

Convex Optimization

DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis

http://www.cims.nyu.edu/~cfgranda/pages/OBDA_fall17/index.html

Carlos Fernandez-Granda

Convexity

Differentiable convex functions

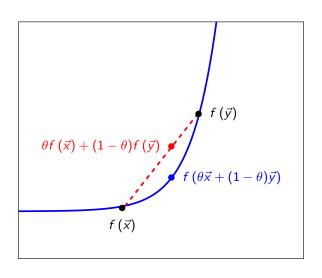
Minimizing differentiable convex functions

Convex functions

A function
$$f: \mathbb{R}^n \to \mathbb{R}$$
 is convex if for any $\vec{x}, \vec{y} \in \mathbb{R}^n$ and any $\theta \in (0,1)$
$$\theta f(\vec{x}) + (1-\theta) f(\vec{y}) \ge f(\theta \vec{x} + (1-\theta) \vec{y})$$

A function f if concave is -f is convex

Convex functions



Linear functions are convex

If f is linear

$$f(\theta \vec{x} + (1 - \theta) \vec{y})$$

Linear functions are convex

If f is linear

$$f(\theta \vec{x} + (1 - \theta) \vec{y}) = \theta f(\vec{x}) + (1 - \theta) f(\vec{y})$$

Strictly convex functions

A function $f: \mathbb{R}^n \to \mathbb{R}$ is strictly convex if for any $\vec{x}, \vec{y} \in \mathbb{R}^n$ and any $\theta \in (0,1)$

$$\theta f(\vec{x}) + (1 - \theta) f(\vec{y}) > f(\theta \vec{x} + (1 - \theta) \vec{y})$$

Any local minimum of a convex function is also a global minimum

Let \vec{x}_{loc} be a local minimum: for all $\vec{x} \in \mathbb{R}^n$ such that $||\vec{x} - \vec{x}_{\text{loc}}||_2 \le \gamma$

$$f\left(\vec{x}_{\mathsf{loc}}\right) \leq f\left(\vec{x}\right)$$

Let \vec{x}_{glob} be a global minimum

$$f\left(\vec{x}_{\mathsf{glob}}\right) < f\left(\vec{x}_{\mathsf{loc}}\right)$$

Choose
$$heta$$
 so that $ec{x}_{ heta} := heta ec{x}_{ ext{loc}} + (1 - heta) ec{x}_{ ext{glob}}$ satisfies

$$||\vec{x}_{\theta} - \vec{x}_{\mathsf{loc}}||_2 \le \gamma$$

$$f\left(\vec{x}_{\mathsf{loc}}\right) \leq f\left(\vec{x}_{\theta}\right)$$

Choose
$$\theta$$
 so that $\vec{x}_{\theta}:=\theta\vec{x}_{\text{loc}}+\left(1-\theta\right)\vec{x}_{\text{glob}}$ satisfies
$$||\vec{x}_{\theta}-\vec{x}_{\text{loc}}||_{2}\leq\gamma$$

$$f(\vec{x}_{loc}) \le f(\vec{x}_{\theta})$$

$$= f(\theta \vec{x}_{loc} + (1 - \theta) \vec{x}_{glob})$$

Choose heta so that $ec{x}_{ heta} := heta ec{x}_{ extsf{loc}} + (1 - heta) \, ec{x}_{ extsf{glob}}$ satisfies

$$||\vec{x}_{\theta} - \vec{x}_{loc}||_2 \le \gamma$$

$$\begin{split} f\left(\vec{x}_{\text{loc}}\right) &\leq f\left(\vec{x}_{\theta}\right) \\ &= f\left(\theta\vec{x}_{\text{loc}} + \left(1 - \theta\right)\vec{x}_{\text{glob}}\right) \\ &\leq \theta f\left(\vec{x}_{\text{loc}}\right) + \left(1 - \theta\right)f\left(\vec{x}_{\text{glob}}\right) \quad \text{by convexity of } f \end{split}$$

Choose heta so that $ec{x_{ heta}} := heta ec{x_{ extsf{loc}}} + (1 - heta) ec{x_{ extsf{glob}}}$ satisfies

$$||\vec{x}_{\theta} - \vec{x}_{loc}||_2 \le \gamma$$

$$\begin{split} f\left(\vec{x}_{\mathsf{loc}}\right) &\leq f\left(\vec{x}_{\theta}\right) \\ &= f\left(\theta\vec{x}_{\mathsf{loc}} + (1-\theta)\,\vec{x}_{\mathsf{glob}}\right) \\ &\leq \theta f\left(\vec{x}_{\mathsf{loc}}\right) + (1-\theta)\,f\left(\vec{x}_{\mathsf{glob}}\right) \quad \text{by convexity of } f \\ &< f\left(\vec{x}_{\mathsf{loc}}\right) \quad \text{because } f\left(\vec{x}_{\mathsf{glob}}\right) < f\left(\vec{x}_{\mathsf{loc}}\right) \end{split}$$

Norm

Let ${\cal V}$ be a vector space, a norm is a function $||\cdot||$ from ${\cal V}$ to $\mathbb R$ with the following properties

▶ It is homogeneous. For any scalar α and any $\vec{x} \in \mathcal{V}$

$$||\alpha \vec{\mathbf{x}}|| = |\alpha| \, ||\vec{\mathbf{x}}|| \, .$$

It satisfies the triangle inequality

$$||\vec{x} + \vec{y}|| \le ||\vec{x}|| + ||\vec{y}||$$
.

In particular, $||\vec{x}|| \ge 0$

 $|\vec{x}| = 0$ implies $\vec{x} = \vec{0}$

Norms are convex

For any
$$\vec{x}, \vec{y} \in \mathbb{R}^n$$
 and any $\theta \in (0,1)$

$$||\theta \vec{x} + (1-\theta)\vec{y}||$$

Norms are convex

For any $\vec{x}, \vec{y} \in \mathbb{R}^n$ and any $\theta \in (0, 1)$

$$||\theta \vec{x} + (1 - \theta) \vec{y}|| \le ||\theta \vec{x}|| + ||(1 - \theta) \vec{y}||$$

Norms are convex

For any $\vec{x}, \vec{y} \in \mathbb{R}^n$ and any $\theta \in (0,1)$

$$||\theta \vec{x} + (1 - \theta) \vec{y}|| \le ||\theta \vec{x}|| + ||(1 - \theta) \vec{y}||$$

= $\theta ||\vec{x}|| + (1 - \theta) ||\vec{y}||$

If $f:\mathbb{R}^n o \mathbb{R}$ is convex, then for any $A \in \mathbb{R}^{n imes m}$ and $ec{b} \in \mathbb{R}^n$

$$h(\vec{x}) := f\left(A\vec{x} + \vec{b}\right)$$

is convex

Consequence:

$$f(\vec{x}) := \left| \left| A\vec{x} + \vec{b} \right| \right|$$

is convex for any A and \vec{b}

$$h(\theta \vec{x} + (1 - \theta) \vec{y})$$

$$h(\theta \vec{x} + (1 - \theta) \vec{y}) = f(\theta(A\vec{x} + \vec{b}) + (1 - \theta)(A\vec{y} + \vec{b}))$$

$$h(\theta \vec{x} + (1 - \theta) \vec{y}) = f\left(\theta\left(A\vec{x} + \vec{b}\right) + (1 - \theta)\left(A\vec{y} + \vec{b}\right)\right)$$

 $\leq \theta f\left(A\vec{x} + \vec{b}\right) + (1 - \theta) f\left(A\vec{y} + \vec{b}\right)$

$$h(\theta\vec{x} + (1 - \theta)\vec{y}) = f\left(\theta\left(A\vec{x} + \vec{b}\right) + (1 - \theta)\left(A\vec{y} + \vec{b}\right)\right)$$

$$\leq \theta f\left(A\vec{x} + \vec{b}\right) + (1 - \theta)f\left(A\vec{y} + \vec{b}\right)$$

$$= \theta h(\vec{x}) + (1 - \theta)h(\vec{y})$$

$$\ell_0$$
 "norm"

Not a norm!

