
Optimization-based data analysis Fall 2017

Lecture Notes 1: Vector spaces

In this chapter we review certain basic concepts of linear algebra, highlighting their ap-
plication to signal processing.

1 Vector spaces

Embedding signals in a vector space essentially means that we can add them up or scale
them to produce new signals.

Definition 1.1 (Vector space). A vector space consists of a set V, a scalar field that is
usually either the real or the complex numbers and two operations + and · satisfying the
following conditions.

1. For any pair of elements ~x, ~y ∈ V the vector sum ~x+ ~y belongs to V.

2. For any ~x ∈ V and any scalar α, α · ~x ∈ V.

3. There exists a zero vector ~0 such that ~x+~0 = ~x for any ~x ∈ V.

4. For any ~x ∈ V there exists an additive inverse ~y such that ~x+~y = ~0, usually denoted
by −~x.

5. The vector sum is commutative and associative, i.e. for all ~x, ~y, ~z ∈ V

~x+ ~y = ~y + ~x, (~x+ ~y) + ~z = ~x+ (~y + ~z). (1)

6. Scalar multiplication is associative, for any scalars α and β and any ~x ∈ V

α (β · ~x) = (αβ) · ~x. (2)

7. Scalar and vector sums are both distributive, i.e. for any scalars α and β and any
~x, ~y ∈ V

(α + β) · ~x = α · ~x+ β · ~x, α · (~x+ ~y) = α · ~x+ α · ~y. (3)

A subspace of a vector space V is any subset of V that is also itself a vector space.

From now on, for ease of notation we ignore the symbol for the scalar product ·, writing
α · ~x as α~x.

Depending on the signal of interest, we may want to represent it as an array of real
or complex numbers, a matrix or a function. All of these mathematical objects can be
represented as vectors in a vector space.
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Example 1.2 (Real-valued and complex-valued vectors). Rn with R as its associated
scalar field is a vector space where each vector consists of a set of n real-valued numbers.
This is by far the most useful vector space in data analysis. For example, we can represent
images with n pixels as vectors in Rn, where each pixel is assigned to an entry.

Similarly, Cn with C as its associated scalar field is a vector space where each vector
consists of a set of n complex-valued numbers. In both Rn and Cn, the zero vector is a
vector containing zeros in every entry. 4

Example 1.3 (Matrices). Real-valued or complex-valued matrices of fixed dimensions
form vector spaces with R and C respectively as their associated scalar fields. Adding
matrices and multiplying matrices by scalars yields matrices of the same dimensions. In
this case the zero vector corresponds to a matrix containing zeros in every entry. 4

Example 1.4 (Functions). Real-valued or complex-valued functions form a vector space
(with R and C respectively as their associated scalar fields), since we can obtain new
functions by adding functions or multiplying them by scalars. In this case the zero vector
corresponds to a function that maps any number to zero. 4

Linear dependence indicates when a vector can be represented in terms of other vectors.

Definition 1.5 (Linear dependence/independence). A set of m vectors ~x1, ~x2, . . . , ~xm is
linearly dependent if there exist m scalar coefficients α1, α2, . . . , αm which are not all equal
to zero and such that

m∑
i=1

αi ~xi = ~0. (4)

Otherwise, the vectors are linearly independent. Equivalently, any vector in a linearly
dependent set can be expressed as a linear combination of the rest, which is not the case
for linearly independent sets.

We define the span of a set of vectors {~x1, . . . , ~xm} as the set of all possible linear combi-
nations of the vectors:

span (~x1, . . . , ~xm) :=

{
~y | ~y =

m∑
i=1

αi ~xi for some scalars α1, α2, . . . , αm

}
. (5)

It is not difficult to check that the span of any set of vectors belonging to a vector space
V is a subspace of V .

When working with a vector space, it is useful to consider the set of vectors with the
smallest cardinality that spans the space. This is called a basis of the vector space.

Definition 1.6 (Basis). A basis of a vector space V is a set of independent vectors
{~x1, . . . , ~xm} such that

V = span (~x1, . . . , ~xm) (6)
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An important property of all bases in a vector space is that they have the same cardinality.

