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Convexity



Convex functions

A function f : R" — R is convex if for any X,y € R" and any 6 € (0,1)

0f (X)+ (L —0)f(¥) > f(0x+(1-0)y)

A function f if concave is —f is convex



Convex functions




Linear functions are convex

If fis linear

f(0x+(1-0)y)



Linear functions are convex

If fis linear

fOX+(1—-0)y) =0f (X)+ (1 —0)f(¥)



Strictly convex functions

A function f : R" — R is strictly convex if for any X, ¥ € R" and
any 0 € (0,1)

OfF (X)+(1—-0)f(y)>f(OX+(1—0)y)



Local minima are global

Any local minimum of a convex function is also a global minimum



Proof

Let Xioc be a local minimum: for all X € R” such that ||X — Xioc|[, <
f (Xoc) < f (X)
Let Xgiob be a global minimum

f ()?glob) < f()_ﬁoc)



Proof

Choose 6 so that Xp := OXijoc + (1 — 0) Xgiob satisfies
H)?G - )aoc|’2 < Y
then

f (Xoc) < (%)



Proof

Choose 6 so that Xp := OXijoc + (1 — 0) Xgiob satisfies
H)?G - )aoc|’2 < Y

then

(e)aoc + (1 - 0) )?glob)



Proof

Choose 6 so that Xp := OXijoc + (1 — 0) Xgiob satisfies
H)?G - )aoc|’2 < Y

then

(Xloc) f( )
=f (exloc )Xglob)
< Of (Xoc) + ( —0)f (Xglob) by convexity of



Proof

Choose 6 so that Xp := OXijoc + (1 — 0) Xgiob satisfies
H)?G - )aoc|’2 < Y
then

f (Xioc) < £ (Xp)
=f (e)aoc + (1 - 0) )?glob)
< Of (Koc) + (1 —0) (;glob) by convexity of
< f(Xoc) because f (Xgop) < f (Xioc)



Norm

Let V be a vector space, a norm is a function ||-|| from V to R with
the following properties

» It is homogeneous. For any scalar « and any X € V
llax]] = [l [IX]]-
» |t satisfies the triangle inequality
X + Y11 < [1%]] + [1¥71] -

In particular, ||x|| >0

> ||X]| = 0 implies X =0



Norms are convex

For any X,y € R" and any 6 € (0,1)

105 + (1 = 60) ¥



Norms are convex

For any X,y € R" and any 6 € (0,1)

105 + (1 = 0) yl| < [[6x][ + [I(1 = 8) ¥



Norms are convex

For any X,y € R" and any 6 € (0,1)

105 + (1 = 0) yl| < [[6x][ + [I(1 = 8) ¥
= 0IXI[+ (1 =) [yl



Composition of convex and affine function

If f : R” — R is convex, then for any A € R™™ and b € R”
h(R) = f (A)‘H— E)

is convex

Consequence:
F(X) = HA>?+ EH

is convex for any A and b



Composition of convex and affine function

h(6% + (1 —6)

=



Composition of convex and affine function

h(05+ (1~ 0)7) = f (0 (AZ+B) +(1-0) (A7 + b))



Composition of convex and affine function

<y

h(0%+ (1—0)7)

F (9 <A>?+ E) (1-6) (A}7+ E))

—

< of (Ax + b) (1-0)f (Ay+ b)



Composition of convex and affine function

h(6%+(1-0)7) =1 (6 (A%+b) +(1-6) (A7 +b)
+ )

o
(A%+B) + (- 0)f (A7+b
h(X)+ (1= 6) h(y)



lo “norm"

Number of nonzero entries in a vector

Not a norm!

[12x][o



lo “norm"

Number of nonzero entries in a vector

Not a norm!

[12x1lo = 1IXlo



lo “norm"

Number of nonzero entries in a vector

Not a norm!

[12x1lo = 1IXlo

7# 2|IXllo



lo “norm"

Number of nonzero entries in a vector

Not a norm!