 $||2\vec{x}||_0$

$$\ell_0$$
 "norm"

Not a norm!

$$||2\vec{x}||_0 = ||\vec{x}||_0$$

$$\ell_0$$
 "norm"

Not a norm!

$$||2\vec{x}||_0 = ||\vec{x}||_0$$

 $\neq 2 ||\vec{x}||_0$

$$\ell_0$$
 "norm"

Not a norm!

$$||2\vec{x}||_0 = ||\vec{x}||_0$$

 $\neq 2 ||\vec{x}||_0$

$$\ell_0$$
 "norm"

Not a norm!

$$||2\vec{x}||_0 = ||\vec{x}||_0$$

$$\neq 2 ||\vec{x}||_0$$

Let
$$\vec{x} := \left(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \right)$$
 and $\vec{y} := \left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \right)$, for any $\theta \in (0,1)$

$$||\theta\vec{x} + (1-\theta)\vec{y}||_0$$

$$\theta ||\vec{x}||_0 + (1 - \theta) ||\vec{y}||_0$$

$$\ell_0$$
 "norm"

Not a norm!

$$||2\vec{x}||_0 = ||\vec{x}||_0$$

$$\neq 2 ||\vec{x}||_0$$

Let
$$\vec{x} := \left(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \right)$$
 and $\vec{y} := \left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \right)$, for any $\theta \in (0,1)$

$$||\theta \vec{x} + (1 - \theta) \vec{y}||_{0} = 2$$

$$\theta ||\vec{x}||_0 + (1 - \theta) ||\vec{y}||_0$$

$$\ell_0$$
 "norm"

Not a norm!

$$||2\vec{x}||_0 = ||\vec{x}||_0$$

 $\neq 2 ||\vec{x}||_0$

Let
$$\vec{x} := \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $\vec{y} := \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, for any $\theta \in (0,1)$

$$||\theta \vec{x} + (1 - \theta) \vec{y}||_0 = 2$$

$$\theta ||\vec{x}||_0 + (1 - \theta) ||\vec{y}||_0 = 1$$

Promoting sparsity

Finding sparse vectors consistent with data is often very useful

Toy problem: Find t such that

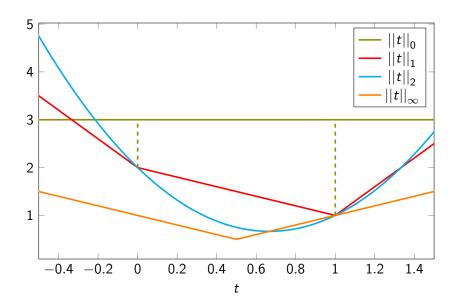
$$ec{v_t} := egin{bmatrix} t \ t-1 \ t-1 \end{bmatrix}$$

is sparse

Strategy: Minimize

$$f(t) := ||\vec{v}_t||$$

Promoting sparsity



The rank of matrices in $\mathbb{R}^{n\times n}$ interpreted as a function from $\mathbb{R}^{n\times n}$ to \mathbb{R} is not convex

The rank of matrices in $\mathbb{R}^{n\times n}$ interpreted as a function from $\mathbb{R}^{n\times n}$ to \mathbb{R} is not convex

$$X := \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad Y := \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

For any $\theta \in (0,1)$

$$\operatorname{rank}(\theta X + (1 - \theta) Y)$$

$$\theta \operatorname{rank}(X) + (1 - \theta) \operatorname{rank}(Y)$$

The rank of matrices in $\mathbb{R}^{n\times n}$ interpreted as a function from $\mathbb{R}^{n\times n}$ to \mathbb{R} is not convex

$$X := \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad Y := \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

For any $\theta \in (0,1)$

$$rank (\theta X + (1 - \theta) Y) = 2$$

$$\theta \operatorname{rank}(X) + (1 - \theta) \operatorname{rank}(Y)$$

The rank of matrices in $\mathbb{R}^{n\times n}$ interpreted as a function from $\mathbb{R}^{n\times n}$ to \mathbb{R} is not convex

$$X := \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad Y := \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

For any $\theta \in (0,1)$

$$rank (\theta X + (1 - \theta) Y) = 2$$

$$\theta \operatorname{rank}(X) + (1 - \theta) \operatorname{rank}(Y) = 1$$

Matrix norms

Frobenius norm

$$||A||_{\mathsf{F}} := \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^2} = \sqrt{\sum_{i=1}^{\min\{m,n\}} \sigma_i^2}$$

Operator norm

$$||A|| := \max_{\{||\vec{x}||_2 = 1 \mid \vec{x} \in \mathbb{R}^n\}} ||A\vec{x}||_2 = \sigma_1$$

Nuclear norm

$$||A||_* := \sum_{i=1}^{\min\{m,n\}} \sigma_i$$

Promoting low-rank structure

Finding low-rank matrices consistent with data is often very useful

Toy problem: Find t such that

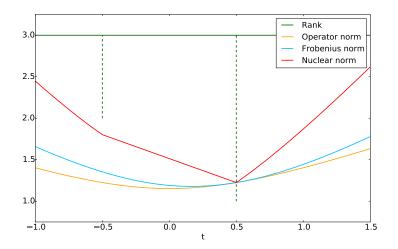
$$M(t) := \begin{bmatrix} 0.5 + t & 1 & 1 \\ 0.5 & 0.5 & t \\ 0.5 & 1 - t & 0.5 \end{bmatrix},$$

is low rank

Strategy: Minimize

$$f(t) := ||M(t)||$$

Promoting low-rank structure



Convexity

Differentiable convex functions

Minimizing differentiable convex functions

Gradient

$$\nabla f(\vec{x}) = \begin{bmatrix} \frac{\partial f(\vec{x})}{\partial \vec{x}[1]} \\ \frac{\partial f(\vec{x})}{\partial \vec{x}[2]} \\ \vdots \\ \frac{\partial f(\vec{x})}{\partial \vec{x}[n]} \end{bmatrix}$$

If the gradient exists at every point, the function is said to be differentiable

Directional derivative

Encodes first-order rate of change in a particular direction

$$f'_{\vec{u}}(\vec{x}) := \lim_{h \to 0} \frac{f(\vec{x} + h\vec{u}) - f(\vec{x})}{h}$$
$$= \langle \nabla f(\vec{x}), \vec{u} \rangle$$

where $||u||_2 = 1$

 ∇f is direction of maximum increase

 $-\nabla f$ is direction of maximum decrease

$$\left|f'_{\vec{u}}(\vec{x})\right| = \left|\nabla f(\vec{x})^T \vec{u}\right|$$

 ∇f is direction of maximum increase

 $-\nabla f$ is direction of maximum decrease

$$\begin{aligned} \left| f'_{\vec{u}}(\vec{x}) \right| &= \left| \nabla f(\vec{x})^T \vec{u} \right| \\ &\leq \left| \left| \nabla f(\vec{x}) \right| \right|_2 \left| \left| \vec{u} \right| \right|_2 \end{aligned} \quad \text{Cauchy-Schwarz inequality}$$