Theorem 1.7 (Proof in Section 8.1). If a vector space V has a basis with finite cardinality
then every basis of V contains the same number of vectors.

This result allows us to define the dimension of a vector space.

Definition 1.8 (Dimension). The dimension dim (V) of a vector space V is the cardinality
of any of its bases, or equivalently the number of linearly independent vectors that span
V.

This definition coincides with the usual geometric notion of dimension in R2 and R3:
a line has dimension 1, whereas a plane has dimension 2 (as long as they contain the
origin). Note that there exist infinite-dimensional vector spaces, such as the continuous
real-valued functions defined on [0, 1] (we will define a basis for this space later on).

The vector space that we use to model a certain problem is usually called the ambient
space and its dimension the ambient dimension. In the case of Rn the ambient dimension
is n.

Lemma 1.9 (Dimension of Rn). The dimension of Rn is n.

Proof. Consider the set of vectors ~e1, . . . , ~en ⊆ Rn defined by

~e1 =


1
0
...
0

 , ~e2 =


0
1
...
0

 , . . . , ~en =


0
0
...
1

 . (7)

One can easily check that this set is a basis. It is in fact the standard basis of Rn.

2 Inner product

Up to now, the only operations we have considered are addition and multiplication by
a scalar. In this section, we introduce a third operation, the inner product between two
vectors.

Definition 2.1 (Inner product). An inner product on a vector space V is an operation
〈·, ·〉 that maps a pair of vectors to a scalar and satisfies the following conditions.

• If the scalar field associated to V is R, it is symmetric. For any ~x, ~y ∈ V
〈~x, ~y〉 = 〈~y, ~x〉 . (8)

If the scalar field is C, then for any ~x, ~y ∈ V
〈~x, ~y〉 = 〈~y, ~x〉, (9)

where for any α ∈ C α is the complex conjugate of α.
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• It is linear in the first argument, i.e. for any α ∈ R and any ~x, ~y, ~z ∈ V

〈α~x, ~y〉 = α 〈~x, ~y〉 , (10)

〈~x+ ~y, ~z〉 = 〈~x, ~z〉+ 〈~y, ~z〉 . (11)

Note that if the scalar field is R, it is also linear in the second argument by symmetry.

• It is positive definite: 〈~x, ~x〉 is nonnegative for all ~x ∈ V and if 〈~x, ~x〉 = 0 then
~x = 0.

Definition 2.2 (Dot product). The dot product between two vectors ~x, ~y ∈ Rn

~x · ~y :=
∑
i

~x [i] ~y [i] , (12)

where ~x [i] is the ith entry of ~x, is a valid inner product. Rn endowed with the dot product
is usually called a Euclidean space of dimension n.

Similarly, the dot product between two vectors ~x, ~y ∈ Cn

~x · ~y :=
∑
i

~x [i] ~y [i] (13)

is a valid inner product.

Definition 2.3 (Sample covariance). In statistics and data analysis, the sample covari-
ance is used to quantify the joint fluctuations of two quantities or features. Let (x1, y1),
(x2, y2), . . . , (xn, yn) be a data set where each example consists of a measurement of the
two features. The sample covariance is defined as

cov ((x1, y1) , . . . , (xn, yn)) :=
1

n− 1

n∑
i=1

(xi − av (x1, . . . , xn)) (yi − av (y1, . . . , yn)) (14)

where the average or sample mean of a set of n numbers is defined by

av (a1, . . . , an) :=
1

n

n∑
i=1

ai. (15)

Geometrically the covariance is the scaled dot product of the two feature vectors after
centering. The normalization constant is set so that if the measurements are modeled as
independent samples (x1,y1), (x2,y2), . . . , (xn,yn) following the same distribution as
two random variables x and y, then the sample covariance of the sequence is an unbiased
estimate of the covariance of x and y,

E (cov ((x1,y1) , . . . , (xn,yn))) = Cov (x,y) := E ((x− E (x)) (y − E (y))) . (16)

4



Definition 2.4 (Matrix inner product). The inner product between two m × n matrices
A and B is

〈A,B〉 := tr
(
ATB

)
(17)

=
m∑
i=1

n∑
j=1

AijBij, (18)

where the trace of an n× n matrix is defined as the sum of its diagonal

tr (M) :=
n∑

i=1

Mii. (19)

The following lemma shows a useful property of the matrix inner product.