[12x1lo = 1IXlo
7# 2|IXllo

Not convex



Zo ‘norm"

Number of nonzero entries in a vector

Not a norm!

[12x1lo = 1IXlo
7# 2|IXllo

Not convex

Let X := () and y := (9), for any 6 € (0,1)

105+ (1 = 0) ¥llo

01[x1lo + (1 =) [1¥llo



Zo ‘norm"

Number of nonzero entries in a vector

Not a norm!

[12x1lo = 1IXlo
7# 2|IXllo

Not convex

Let X := () and y := (9), for any 6 € (0,1)

1%+ (1~ 0) 7lly =2

01[x1lo + (1 =) [1¥llo



Zo ‘norm"

Number of nonzero entries in a vector

Not a norm!

[12x1lo = 1IXlo
7# 2|IXllo

Not convex

Let X := () and y := (9), for any 6 € (0,1)

1%+ (1~ 0) 7lly =2

01[xllo + (1 =0)llyllo =1



Promoting sparsity

Finding sparse vectors consistent with data is often very useful

Toy problem: Find t such that

is sparse

Strategy: Minimize

f(t) = [|vil|



Promoting sparsity

5 ‘
— ltllo
— |Itll;

i — Jltll, |1
N — ltll.




The rank is not convex

The rank of matrices in R"*" interpreted as a function from R™" to R
is not convex



The rank is not convex

The rank of matrices in R"*" interpreted as a function from R™" to R
is not convex

For any 6 € (0,1)

rank (X + (1 —-0)Y)

O rank (X) + (1 — ) rank (Y)



The rank is not convex

The rank of matrices in R"*" interpreted as a function from R™" to R
is not convex
For any 6 € (0,1)

rank (X +(1—-0)Y) =2

O rank (X) + (1 — ) rank (Y)



The rank is not convex

The rank of matrices in R"*" interpreted as a function from R™" to R
is not convex
For any 6 € (0,1)

rank (X +(1—-0)Y) =2

Orank (X)+ (1 —6@)rank(Y) =1



Matrix norms

Frobenius norm

IAllg =

Operator norm

1A= max [|AX]]; = o1
{II1l,=1 | xern}

Nuclear norm

min{m,n}

1Al = > o
i=1



Promoting low-rank structure

Finding low-rank matrices consistent with data is often very useful

Toy problem: Find t such that
054t 1 1
M(t):=| 05 05 t|,
05 1—t 05

is low rank

Strategy: Minimize

f(t) = |IM(2)]]



Promoting low-rank structure

— Rank
3.0 1 T Operator norm
H —— Frobenius norm

— Nuclear norm

15



Differentiable convex functions



Gradient

If the gradient exists at every point, the function is said to be
differentiable



Directional derivative

Encodes first-order rate of change in a particular direction

()= iy (D=1

where ||ul|, =1



Direction of maximum variation

V£ is direction of maximum increase

-Vf is direction of maximum decrease

)| = |VF () @




Direction of maximum variation

V£ is direction of maximum increase

-Vf is direction of maximum decrease

)| = |VF () @
< [VEG)I] [all

Cauchy-Schwarz inequality



Direction of maximum variation

V£ is direction of maximum increase

-Vf is direction of maximum decrease

)| = |VF () @

<|IVF (X)||5 l1dl], Cauchy-Schwarz inequality
=[IVF (Xl



Direction of maximum variation

V£ is direction of maximum increase

-Vf is direction of maximum decrease

)| = |VF () @

<|IVF (X)||5 l1dl], Cauchy-Schwarz inequality
=[IVF (Xl

equality holds if and only if &= i%



Gradient




First-order approximation

The first-order or linear approximation of f : R” — R at X is

£2(7) = f (%) + VF(X) (7 - %)

X

If f is continuously differentiable at X

lim _,_
y=x |y — X



First-order approximation




Convexity

A differentiable function f : R” — R is convex if and only if for every
X,y €R"