 ∇f is direction of maximum increase

 $-\nabla f$ is direction of maximum decrease

$$\begin{split} \left|f'_{\vec{u}}(\vec{x})\right| &= \left|\nabla f\left(\vec{x}\right)^T \vec{u}\right| \\ &\leq \left|\left|\nabla f\left(\vec{x}\right)\right|\right|_2 \left|\left|\vec{u}\right|\right|_2 \qquad \text{Cauchy-Schwarz inequality} \\ &= \left|\left|\nabla f\left(\vec{x}\right)\right|\right|_2 \end{split}$$

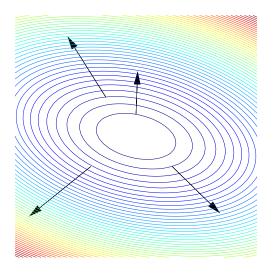
 ∇f is direction of maximum increase

 $-\nabla f$ is direction of maximum decrease

$$\begin{aligned} \left| f'_{\vec{u}}(\vec{x}) \right| &= \left| \nabla f(\vec{x})^T \vec{u} \right| \\ &\leq \left| \left| \nabla f(\vec{x}) \right| \right|_2 \left| \left| \vec{u} \right| \right|_2 & \text{Cauchy-Schwarz inequality} \\ &= \left| \left| \nabla f(\vec{x}) \right| \right|_2 \end{aligned}$$

equality holds if and only if $\vec{u} = \pm \frac{\nabla f(\vec{x})}{||\nabla f(\vec{x})||_2}$

Gradient



First-order approximation

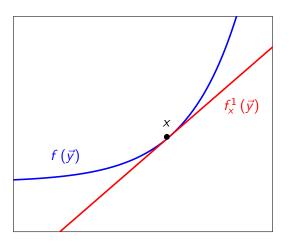
The first-order or linear approximation of $f: \mathbb{R}^n \to \mathbb{R}$ at \vec{x} is

$$f_{\vec{x}}^1(\vec{y}) := f(\vec{x}) + \nabla f(\vec{x})^T (\vec{y} - \vec{x})$$

If f is continuously differentiable at \vec{x}

$$\lim_{\vec{y} \to \vec{x}} \frac{f(\vec{y}) - f_{\vec{x}}^{1}(\vec{y})}{||\vec{y} - \vec{x}||_{2}} = 0$$

First-order approximation



Convexity

A differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if for every $\vec{x}, \vec{y} \in \mathbb{R}^n$

$$f(\vec{y}) \ge f(\vec{x}) + \nabla f(\vec{x})^T (\vec{y} - \vec{x})$$

It is strictly convex if and only if

$$f(\vec{y}) > f(\vec{x}) + \nabla f(\vec{x})^{T} (\vec{y} - \vec{x})$$

Optimality condition

If f is convex and $\nabla f(\vec{x}) = 0$, then for any $\vec{y} \in \mathbb{R}$

$$f(\vec{y}) \geq f(\vec{x})$$

If f is strictly convex then for any $\vec{y} \neq \vec{x}$

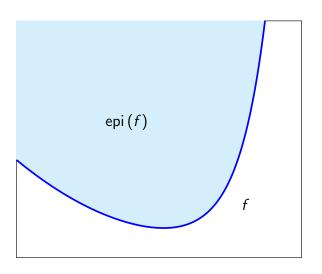
$$f(\vec{y}) > f(\vec{x})$$

Epigraph

The epigraph of $f: \mathbb{R}^n \to \mathbb{R}$ is

$$\mathsf{epi}\left(f
ight) := \left\{ ec{x} \mid f\left(egin{bmatrix} ec{x}[1] \ \cdots \ ec{x}[n] \end{bmatrix}
ight) \leq ec{x}[n+1]
ight\}$$

Epigraph



Supporting hyperplane

A hyperplane ${\mathcal H}$ is a supporting hyperplane of a set ${\mathcal S}$ at $\vec x$ if

- \blacktriangleright \mathcal{H} and \mathcal{S} intersect at \vec{x}
- lacktriangleright ${\cal S}$ is contained in one of the half-spaces bounded by ${\cal H}$

Geometric intuition

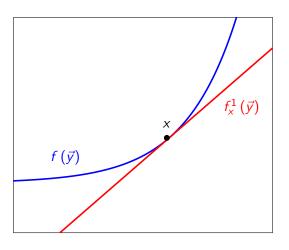
Geometrically, f is convex if and only if for every \vec{x} the plane

$$\mathcal{H}_{f,ec{\mathbf{z}}} := \left\{ ec{\mathbf{y}} \mid ec{\mathbf{y}}[n+1] = f^1_{ec{\mathbf{z}}} \left(egin{bmatrix} ec{\mathbf{y}}[1] \\ \cdots \\ ec{\mathbf{y}}[n] \end{bmatrix}
ight)
ight\}$$

is a supporting hyperplane of the epigraph at \vec{x}

If $\nabla f(\vec{x}) = 0$ the hyperplane is horizontal

Convexity



Hessian matrix

If f has a Hessian matrix at every point, it is twice differentiable

$$\nabla^{2} f(\vec{x}) = \begin{bmatrix} \frac{\partial^{2} f(\vec{x})}{\partial \vec{x}[1]^{2}} & \frac{\partial^{2} f(\vec{x})}{\partial \vec{x}[1]\partial \vec{x}[2]} & \cdots & \frac{\partial^{2} f(\vec{x})}{\partial \vec{x}[1]\partial \vec{x}[n]} \\ \frac{\partial^{2} f(\vec{x})}{\partial \vec{x}[1]\partial \vec{x}[2]} & \frac{\partial^{2} f(\vec{x})}{\partial \vec{x}[1]^{2}} & \cdots & \frac{\partial^{2} f(\vec{x})}{\partial \vec{x}[2]\partial \vec{x}[n]} \\ & & & \cdots \\ \frac{\partial^{2} f(\vec{x})}{\partial \vec{x}[1]\partial \vec{x}[n]} & \frac{\partial^{2} f(\vec{x})}{\partial \vec{x}[2]\partial \vec{x}[n]} & \cdots & \frac{\partial^{2} f(\vec{x})}{\partial \vec{x}[n]^{2}} \end{bmatrix}$$

Curvature

The second directional derivative $f_{\vec{u}}''$ of f at \vec{x} equals

$$f_{\vec{u}}^{\prime\prime}(\vec{x}) = \vec{u}^T \nabla^2 f(\vec{x}) \vec{u}$$

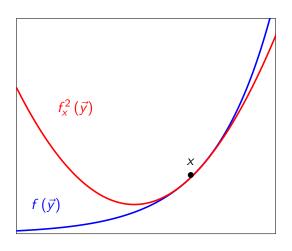
for any unit-norm vector $\vec{u} \in \mathbb{R}^n$

Second-order approximation

The second-order or quadratic approximation of f at \vec{x} is

$$f_{\vec{x}}^{2}(\vec{y}) := f(\vec{x}) + \nabla f(\vec{x})(\vec{y} - \vec{x}) + \frac{1}{2}(\vec{y} - \vec{x})^{T} \nabla^{2} f(\vec{x})(\vec{y} - \vec{x})$$

Second-order approximation



Quadratic form

Second order polynomial in several dimensions

$$q(\vec{x}) := \vec{x}^T A \vec{x} + \vec{b}^T \vec{x} + c$$

parametrized by symmetric matrix $A \in \mathbb{R}^{n \times n}$, a vector $\vec{b} \in \mathbb{R}^n$ and a constant c