Lemma 2.5. For any pair of m× n matrices A and B

tr
(
BTA

)
:= tr

(
ABT

)
. (20)

Proof. Both sides are equal to (18).

Note that the matrix inner product is equivalent to the inner product of the vectors with
mn entries obtained by vectorizing the matrices.

Definition 2.6 (Function inner product). A valid inner product between two complex-
valued square-integrable functions f , g defined in an interval [a, b] of the real line is

~f · ~g :=

∫ b

a

f (x) g (x) dx. (21)

3 Norms

The norm of a vector is a generalization of the concept of length in Euclidean space.

Definition 3.1 (Norm). Let V be a vector space, a norm is a function ||·|| from V to R
that satisfies the following conditions.

• It is homogeneous. For any scalar α and any ~x ∈ V

||α~x|| = |α| ||~x|| . (22)

• It satisfies the triangle inequality

||~x+ ~y|| ≤ ||~x||+ ||~y|| . (23)

In particular, it is nonnegative (set ~y = −~x).
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• ||~x|| = 0 implies that ~x is the zero vector ~0.

A vector space equipped with a norm is called a normed space. Inner-product spaces are
normed spaces because we can define a valid norm using the inner product.

Definition 3.2 (Inner-product norm). The norm induced by an inner product is obtained
by taking the square root of the inner product of the vector with itself,

||~x||〈·,·〉 :=
√
〈~x, ~x〉. (24)

Definition 3.3 (`2 norm). The `2 norm is the norm induced by the dot product in Rn or
Cn,

||~x||2 :=
√
~x · ~x =

√√√√ n∑
i=1

~x[i]2. (25)

In the case of R2 or R3 it is what we usually think of as the length of the vector.

Definition 3.4 (Sample variance and standard deviation). Let {x1, x2, . . . , xn} be a set
of real-valued data. The sample variance is defined as

var (x1, x2, . . . , xn) :=
1

n− 1

n∑
i=1

(xi − av (x1, x2, . . . , xn))2 (26)

The sample standard deviation is the square root of the sample variance

std (x1, x2, . . . , xn) :=
√

var (x1, x2, . . . , xn). (27)

Definition 3.5 (Sample variance and standard deviation). In statistics and data analysis,
the sample variance is used to quantify the fluctuations of a quantity around its average.
Assume that we have n real-valued measurements x1, x2, . . . , xn. The sample variance
equals

var (x1, x2, . . . , xn) :=
1

n− 1

n∑
i=1

(xi − av (x1, x2, . . . , xn))2 (28)

The normalization constant is set so that if the measurements are modeled as independent
samples x1, x2, . . . , xn following the same distribution as a random variable x then the
sample variance is an unbiased estimate of the variance of x,

E (var (x1,x2, . . . ,xn)) = Var (x) := E
(
(x− E (x))2

)
. (29)

The sample standard deviation is the square root of the sample variance

std (x1, x2, . . . , xn) :=
√

var (x1, x2, . . . , xn). (30)
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Figure 1: Scatter plot of the points (~x1, ~y1), (~x2, ~y2), . . . , (~xn, ~yn) for vectors with different
correlation coefficients.

Definition 3.6 (Correlation coefficient). When computing the sample covariance of two
features the unit in which we express each quantity may severely affect the result. If one
of the features is a distance, for example, expressing it in meters instead of kilometers
increases the sample covariance by a factor of 1000! In order to obtain a measure of
joint fluctuations that is invariant to scale, we normalize the covariance using the sam-
ple standard deviation of the features. This yields the correlation coefficient of the two
quantities

ρ(x1,y1),...,(xn,yn) :=
cov ((x1, y1) , . . . , (xn, yn))

std (x1, . . . , xn) std (y1, . . . , yn)
. (31)

As illustrated in Figure 1 the correlation coefficient quantifies to what extent the entries of
the two vectors are linearly related. Corollary 3.12 below shows that it is always between
-1 and 1. If it is positive, we say that the two quantities are correlated. If it is negative,
we say they are negatively correlated. If it is zero, we say that they are uncorrelated. In
the following example we compute the correlation coefficient of some temperature data.