F(7) 2 F(2)+VFER) (7-3)
It is strictly convex if and only if

f(7)>f (%) +VF(R)T (7 -%)



Optimality condition

If f is convex and V£ (x) = 0, then for any y € R
f(y) = f(X)
If f is strictly convex then for any y # X

F(y) > f(X)



Epigraph

The epigraph of f : R" — R is

X[1]
epi(f) := {)? f ([_’[ ]]) <>_<’[n+1]}



Epigraph

epi ()




Supporting hyperplane

A hyperplane H is a supporting hyperplane of a set S at X if

» H and S intersect at X

» S is contained in one of the half-spaces bounded by H



Geometric intuition

Geometrically, f is convex if and only if for every X the plane

([l

Heg=qy|yln+1]=1f1|

yn]
is a supporting hyperplane of the epigraph at X

If V£ (X) = 0 the hyperplane is horizontal



Convexity




Hessian matrix

If £ has a Hessian matrix at every point, it is twice differentiable

[ 92¢(%) 92 (R) (%) |

OXI?  ONIox[2] T OXIIOX[N]

PrR) R PF(R)

V2f (%) = | Ox[Uox2] X1 ORT2JOR[7]
0%f() %F() . ()

_8)?[1]8)?[n] 0x[2])0X[n] ox[n]? |




Curvature

The second directional derivative £ of f at X equals
f2(X) = d’ V3 (X) 7

for any unit-norm vector i € R”



Second-order approximation

The second-order or quadratic approximation of f at X is

R () = (0) + VF (%) (7 ) + 5 (7 0T VF(0) (7~ %)



Second-order approximation




Quadratic form

Second order polynomial in several dimensions
q(x) =xXTAX+b'X+c

parametrized by symmetric matrix A € R"™", a vector b€ R" and
a constant ¢



Quadratic approximation

The quadratic approximation f2 : R"” — R at X € R" of a
twice-continuously differentiable function f : R” — R satisfies
lim_

f(7)—R2(7) _
y=x ||y — X3



Eigendecomposition of symmetric matrices

Let A= UAUT be the eigendecomposition of a symmetric matrix A

Eigenvalues: A1 > --- > X\, (which can be negative or 0)

Eigenvectors: i, ..., i, orthonormal basis
A= max xT AX
{lIx1l,=1| xer"}
o [y
u = argmax  x' AX
{lIx1l,=1 | xR}
An = min xT Az

{IIRll,=1 | xR}

Up = argmin  XTAX
{IIRll,=1 | xR}



Maximum and minimum curvature

Let V2f (X) = UAUT be the eigendecomposition of the Hessian at X
Direction of maximum curvature:

Direction of minimum curvature (or maximum negative curvature): ),



Positive semidefinite matrices

For any X
xTAXx=xTUNUT X
= Z i, X
All eigenvalues are nonnegative if and only if
XTAX >0
for all X

The matrix is positive semidefinite



Positive (negative) (semi)definite matrices

Positive (semi)definite: all eigenvalues are positive (nonnegative),
equivalently for all X

XTAX > (>)0

Quadratic form: All directions have positive curvature

Negative (semi)definite: all eigenvalues are negative (nonpositive),
equivalently for all X

XTAX < ()0

Quadratic form: All directions have negative curvature



Convexity

A twice-differentiable function g : R — R is convex if and only if
g"(x)=0

forall x e R

A twice-differentiable function in R" is convex if and only if their
Hessian is positive semidefinite at every point

If the Hessian is positive definite, the function is strictly convex



Second-order approximation




Convex




Concave




Neither




Minimizing differentiable convex functions



Problem

Challenge: Minimizing differentiable convex functions



Gradient descent

Intuition: Make local progress in the steepest direction —Vf(x)
Set the initial point X¥(©) to an arbitrary value
Update by setting