Quadratic approximation

The quadratic approximation $f_{\vec{x}}^2: \mathbb{R}^n \to \mathbb{R}$ at $\vec{x} \in \mathbb{R}^n$ of a twice-continuously differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ satisfies

$$\lim_{\vec{y} \to \vec{x}} \frac{f(\vec{y}) - f_{\vec{x}}^2(\vec{y})}{||\vec{y} - \vec{x}||_2^2} = 0$$

Eigendecomposition of symmetric matrices

Let $A = U \Lambda U^T$ be the eigendecomposition of a symmetric matrix A

Eigenvalues: $\lambda_1 \geq \cdots \geq \lambda_n$ (which can be negative or 0)

Eigenvectors: $\vec{u}_1, \ldots, \vec{u}_n$, orthonormal basis

$$\begin{split} \lambda_1 &= \max_{\left\{||\vec{x}||_2 = 1 \mid \vec{x} \in \mathbb{R}^n\right\}} \vec{x}^T A \vec{x} \\ \vec{u}_1 &= \argmax_{\left\{||\vec{x}||_2 = 1 \mid \vec{x} \in \mathbb{R}^n\right\}} \vec{x}^T A \vec{x} \\ \lambda_n &= \min_{\left\{||\vec{x}||_2 = 1 \mid \vec{x} \in \mathbb{R}^n\right\}} \vec{x}^T A \vec{x} \\ \vec{u}_n &= \arg\min_{\left\{||\vec{x}||_2 = 1 \mid \vec{x} \in \mathbb{R}^n\right\}} \vec{x}^T A \vec{x} \end{split}$$

Maximum and minimum curvature

Let
$$\nabla^2 f(\vec{x}) = U \Lambda U^T$$
 be the eigendecomposition of the Hessian at \vec{x}

Direction of maximum curvature: \vec{u}_1

Direction of minimum curvature (or maximum negative curvature): \vec{u}_n

Positive semidefinite matrices

For any \vec{x}

$$\vec{x}^T A \vec{x} = \vec{x}^T U \Lambda U^T \vec{x}$$
$$= \sum_{i=1}^n \lambda_i \langle \vec{u}_i, \vec{x} \rangle^2$$

All eigenvalues are nonnegative if and only if

$$\vec{x}^T A \vec{x} \ge 0$$

for all \vec{x}

The matrix is positive semidefinite

Positive (negative) (semi)definite matrices

Positive (semi)definite: all eigenvalues are positive (nonnegative), equivalently for all \vec{x}

$$\vec{x}^T A \vec{x} > (\geq) 0$$

Quadratic form: All directions have positive curvature

Negative (semi)definite: all eigenvalues are negative (nonpositive), equivalently for all \vec{x}

$$\vec{x}^T A \vec{x} < (\leq) 0$$

Quadratic form: All directions have negative curvature

Convexity

A twice-differentiable function $g:\mathbb{R} \to \mathbb{R}$ is convex if and only if

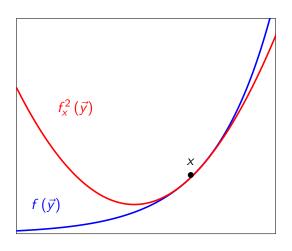
$$g''(x) \geq 0$$

for all $x \in \mathbb{R}$

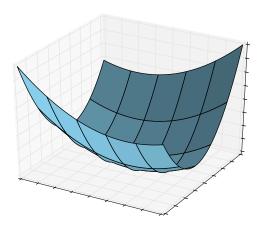
A twice-differentiable function in \mathbb{R}^n is convex if and only if their Hessian is positive semidefinite at every point

If the Hessian is positive definite, the function is strictly convex

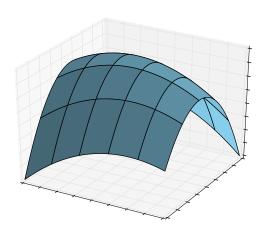
Second-order approximation



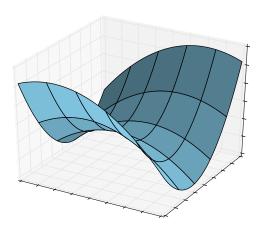
Convex



Concave



Neither



Convexity

Differentiable convex functions

Minimizing differentiable convex functions

Problem

Challenge: Minimizing differentiable convex functions

$$\min_{\vec{x} \in \mathbb{R}^n} f(\vec{x})$$

Gradient descent

Intuition: Make local progress in the steepest direction $-\nabla f(\vec{x})$

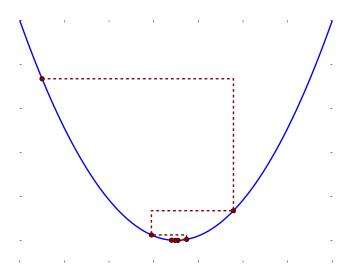
Set the initial point $\vec{x}^{(0)}$ to an arbitrary value

Update by setting

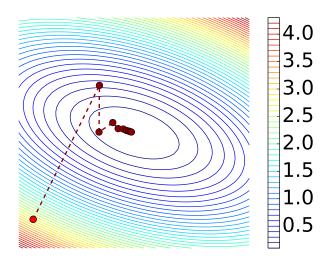
$$\vec{x}^{(k+1)} := \vec{x}^{(k)} - \alpha_k \nabla f\left(\vec{x}^{(k)}\right)$$

where $\alpha_{\it k} >$ 0 is the step size, until a stopping criterion is met

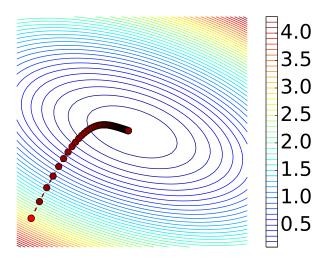
Gradient descent



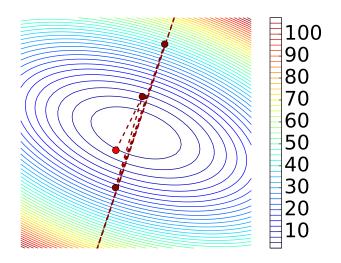
Gradient descent



Small step size



Large step size



Line search

Idea: Find minimum of

$$\begin{split} \alpha_k &:= \arg\min_{\alpha} h\left(\alpha\right) \\ &= \arg\min_{\alpha \in \mathbb{R}} f\left(\vec{x}^{(k)} - \alpha_k \nabla f\left(\vec{x}^{(k)}\right)\right) \end{split}$$

Backtracking line search with Armijo rule

Given $\alpha^0 \geq 0$ and $\beta, \eta \in (0,1)$, set $\alpha_k := \alpha^0 \beta^i$ for smallest i such that

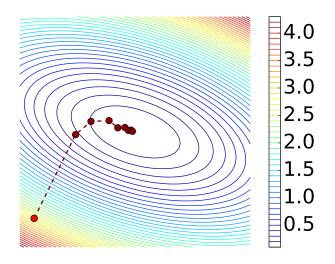
$$\vec{x}^{(k+1)} := \vec{x}^{(k)} - \alpha_k \nabla f\left(\vec{x}^{(k)}\right)$$

satisfies

$$f\left(\vec{x}^{(k+1)}\right) \leq f\left(\vec{x}^{(k)}\right) - \frac{1}{2}\alpha_k \left|\left|\nabla f\left(\vec{x}^{(k)}\right)\right|\right|_2^2$$

a condition known as Armijo rule

Backtracking line search with Armijo rule



Aim: Use *n* examples

$$(y^{(1)}, \vec{x}^{(1)}), (y^{(2)}, \vec{x}^{(2)}), \dots, (y^{(n)}, \vec{x}^{(n)})$$

to fit a linear model by minimizing least-squares cost function

minimize
$$_{\vec{\beta} \in \mathbb{R}^p} \left| \left| \vec{y} - \vec{X} \vec{\beta} \right| \right|_2^2$$