Example 3.7 (Correlation of temperature data). In this example we analyze temperature
data gathered at a weather station in Oxford over 150 years.1 We first compute the
correlation between the temperature in January and the temperature in August. The
correlation coefficient is ρ = 0.269. This means that the two quantities are positively
correlated: warmer temperatures in January tend to correspond to warmer temperatures

1The data is available at http://www.metoffice.gov.uk/pub/data/weather/uk/climate/

stationdata/oxforddata.txt.
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Figure 2: Scatterplot of the temperature in January and in August (left) and of the maximum
and minimum monthly temperature (right) in Oxford over the last 150 years.

in August. The left image in Figure 2 shows a scatter plot where each point represents
a different year. We repeat the experiment to compare the maximum and minimum
temperature in the same month. The correlation coefficient between these two quantities
is ρ = 0.962, indicating that the two quantities are extremely correlated. The right image
in Figure 2 shows a scatter plot where each point represents a different month. 4

Definition 3.8 (Frobenius norm). The Frobenius norm is the norm induced by the matrix
inner product. For any matrix A ∈ Rm×n

||A||F :=
√

tr (ATA) =

√√√√ m∑
i=1

n∑
j=1

A2
ij. (32)

It is equal to the `2 norm of the vectorized matrix.

Definition 3.9 (L2 norm). The L2 norm is the norm induced by the dot product in the
inner-product space of square-integrable complex-valued functions defined on an interval
[a, b],

||f ||L2 :=
√
〈f, f〉 =

√∫ b

a

|f (x)|2 dx. (33)

The inner-product norm is clearly homogeneous by linearity and symmetry of the inner
product. ||~x||〈·,·〉 = 0 implies ~x = 0 because the inner product is positive semidefinite. We
only need to establish that the triangle inequality holds to ensure that the inner-product
is a valid norm. This follows from a classic inequality in linear algebra, which is proved
in Section 8.2.
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Theorem 3.10 (Cauchy-Schwarz inequality). For any two vectors ~x and ~y in an inner-
product space

|〈~x, ~y〉| ≤ ||~x||〈·,·〉 ||~y||〈·,·〉 . (34)

Assume ||~x||〈·,·〉 6= 0, then

〈~x, ~y〉 = − ||~x||〈·,·〉 ||~y||〈·,·〉 ⇐⇒ ~y = −
||~y||〈·,·〉
||~x||〈·,·〉

~x, (35)

〈~x, ~y〉 = ||~x||〈·,·〉 ||~y||〈·,·〉 ⇐⇒ ~y =
||~y||〈·,·〉
||~x||〈·,·〉

~x. (36)

Corollary 3.11. The norm induced by an inner product satisfies the triangle inequality.

Proof.

||~x+ ~y||2〈·,·〉 = ||~x||2〈·,·〉 + ||~y||2〈·,·〉 + 2 〈~x, ~y〉 (37)

≤ ||~x||2〈·,·〉 + ||~y||2〈·,·〉 + 2 ||~x||〈·,·〉 ||~y||〈·,·〉 by the Cauchy-Schwarz inequality

=
(
||~x||〈·,·〉 + ||~y||〈·,·〉

)2
. (38)

Another corollary of the Cauchy-Schwarz theorem is that the correlation coefficient is
always between -1 and 1 and that if it equals either 1 or -1 then the two vectors are
linearly dependent.