01 = g0y v (309)

where ay > 0 is the step size, until a stopping criterion is met



Gradient descent




Gradient descent

4.0
3.5

13.0
12.5
12.0

1.5
1.0
0.5



Small step size

[T

4.0
3.5

13.0
12.5
12.0

1.5
1.0
0.5



Large step size

100
90
180
170
160
150
140
30
20
10

[TTTTTTITI




Line search

Idea: Find minimum of

ay = argmin h(a)
(0%

i (#0055



Backtracking line search with Armijo rule

Given a® > 0 and 8,7 € (0,1), set ay := a® 3’ for smallest i such that
gD = g0 _ o, vF (z(“)
satisfies

2

(7o) 1 6) - w20

a condition known as Armijo rule



Backtracking line search with Armijo rule

[T

4.0
3.5

13.0
12.5
12.0

1.5
1.0
0.5



Gradient descent for least squares

Aim: Use n examples
<y(1),;(1)) , (y(z)j(z)) . (y(n),;(n))
to fit a linear model by minimizing least-squares cost function

y—52

mlnlmlzegeRp



Gradient descent for least squares

The gradient of the quadratic function

)= 7,
=BTXTXG-26"XTy+yTy

equals

-,

V£(B)



Gradient descent for least squares

The gradient of the quadratic function

)= 7,
=BTXTXG-26"XTy+yTy

equals

-,

Vi) =2X"XF-2XxTy



Gradient descent for least squares

The gradient of the quadratic function
. . L2
F(3) = ||y — X8|\,
= BTXTXE-28"XTy+yTy
equals
VF(B) =2XTXF-2xTy
Gradient descent updates are

Gt Z G0 4 on, XT (y_ Xg(m)



Gradient descent for least squares

The gradient of the quadratic function
. . L2
By = ||y — x4
=BTXTX5 - 26TXTy+yy
equals
VF(B) =2XTXF-2xTy
Gradient descent updates are

Gt Z G0 4 on, XT <y~_ Xg(m)

— 3k 4 Qakz ( (f>7g(k)>) (1)

i=1



Gradient ascent for logistic regression

Aim: Use n examples

<y(1),;(1)) 7 (y(2)7£(2)> L <y(n),x~(n))

to fit logistic-regression model by maximizing log-likelihood cost
function

() = >0y ogg (70, ) + (1- ) log (1 - & (%9.7)))
i=1

where



Gradient ascent for logistic regression

The gradient of the cost function equals

-,

V£(B)



Gradient ascent for logistic regression

g'(t)=g(t)(1-g(t)
(1-g(t)) =-g(t)(1-g(t)

The gradient of the cost function equals

Zy“ (1-8(xD.8)) x0 — (1= y0) g3, 3)



Gradient ascent for logistic regression
g (t)=g(t)(1-g(t)
(1-g(t) =—g()(1—g(t)
The gradient of the cost function equals
Zy“ (1-8(xD.8)) x0 — (1= y0) g3, 3)

The gradient ascent updates are

ﬁ“(k+1)



Gradient ascent for logistic regression

g'(t)=g(t)(1-g(t)
(1-g(t)) =-g(t)(1-g(t)

The gradient of the cost function equals
Zy< 7 (1-8(x,8)) 2D = (1= ) gz, )z

The gradient ascent updates are

Gl . Gk

+ ok z":y(” (1 — g((x, /§<k>>)) 70) — (1 — y(f)> g((x0, w1y



Convergence of gradient descent

Does the method converge?
How fast (slow)?

For what step sizes?



Convergence of gradient descent

Does the method converge?
How fast (slow)?
For what step sizes?