The gradient of the quadratic function

$$f(\vec{\beta}) := \left| \left| \vec{y} - X \vec{\beta} \right| \right|_{2}^{2}$$
$$= \vec{\beta}^{T} X^{T} X \vec{\beta} - 2 \vec{\beta}^{T} X^{T} \vec{y} + \vec{y}^{T} \vec{y}$$

equals

$$\nabla f(\vec{\beta})$$

The gradient of the quadratic function

$$f(\vec{\beta}) := \left| \left| \vec{y} - X \vec{\beta} \right| \right|_2^2$$
$$= \vec{\beta}^T X^T X \vec{\beta} - 2 \vec{\beta}^T X^T \vec{y} + \vec{y}^T \vec{y}$$

equals

$$\nabla f(\vec{\beta}) = 2X^T X \vec{\beta} - 2X^T \vec{y}$$

The gradient of the quadratic function

$$f(\vec{\beta}) := \left| \left| \vec{y} - X \vec{\beta} \right| \right|_{2}^{2}$$
$$= \vec{\beta}^{T} X^{T} X \vec{\beta} - 2 \vec{\beta}^{T} X^{T} \vec{y} + \vec{y}^{T} \vec{y}$$

equals

$$\nabla f(\vec{\beta}) = 2X^T X \vec{\beta} - 2X^T \vec{y}$$

Gradient descent updates are

$$\vec{\beta}^{(k+1)} = \vec{\beta}^{(k)} + 2\alpha_k X^T \left(\vec{y} - X \vec{\beta}^{(k)} \right)$$

The gradient of the quadratic function

$$f(\vec{\beta}) := \left| \left| \vec{y} - X \vec{\beta} \right| \right|_2^2$$
$$= \vec{\beta}^T X^T X \vec{\beta} - 2 \vec{\beta}^T X^T \vec{y} + \vec{y}^T \vec{y}$$

equals

$$\nabla f(\vec{\beta}) = 2X^T X \vec{\beta} - 2X^T \vec{y}$$

Gradient descent updates are

$$\vec{\beta}^{(k+1)} = \vec{\beta}^{(k)} + 2\alpha_k X^T \left(\vec{y} - X \vec{\beta}^{(k)} \right)$$
$$= \vec{\beta}^{(k)} + 2\alpha_k \sum_{i=1}^n \left(\vec{y}^{(i)} - \langle x^{(i)}, \vec{\beta}^{(k)} \rangle \right) x^{(i)}$$

Aim: Use *n* examples

$$\left(y^{(1)}, \vec{x}^{(1)}\right), \left(y^{(2)}, \vec{x}^{(2)}\right), \ldots, \left(y^{(n)}, \vec{x}^{(n)}\right)$$

to fit logistic-regression model by maximizing log-likelihood cost function

$$f(\vec{\beta}) := \sum_{i=1}^{n} y^{(i)} \log g\left(\langle \vec{x}^{(i)}, \vec{\beta} \rangle\right) + \left(1 - y^{(i)}\right) \log\left(1 - g\left(\langle \vec{x}^{(i)}, \vec{\beta} \rangle\right)\right)$$

where

$$g(t) = \frac{1}{1 - \exp{-t}}$$

$$g'(t) = g(t)(1 - g(t))$$

 $(1 - g(t))' = -g(t)(1 - g(t))$

The gradient of the cost function equals

$$\nabla f(\vec{\beta})$$

$$g'(t) = g(t)(1 - g(t))$$

 $(1 - g(t))' = -g(t)(1 - g(t))$

The gradient of the cost function equals

$$\nabla f(\vec{\beta}) = \sum_{i=1}^{n} y^{(i)} \left(1 - g(\langle \vec{x}^{(i)}, \vec{\beta} \rangle) \right) \vec{x}^{(i)} - \left(1 - y^{(i)} \right) g(\langle \vec{x}^{(i)}, \vec{\beta} \rangle) \vec{x}^{(i)}$$

$$g'(t) = g(t)(1 - g(t))$$

 $(1 - g(t))' = -g(t)(1 - g(t))$

The gradient of the cost function equals

$$\nabla f(\vec{\beta}) = \sum_{i=1}^{n} y^{(i)} \left(1 - g(\langle \vec{x}^{(i)}, \vec{\beta} \rangle) \right) \vec{x}^{(i)} - \left(1 - y^{(i)} \right) g(\langle \vec{x}^{(i)}, \vec{\beta} \rangle) \vec{x}^{(i)}$$

The gradient ascent updates are

$$\vec{eta}^{(k+1)}$$

$$g'(t) = g(t)(1 - g(t))$$

 $(1 - g(t))' = -g(t)(1 - g(t))$

The gradient of the cost function equals

$$\nabla f(\vec{\beta}) = \sum_{i=1}^{n} y^{(i)} \left(1 - g(\langle \vec{x}^{(i)}, \vec{\beta} \rangle) \right) \vec{x}^{(i)} - \left(1 - y^{(i)} \right) g(\langle \vec{x}^{(i)}, \vec{\beta} \rangle) \vec{x}^{(i)}$$

The gradient ascent updates are

$$\vec{\beta}^{(k+1)} := \vec{\beta}^{(k)}$$

$$+ \alpha_k \sum_{i=1}^n y^{(i)} \left(1 - g(\langle \vec{x}^{(i)}, \vec{\beta}^{(k)} \rangle) \right) \vec{x}^{(i)} - \left(1 - y^{(i)} \right) g(\langle \vec{x}^{(i)}, \vec{\beta}^{(k)} \rangle) \vec{x}^{(i)}$$

Does the method converge?

How fast (slow)?

For what step sizes?

Does the method converge?

How fast (slow)?

For what step sizes?

Depends on function

Lipschitz continuity

A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is Lipschitz continuous if for any $\vec{x}, \vec{y} \in \mathbb{R}^n$

$$||f(\vec{y}) - f(\vec{x})||_2 \le L ||\vec{y} - \vec{x}||_2.$$

L is the Lipschitz constant

Lipschitz-continuous gradients

If ∇f is Lipschitz continuous with Lipschitz constant L

$$||\nabla f(\vec{y}) - \nabla f(\vec{x})||_2 \le L||\vec{y} - \vec{x}||_2$$

then for any $\vec{x}, \vec{y} \in \mathbb{R}^n$ we have a quadratic upper bound

$$f(\vec{y}) \le f(\vec{x}) + \nabla f(\vec{x})^{T} (\vec{y} - \vec{x}) + \frac{L}{2} ||\vec{y} - \vec{x}||_{2}^{2}$$

$$\vec{x}^{(k+1)} := \vec{x}^{(k)} - \alpha_k \nabla f\left(\vec{x}^{(k)}\right)$$
$$f\left(\vec{x}^{(k+1)}\right)$$

$$\vec{x}^{(k+1)} := \vec{x}^{(k)} - \alpha_k \nabla f\left(\vec{x}^{(k)}\right)$$