Corollary 3.12. The correlation coefficient of two vectors ~x and ~y in Rn satisfies

−1 ≤ ρ(x1,y1),...,(xn,yn) ≤ 1. (39)

In addition,

ρ~x,~y = −1 ⇐⇒ yi = av (y1, . . . , yn)− std (y1, . . . , yn)

std (x1, . . . , xn)
(xi − av (x1, . . . , xn)) , (40)

ρ~x,~y = 1 ⇐⇒ yi = av (y1, . . . , yn) +
std (y1, . . . , yn)

std (x1, . . . , xn)
(xi − av (x1, . . . , xn)) . (41)

Proof. The result follows from applying the Cauchy-Schwarz inequality to the vectors

~a :=
[
x1 − av (x1, . . . , xn) x2 − av (x1, . . . , xn) · · · xn − av (x1, . . . , xn)

]
, (42)

~b :=
[
y1 − av (y1, . . . , yn) y2 − av (y1, . . . , yn) · · · yn − av (y1, . . . , yn)

]
, (43)

since

std (x1, x2, . . . , xn) = ||~a||2 , (44)

std (y1, y2, . . . , yn) = ||~b||2, (45)

cov ((x1, y1) , . . . , (xn, yn)) =
〈
~a,~b
〉
. (46)
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Norms are not always induced by an inner product. The parallelogram law provides a
simple identity that allows to check whether this is the case.

Theorem 3.13 (Parallelogram law). A norm ‖ · ‖ on a vector space V is induced by an
inner product if and only if

2‖~x‖2 + 2‖~y‖2 = ‖~x− ~y‖2 + ‖~x+ ~y‖2, (47)

for any ~x, ~y ∈ V.

Proof. If the norm is induced by an inner product then

‖~x− ~y‖2 + ‖~x+ ~y‖2 = 〈~x− ~y, ~x− ~y〉+ 〈~x+ ~y, ~x+ ~y〉 (48)

= 2‖~x‖2 + 2‖~y‖2 − (~x, ~y)− (~y, ~x) + (~x, ~y) + (~y, ~x) (49)

= 2‖~x‖2 + 2‖~y‖2. (50)

If the identity holds then it can be shown that

〈~x, ~y〉 :=
1

4

(
‖~x+ ~y‖2 − ‖~x− ~y‖2

)
(51)

is a valid inner product for real scalars and

〈~x, ~y〉 :=
1

4

(
‖~x+ ~y‖2 − ‖~x− ~y‖2 − i

(
‖~x+ i~y‖2 − ‖~x− i~y‖2

))
(52)

is a valid inner product for complex scalars.

The following two norms do not satisfy the parallelogram identity and therefore are not
induced by an inner product. Figure 3 compares their unit-norm balls with that of the
`2 norm. Recall that the unit-norm ball of a norm ||·|| is the set of vectors ~x such that
||~x|| ≤ 1.

Definition 3.14 (`1 norm). The `1 norm of a vector in Rn or Cn is the sum of the
absolute values of the entries,

||~x||1 :=
n∑

i=1

|~x[i]| . (53)

Definition 3.15 (`∞ norm). The `∞ norm of a vector in Rn or Cn is the maximum
absolute value of its entries,

||~x||∞ := max
i
|~x[i]| . (54)

Although they do not satisfy the Cauchy-Schwarz inequality, as they are not induced by
any inner product, the `1 and `∞ norms can be used to bound the inner product between
two vectors.
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Figure 3: Unit `1, `2 and `∞ norm balls.

Theorem 3.16 (Hölder’s inequality). For any two vectors ~x and ~y in Rn or Cn

|〈~x, ~y〉| ≤ ||~x||1 ||~y||∞ . (55)

Proof.

|〈~x, ~y〉| ≤
n∑

i=1

|~x[i]| |~y[i]| (56)

≤ max
i
|~y[i]|

n∑
i=1

|~x[i]| (57)

= ||~x||1 ||~y||∞ . (58)

Distances in a normed space can be measured using the norm of the difference between
vectors.

Definition 3.17 (Distance). The distance between two vectors ~x and ~y induced by a norm
||·|| is

d (~x, ~y) := ||~x− ~y|| . (59)

4 Nearest-neighbor classification

If we represent signals as vectors in a vector space, the distance between them quantifies
their similarity. In this section we show how to exploit this to perform classification.