Depends on function



Lipschitz continuity

A function f : R” — R™ is Lipschitz continuous if for any x,y € R"

() = F () < LIy =]l

L is the Lipschitz constant



Lipschitz-continuous gradients

If V£ is Lipschitz continuous with Lipschitz constant L
IVF(Y) = VEX)l, < LIy =Xl

then for any X, ¥ € R" we have a quadratic upper bound
y X,y

» ~ I TR
FO) < FE)+VIR)T -0+ 5117 -2l



Local progress of gradient descent

U .= (K _ o VF (z(k)>

F ()?(k+1)>



Local progress of gradient descent

gD = () _ o, vF (z(k)>

£ ()?(k+1)>

<f <)—<‘(k)) + VF (;(k)> T (;(kﬂ) _ ;(k)) i %

2

gkt1) _ (k) ’ ‘2



Local progress of gradient descent

U .= (K _ o VF (z(k)>

F ()?(k+1)>

p <;(k)) L vf (;(k)) T (;(kﬂ) _ ;(k)) 4 Elgtern ;(k)H

dl

2

2

AN

x|

) - 1-2) o (s



Local progress of gradient descent

U .= (K _ o VF (z(k)>

F ()?(k+1)>

f (z(k)) +VF (W))T (*<k+1) z(k)) + é
F(5) o (1-%5) [[vr (=)

1
H:Odkgz

2
gk+1) _ (k) H

2

AN

() 2 (1) o (<)



Convergence of gradient descent

» f is convex

v

Vf is L-Lipschitz continuous

There exists a point X* at which f achieves a finite minimum

v

v

The step size is set to o == a < 1/L

R — 5| 2



Convergence of gradient descent

(#9) 2 (s ) - o)

¢ ()?(k_l)> L Vf <)—<»(k—1)) T <)?* _ ;(k—l)) < F(X%)

f (W)) ~F(RY)



Convergence of gradient descent

(#9) 2 (s ) - o)

¢ ()?(k_l)> L Vf <)—<»(k—1)) T <)?* _ ;(k—l)) < F(X%)



Convergence of gradient descent

(#9) 2 (s ) - o)

¢ ()?(k_l)> L Vf <)—<»(k—1)) T <)?* _ ;(k—l)) < F(X%)

F(R09) —F(x7)
(2 < e o ()
f

()" ) - o ()|

IN

2

\%

IN

2



Convergence of gradient descent

(#9) 2 (s ) - o)

¢ ()?(k_l)> L Vf <)—<»(k—1)) T <)?* _ ;(k—l)) < F(X%)

F(R09) —F(x7)
< (100) - e o ()
f

(#0) (#4702 for ()

21 gt _avF (z(k—l))Hi)

2
)—<»(k—1) g
2




Convergence of gradient descent

(#9) 2 (s ) - o)

¢ ()?(k_l)> L Vf <)—<»(k—1)) T <)?* _ ;(k—l)) < F(X%)

F(R0) —F(x7)
< (100) - e o ()
;

(#0) (#4702 for ()

21 gt _avF (z(k—l))”i)

(e H “[le-#,)

2
gk=1) _ ex||” _




Convergence of gradient descent

F(R0) = F(x)



Convergence of gradient descent



Convergence of gradient descent

k
f ()?(k)> —f(x*) < ! Z f ()?’(k)) —f(X") never increases



Convergence of gradient descent




Convergence of gradient descent

2 K)

—|x(

2



Convergence of gradient descent

k
i=1
1 & 2
= — _'(kfl) 7 * _’(k) %
2ak; x X 2 x x 2
1=
= 5oz (RO == =[]0 -2 2)
o
7@ = x|



Accelerated gradient descent

» Gradient descent takes O (1/¢) to achieve an error of €
» The optimal rate is O (1/+/€)

» Gradient descent can be accelerated by adding a momentum term



Accelerated gradient descent

Set the initial point X(©) to an arbitrary value

Update by setting

YU+ — () _ o, vf (x<k)>
XD — g, (kD) o ()

where «y is the step size and 3, > 0 and v, > 0 are parameters



Digit classification

MNIST data
Aim: Determine whether a digit is a 5 or not

7 Is an image

1

yi =1ory; =0 if image i is a 5 or not, respectively

We fit a logistic-regression model



Digit classification

— Gradient Descent
— Accelerated Descent

Times (s)