$$f\left(\vec{x}^{(k+1)}\right)$$

$$\leq f\left(\vec{x}^{(k)}\right) + \nabla f\left(\vec{x}^{(k)}\right)^T \left(\vec{x}^{(k+1)} - \vec{x}^{(k)}\right) + \frac{L}{2} \left\| \vec{x}^{(k+1)} - \vec{x}^{(k)} \right\|_2^2$$

$$\vec{x}^{(k+1)} := \vec{x}^{(k)} - \alpha_k \nabla f\left(\vec{x}^{(k)}\right)$$

$$f\left(\vec{x}^{(k+1)}\right)$$

$$\leq f\left(\vec{x}^{(k)}\right) + \nabla f\left(\vec{x}^{(k)}\right)^T \left(\vec{x}^{(k+1)} - \vec{x}^{(k)}\right) + \frac{L}{2} \left\| \left| \vec{x}^{(k+1)} - \vec{x}^{(k)} \right| \right\|_2^2$$

$$= f\left(\vec{x}^{(k)}\right) - \alpha_k \left(1 - \frac{\alpha_k L}{2}\right) \left\| \left| \nabla f\left(\vec{x}^{(k)}\right) \right| \right\|_2^2$$

$$\vec{x}^{(k+1)} := \vec{x}^{(k)} - \alpha_k \nabla f\left(\vec{x}^{(k)}\right)$$

$$f\left(\vec{x}^{(k+1)}\right)$$

$$\leq f\left(\vec{x}^{(k)}\right) + \nabla f\left(\vec{x}^{(k)}\right)^T \left(\vec{x}^{(k+1)} - \vec{x}^{(k)}\right) + \frac{L}{2} \left\| \vec{x}^{(k+1)} - \vec{x}^{(k)} \right\|_2^2$$

$$= f\left(\vec{x}^{(k)}\right) - \alpha_k \left(1 - \frac{\alpha_k L}{2}\right) \left\| \nabla f\left(\vec{x}^{(k)}\right) \right\|_2^2$$
If $\alpha_k \leq \frac{1}{L}$

$$f\left(\vec{x}^{(k+1)}\right) \leq f\left(\vec{x}^{(k)}\right) - \frac{\alpha_k}{2} \left\| \nabla f\left(\vec{x}^{(k)}\right) \right\|_2^2$$

- ▶ f is convex
- $\triangleright \nabla f$ is *L*-Lipschitz continuous
- ▶ There exists a point \vec{x}^* at which f achieves a finite minimum
- ▶ The step size is set to $\alpha_k := \alpha \le 1/L$

$$f\left(\vec{x}^{(k)}\right) - f\left(\vec{x}^*\right) \le \frac{\left|\left|\vec{x}^{(0)} - \vec{x}^*\right|\right|_2^2}{2\alpha k}$$

$$f\left(\vec{x}^{(k)}\right) \leq f\left(\vec{x}^{(k-1)}\right) - \frac{\alpha_k}{2} \left\| \nabla f\left(\vec{x}^{(k-1)}\right) \right\|_2^2$$

$$f\left(\vec{x}^{(k-1)}\right) + \nabla f\left(\vec{x}^{(k-1)}\right)^T \left(\vec{x}^* - \vec{x}^{(k-1)}\right) \leq f\left(\vec{x}^*\right)$$

$$f\left(\vec{x}^{(k)}\right) - f\left(\vec{x}^*\right)$$

$$f\left(\vec{x}^{(k)}\right) \leq f\left(\vec{x}^{(k-1)}\right) - \frac{\alpha_k}{2} \left\| \nabla f\left(\vec{x}^{(k-1)}\right) \right\|_2^2$$

$$f\left(\vec{x}^{(k-1)}\right) + \nabla f\left(\vec{x}^{(k-1)}\right)^T \left(\vec{x}^* - \vec{x}^{(k-1)}\right) \leq f\left(\vec{x}^*\right)$$

$$f\left(\vec{x}^{(k)}\right) - f\left(\vec{x}^*\right)$$

 $\leq f\left(\vec{x}^{(k-1)}\right) - f\left(\vec{x}^*\right) - \frac{\alpha_k}{2} \left|\left|\nabla f\left(\vec{x}^{(k-1)}\right)\right|\right|_2^2$

$$f\left(\vec{x}^{(k)}\right) \leq f\left(\vec{x}^{(k-1)}\right) - \frac{\alpha_k}{2} \left\| \nabla f\left(\vec{x}^{(k-1)}\right) \right\|_2^2$$

$$f\left(\vec{x}^{(k-1)}\right) + \nabla f\left(\vec{x}^{(k-1)}\right)^T \left(\vec{x}^* - \vec{x}^{(k-1)}\right) \leq f\left(\vec{x}^*\right)$$

$$f\left(\vec{x}^{(k)}\right) - f\left(\vec{x}^*\right)$$

$$\leq f\left(\vec{x}^{(k-1)}\right) - f\left(\vec{x}^*\right) - \frac{\alpha_k}{2} \left\| \nabla f\left(\vec{x}^{(k-1)}\right) \right\|_2^2$$

$$\leq \nabla f\left(\vec{x}^{(k-1)}\right)^T \left(\vec{x}^{(k-1)} - \vec{x}^*\right) - \frac{\alpha}{2} \left\| \nabla f\left(\vec{x}^{(k-1)}\right) \right\|_2^2$$

$$f\left(\vec{x}^{(k)}\right) \leq f\left(\vec{x}^{(k-1)}\right) - \frac{\alpha_{k}}{2} \left\| \nabla f\left(\vec{x}^{(k-1)}\right) \right\|_{2}^{2}$$

$$f\left(\vec{x}^{(k-1)}\right) + \nabla f\left(\vec{x}^{(k-1)}\right)^{T} \left(\vec{x}^{*} - \vec{x}^{(k-1)}\right) \leq f\left(\vec{x}^{*}\right)$$

$$f\left(\vec{x}^{(k)}\right) - f\left(\vec{x}^{*}\right)$$

$$\leq f\left(\vec{x}^{(k-1)}\right) - f\left(\vec{x}^{*}\right) - \frac{\alpha_{k}}{2} \left\| \nabla f\left(\vec{x}^{(k-1)}\right) \right\|_{2}^{2}$$

$$\leq \nabla f\left(\vec{x}^{(k-1)}\right)^{T} \left(\vec{x}^{(k-1)} - \vec{x}^{*}\right) - \frac{\alpha}{2} \left\| \nabla f\left(\vec{x}^{(k-1)}\right) \right\|_{2}^{2}$$

$$= \frac{1}{2\alpha} \left(\left\| \vec{x}^{(k-1)} - \vec{x}^{*} \right\|_{2}^{2} - \left\| \vec{x}^{(k-1)} - \vec{x}^{*} - \alpha \nabla f\left(\vec{x}^{(k-1)}\right) \right\|_{2}^{2} \right)$$

$$f\left(\vec{x}^{(k)}\right) \leq f\left(\vec{x}^{(k-1)}\right) - \frac{\alpha_{k}}{2} \left\| \nabla f\left(\vec{x}^{(k-1)}\right) \right\|_{2}^{2}$$

$$f\left(\vec{x}^{(k-1)}\right) + \nabla f\left(\vec{x}^{(k-1)}\right)^{T} \left(\vec{x}^{*} - \vec{x}^{(k-1)}\right) \leq f\left(\vec{x}^{*}\right)$$

