretical (spatial) order of accuracy is.

1.2.1 Constant Diffusion

Let’s add a small amount of constant diffusion, d = 0.001.

1.

2.

3.

Compare the numerical solution w(t = 1) to the exact solution u(z, 1) (explain how you computed the
“exact” solution to roundoff tolerance) for several resolutions and comment on your observations.
Compute the relative global error [|e(t)| = ||w(t) — wn(t)]| / ||un(t)|| at time ¢t = 1 for different grid
resolutions, and estimate the spatial order of accuracy empirically.

[Optional] Plot the evolution of the absolute and relative over the time interval 0 < ¢ < 10, and compare
to the theoretical estimate from class.