Sizes



Stochastic gradient descent

Cost functions to fit models are often additive

> Linear regression

zn: (W - 20 7F) =

1=

» Logistic regression

iy(") logg (0, 8)) + (1= y D) log (1~ g ((*1,
i=1



Stochastic gradient descent

In big data regime (very large n), gradient descent is too slow
In some cases, data is acquired sequentially (online setting)

Stochastic gradient descent: update solution using a subset of the data



Stochastic gradient descent

Set the initial point X(% to an arbitrary value

Update by

1. Choosing a random subset of b indices B (b < m is the batch size)

2. Setting

k1) = g (k) akaVf,- ()?(k))
ieB

where o is the step size



Stochastic gradient descent

We replace Vf by

YoV, (z ’<>) Z LiegVF, ( <k+1))

ieB

Noisy estimate of Vf

Unbiased if every example is in the batch with probability p

o (20
e (3w (<)



Stochastic gradient descent

We replace Vf by

NAGRIE Z LiesVf (x0D)

ieB

Noisy estimate of Vf

Unbiased if every example is in the batch with probability p

(Zl,eBVf< )> ZE lies) Vi (x9)



Stochastic gradient descent

We replace Vf by

NAGRIE Z LiesVf (x0D)

ieB

Noisy estimate of Vf

Unbiased if every example is in the batch with probability p

S o (20) ) -
e (3w (<)

'Ms

E (Lies) Vf; (x)

i=1

I
.MB

I
—

P (i € B)Vf ( (k>)



Stochastic gradient descent

We replace Vf by

NAGRIE Z LiesVf (x0D)

ieB

Noisy estimate of Vf

Unbiased if every example is in the batch with probability p

S o (20) ) -
e (3w (<)

'Ms

E (Lies) Vf; (x)

i=1

I
Ms

; ()
1 (eB)w( )

pVf (z(“)



Stochastic gradient descent

> Linear regression
Bk+1) _5(k)+2akz< ) — (x() ﬁk)>) ()
ieB
» Logistic regression

B‘(k+1) — B’(k)
+akzy()(1_ ()ﬁk)») ()_( ()) g((xD, F0y)z 0

ieB



Digit classification

MNIST data
Aim: Determine whether a digit is a 5 or not

7 Is an image

1

yi =1ory; =0 if image i is a 5 or not, respectively

We fit a logistic-regression model



Digit classification

16 [ — Gradient Descent
— SGD (1)
14;\\ — SGD (10)
— SGD (100)
12 — SGD (1000)
SGD (10000)
g10
3
g
£ 8
®
=
6
a4
2
(] 107 10 10° 10° 10 10°

Steps



Newton's method

Motivation: Convex functions are often almost quadratic f ~ fxg

Idea: lteratively minimize quadratic approximation

R () = F (%) + VF () (7~ %) + 5 (7~ 9 VF(R) (7~ %),

Minimum has closed form

argmin £2 (y) = X — V2f (x) ' VF (X)
yeRn



Proof

We have
VEZ(y) = VI (X) + Vf (X) (¥ — X)
It is equal to zero if
V2f (X) (¥ — X) = =V (X)

If the Hessian is positive definite, the only minimum of f>?2 is at

X — V2f (X)L VF(X)



Newton's method

Set the initial point X¥(©) to an arbitrary value
Update by setting
gD = 20 927 (x0) 7 or (x00)

until a stopping criterion is met



¥

Newton's method

Quadratic approximation




Quadratic function



uadratic function







Logistic regression

8 f >(i) 2 Dy i
az[,]a;[/] Zg( 0.5 ( g((x1, >)>>?()[/]>?()[/]

V2F(B) = -XT G(B)X
The rows of X € R"™P contain x(1), ... x("

G is a diagonal matrix such that

G(B)i = g((*D. ) (1-g(xD.8)),  1<i<n



Logistic regression

Newton updates are

FkHD = J0) — (XTG(IR)X) T (W)

Sanity check: Cost function is concave, for any 5, v e RP

vTV2f(B)V = — ZG )i (XV)[1]2 <0
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