$$f\left(\vec{x}^{(k)}\right) - f\left(\vec{x}^{*}\right)$$

$$\leq f\left(\vec{x}^{(k-1)}\right) - f\left(\vec{x}^{*}\right) - \frac{\alpha_{k}}{2} \left\| \nabla f\left(\vec{x}^{(k-1)}\right) \right\|_{2}^{2}$$

$$\leq \nabla f\left(\vec{x}^{(k-1)}\right)^{T} \left(\vec{x}^{(k-1)} - \vec{x}^{*}\right) - \frac{\alpha}{2} \left\| \nabla f\left(\vec{x}^{(k-1)}\right) \right\|_{2}^{2}$$

$$= \frac{1}{2\alpha} \left(\left\| \vec{x}^{(k-1)} - \vec{x}^{*} \right\|_{2}^{2} - \left\| \vec{x}^{(k-1)} - \vec{x}^{*} - \alpha \nabla f\left(\vec{x}^{(k-1)}\right) \right\|_{2}^{2} \right)$$

$$= \frac{1}{2\alpha} \left(\left\| \vec{x}^{(k-1)} - \vec{x}^{*} \right\|_{2}^{2} - \left\| \vec{x}^{(k)} - \vec{x}^{*} \right\|_{2}^{2} \right)$$

$$f\left(\vec{x}^{(k)}\right) - f\left(\vec{x}^*\right)$$

$$f\left(\vec{x}^{(k)}\right) - f\left(\vec{x}^*\right) \le \frac{1}{k} \sum_{i=1}^{k} f\left(\vec{x}^{(k)}\right) - f\left(\vec{x}^*\right)$$

$$f\left(\vec{x}^{(k)}\right) - f\left(\vec{x}^*\right) \le \frac{1}{k} \sum_{i=1}^{k} f\left(\vec{x}^{(k)}\right) - f\left(\vec{x}^*\right)$$
 never increases

$$f\left(\vec{x}^{(k)}\right) - f\left(\vec{x}^*\right) \le \frac{1}{k} \sum_{i=1}^k f\left(\vec{x}^{(k)}\right) - f\left(\vec{x}^*\right) \qquad \text{never increases}$$

$$= \frac{1}{2\alpha k} \sum_{i=1}^k \left| \left| \vec{x}^{(k-1)} - \vec{x}^* \right| \right|_2^2 - \left| \left| \vec{x}^{(k)} - \vec{x}^* \right| \right|_2$$

Convergence of gradient descent

$$f\left(\vec{x}^{(k)}\right) - f\left(\vec{x}^*\right) \le \frac{1}{k} \sum_{i=1}^{k} f\left(\vec{x}^{(k)}\right) - f\left(\vec{x}^*\right) \quad \text{never increases}$$

$$= \frac{1}{2\alpha k} \sum_{i=1}^{k} \left| \left| \vec{x}^{(k-1)} - \vec{x}^* \right| \right|_2^2 - \left| \left| \vec{x}^{(k)} - \vec{x}^* \right| \right|_2^2$$

$$= \frac{1}{2\alpha k} \left(\left| \left| \vec{x}^{(0)} - \vec{x}^* \right| \right|_2^2 - \left| \left| \vec{x}^{(k)} - \vec{x}^* \right| \right|_2^2 \right)$$

Convergence of gradient descent

$$f\left(\vec{x}^{(k)}\right) - f\left(\vec{x}^*\right) \le \frac{1}{k} \sum_{i=1}^k f\left(\vec{x}^{(k)}\right) - f\left(\vec{x}^*\right) \qquad \text{never increases}$$

$$= \frac{1}{2\alpha k} \sum_{i=1}^k \left| \left| \vec{x}^{(k-1)} - \vec{x}^* \right| \right|_2^2 - \left| \left| \vec{x}^{(k)} - \vec{x}^* \right| \right|_2$$

$$= \frac{1}{2\alpha k} \left(\left| \left| \vec{x}^{(0)} - \vec{x}^* \right| \right|_2^2 - \left| \left| \vec{x}^{(k)} - \vec{x}^* \right| \right|_2^2 \right)$$

$$\le \frac{\left| \left| \vec{x}^{(0)} - \vec{x}^* \right| \right|_2^2}{2\alpha k}$$

Accelerated gradient descent

- ▶ Gradient descent takes $\mathcal{O}\left(1/\epsilon\right)$ to achieve an error of ϵ
- ▶ The optimal rate is $\mathcal{O}\left(1/\sqrt{\epsilon}\right)$
- ► Gradient descent can be accelerated by adding a momentum term

Accelerated gradient descent

Set the initial point $\vec{x}^{(0)}$ to an arbitrary value

Update by setting

$$y^{(k+1)} = x^{(k)} - \alpha_k \nabla f\left(x^{(k)}\right)$$

$$x^{(k+1)} = \beta_k y^{(k+1)} + \gamma_k y^{(k)}$$

where α_k is the step size and $\beta_k > 0$ and $\gamma_k > 0$ are parameters

Digit classification

MNIST data

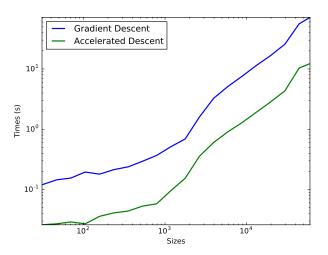
Aim: Determine whether a digit is a 5 or not

 $\vec{x_i}$ is an image

 $\vec{y_i} = 1$ or $\vec{y_i} = 0$ if image i is a 5 or not, respectively

We fit a logistic-regression model

Digit classification



Cost functions to fit models are often additive

$$f(\vec{x}) = \frac{1}{m} \sum_{i=1}^{m} f_i(\vec{x}).$$

Linear regression

$$\sum_{i=1}^{n} \left(y^{(i)} - \vec{x}^{(i)} \vec{\beta} \right)^{2} = \left| \left| \vec{y} - \vec{x} \vec{\beta} \right| \right|_{2}^{2}$$

Logistic regression

$$\sum_{i=1}^{n} y^{(i)} \log g\left(\langle \vec{x}^{(i)}, \vec{\beta} \rangle\right) + \left(1 - y^{(i)}\right) \log\left(1 - g\left(\langle \vec{x}^{(i)}, \vec{\beta} \rangle\right)\right)$$

In $big\ data\ regime\ (very\ large\ n)$, gradient descent is too slow

In some cases, data is acquired sequentially (online setting)

Stochastic gradient descent: update solution using a subset of the data

Set the initial point $\vec{x}^{(0)}$ to an arbitrary value

Update by

- 1. Choosing a random subset of b indices \mathcal{B} ($b \ll m$ is the batch size)
- 2. Setting

$$\vec{x}^{(k+1)} := \vec{x}^{(k)} - \alpha_k m \sum_{i \in \mathcal{B}} \nabla f_i \left(\vec{x}^{(k)} \right)$$

where α_k is the step size

We replace ∇f by

$$\sum_{i \in \mathcal{B}} \nabla f_i \left(\vec{x}^{(k)} \right) = \sum_{i=1}^m 1_{i \in \mathcal{B}} \nabla f_i \left(\vec{x}^{(k+1)} \right)$$

Noisy estimate of ∇f

$$E\left(\sum_{i=1}^{m} 1_{i \in \mathcal{B}} \nabla f_i\left(\vec{x}^{(k)}\right)\right)$$

We replace ∇f by

$$\sum_{i \in \mathcal{B}} \nabla f_i \left(\vec{x}^{(k)} \right) = \sum_{i=1}^m 1_{i \in \mathcal{B}} \nabla f_i \left(\vec{x}^{(k+1)} \right)$$

Noisy estimate of ∇f

$$E\left(\sum_{i=1}^{m} 1_{i \in \mathcal{B}} \nabla f_i\left(\vec{x}^{(k)}\right)\right) = \sum_{i=1}^{m} E\left(1_{i \in \mathcal{B}}\right) \nabla f_i\left(\vec{x}^{(k)}\right)$$

We replace ∇f by

$$\sum_{i \in \mathcal{B}} \nabla f_i \left(\vec{x}^{(k)} \right) = \sum_{i=1}^m 1_{i \in \mathcal{B}} \nabla f_i \left(\vec{x}^{(k+1)} \right)$$

Noisy estimate of ∇f

$$E\left(\sum_{i=1}^{m} 1_{i \in \mathcal{B}} \nabla f_i\left(\vec{x}^{(k)}\right)\right) = \sum_{i=1}^{m} E\left(1_{i \in \mathcal{B}}\right) \nabla f_i\left(\vec{x}^{(k)}\right)$$
$$= \sum_{i=1}^{m} P\left(i \in \mathcal{B}\right) \nabla f_i\left(\vec{x}^{(k)}\right)$$

We replace ∇f by

$$\sum_{i \in \mathcal{B}} \nabla f_i \left(\vec{x}^{(k)} \right) = \sum_{i=1}^m 1_{i \in \mathcal{B}} \nabla f_i \left(\vec{x}^{(k+1)} \right)$$

Noisy estimate of ∇f

$$E\left(\sum_{i=1}^{m} 1_{i \in \mathcal{B}} \nabla f_i\left(\vec{x}^{(k)}\right)\right) = \sum_{i=1}^{m} E\left(1_{i \in \mathcal{B}}\right) \nabla f_i\left(\vec{x}^{(k)}\right)$$
$$= \sum_{i=1}^{m} P\left(i \in \mathcal{B}\right) \nabla f_i\left(\vec{x}^{(k)}\right)$$
$$= p\nabla f\left(\vec{x}^{(k)}\right)$$

Linear regression

$$\vec{\beta}^{(k+1)} := \vec{\beta}^{(k)} + 2\alpha_k \sum_{i \in \mathbf{Z}} \left(\vec{y}^{(i)} - \langle x^{(i)}, \vec{\beta}^{(k)} \rangle \right) x^{(i)}$$

► Logistic regression

$$\vec{\beta}^{(k+1)} := \vec{\beta}^{(k)} + \alpha_k \sum_{i \in \mathbf{Z}} y^{(i)} \left(1 - g(\langle \vec{x}^{(i)}, \vec{\beta}^{(k)} \rangle) \right) \vec{x}^{(i)} - \left(1 - y^{(i)} \right) g(\langle \vec{x}^{(i)}, \vec{\beta}^{(k)} \rangle) \vec{x}^{(i)}$$

Digit classification

MNIST data

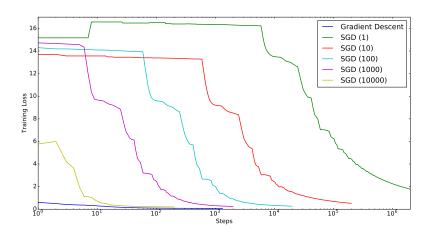
Aim: Determine whether a digit is a 5 or not

 $\vec{x_i}$ is an image

 $\vec{y_i} = 1$ or $\vec{y_i} = 0$ if image i is a 5 or not, respectively

We fit a logistic-regression model

Digit classification



Newton's method

Motivation: Convex functions are often almost quadratic $f \approx f_{\vec{x}}^2$

Idea: Iteratively minimize quadratic approximation

$$f_{\vec{x}}^{2}(\vec{y}) := f(\vec{x}) + \nabla f(\vec{x})(\vec{y} - \vec{x}) + \frac{1}{2}(\vec{y} - \vec{x})^{T} \nabla^{2} f(\vec{x})(\vec{y} - \vec{x}),$$

Minimum has closed form

$$\arg\min_{\vec{y} \in \mathbb{R}^n} f_{\vec{x}}^2(\vec{y}) = \vec{x} - \nabla^2 f(\vec{x})^{-1} \nabla f(\vec{x})$$

Proof

We have

$$\nabla f_{\vec{x}}^{2}(y) = \nabla f(\vec{x}) + \nabla^{2} f(\vec{x})(\vec{y} - \vec{x})$$

It is equal to zero if

$$\nabla^2 f(\vec{x})(\vec{y} - \vec{x}) = -\nabla f(\vec{x})$$

If the Hessian is positive definite, the only minimum of $f_{\vec{x}}^2$ is at

$$\vec{x} - \nabla^2 f(\vec{x})^{-1} \nabla f(\vec{x})$$

Newton's method

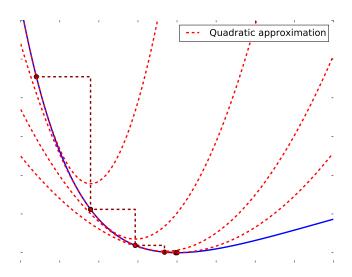
Set the initial point $\vec{x}^{(0)}$ to an arbitrary value

Update by setting

$$\vec{x}^{(k+1)} := \vec{x}^{(k)} - \nabla^2 f(\vec{x}^{(k)})^{-1} \nabla f(\vec{x}^{(k)})$$

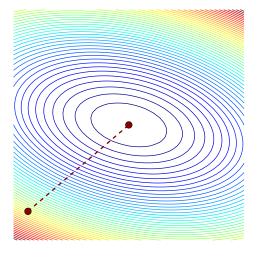
until a stopping criterion is met

Newton's method

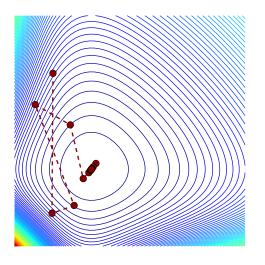


Quadratic function

Quadratic function



Convex function



Logistic regression

$$\frac{\partial^{2} f(\vec{x})}{\partial \vec{x}[j] \partial \vec{x}[l]} = -\sum_{i=1}^{n} g(\langle \vec{x}^{(i)}, \vec{\beta} \rangle) \left(1 - g(\langle \vec{x}^{(i)}, \vec{\beta} \rangle)\right) \vec{x}^{(i)}[j] \vec{x}^{(i)}[l]$$

$$\nabla^2 f(\vec{\beta}) = -X^T G(\vec{\beta}) X$$

The rows of $X \in \mathbb{R}^{n \times p}$ contain $\vec{x}^{(1)}, \dots \vec{x}^{(n)}$

G is a diagonal matrix such that

$$G(\vec{\beta})_{ii} := g(\langle \vec{x}^{(i)}, \vec{\beta} \rangle) \left(1 - g(\langle \vec{x}^{(i)}, \vec{\beta} \rangle)\right), \qquad 1 \leq i \leq n$$

Logistic regression

Newton updates are

$$\vec{\beta}^{(k+1)} := \vec{\beta}^{(k)} - \left(X^T G(\vec{\beta}^{(k)}) X\right)^{-1} \nabla f(\vec{\beta}^{(k)})$$

Sanity check: Cost function is concave, for any $\vec{\beta}, \vec{v} \in \mathbb{R}^p$

$$\vec{v}^T \nabla^2 f(\vec{\beta}) \vec{v} = -\sum_{i=1}^n G(\vec{\beta})_{ii} (X \vec{v}) [i]^2 \le 0$$