Definition 4.1 (Classification). Given a set of k predefined classes, the classification
problem is to decide what class a signal belongs to. The assignment is done using a
training set of examples, each of which consists of a signals and its corresponding label.
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nearest neighbor

Figure 4: The nearest neighbor algorithm classifies points by assigning them the class of the
closest point. In the diagram, the black point is assigned the red circle class because its nearest
neighbor is a red circle.

Figure 5: Training examples for four of the people in Example 4.3.
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Test image

Closest image

Figure 6: Results of nearest-neighbor classification for four of the people in Example 4.3. The
assignments of the first three examples are correct, but the fourth is wrong.

The nearest-neighbor algorithm classifies signals by looking for the closest signal in the
training set. Figure 4 shows a simple example.

Algorithm 4.2 (Nearest-neighbor classification). Assume that the signals of interest can
be represented by vectors in a vector space endowed with a norm denoted by ||·||. The
training set consequently consists of n pairs of vectors and labels: {~x1, l1}, . . . , {~xn, ln}.
To classify a test signal ~y we find the closest signal in the training set in terms of the
distance induced by the norm,

i∗ := arg min
1≤i≤n

||~y − ~xi|| , (60)

and assign the corresponding label li∗ to ~y.

Example 4.3 (Face recognition). The problem of face recognition consists of classifying
images of faces to determine what person they correspond to. In this example we consider
the Olivetti Faces data set2. The training set consists of 360 64 × 64 images taken from
40 different subjects (9 per subject). Figure 5 shows some of the faces in the training
set. The test set consists of an image of each subject, which is different from the ones in
the training set. We apply nearest-neighbor algorithm to classify the faces in the test set,
modeling each image as a vector in R4096 and using the distance induced by the `2 norm.
The algorithm classifies 36 of the 40 subjects correctly. Some of the results are shown in
Figure 6. 4

5 Orthogonality

When the inner product between two vectors is zero, we say that the vectors are orthog-
onal.

2Available at http://www.cs.nyu.edu/~roweis/data.html
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Definition 5.1 (Orthogonality). Two vectors ~x and ~y are orthogonal if and only if

〈~x, ~y〉 = 0. (61)

A vector ~x is orthogonal to a set S, if

〈~x,~s〉 = 0, for all ~s ∈ S. (62)

Two sets of S1,S2 are orthogonal if for any ~x ∈ S1, ~y ∈ S2

〈~x, ~y〉 = 0. (63)

The orthogonal complement of a subspace S is

S⊥ := {~x | 〈~x, ~y〉 = 0 for all ~y ∈ S} . (64)

Distances between orthogonal vectors measured in terms of the norm induced by the inner
product are easy to compute.

Theorem 5.2 (Pythagorean theorem). If ~x and ~y are orthogonal vectors

||~x+ ~y||2〈·,·〉 = ||~x||2〈·,·〉 + ||~y||2〈·,·〉 . (65)

Proof. By linearity of the inner product

||~x+ ~y||2〈·,·〉 = ||~x||2〈·,·〉 + ||~y||2〈·,·〉 + 2 〈~x, ~y〉 (66)

= ||~x||2〈·,·〉 + ||~y||2〈·,·〉 . (67)

If we want to show that a vector is orthogonal to a certain subspace, it is enough to show
that it is orthogonal to every vector in a basis of the subspace.

Lemma 5.3. Let ~x be a vector and S a subspace of dimension n. If for any basis
~b1,~b2, . . . ,~bn of S, 〈

~x,~bi

〉
= 0, 1 ≤ i ≤ n, (68)

then ~x is orthogonal to S.

Proof. Any vector v ∈ S can be represented as v =
∑

i α
n
i=1
~bi for α1, . . . , αn ∈ R, from (68)

〈~x, v〉 =

〈
~x,
∑
i

αn
i=1
~bi

〉
=
∑
i

αn
i=1

〈
~x,~bi

〉
= 0. (69)
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If the vectors in a basis are normalized and mutually orthogonal, then the norm is said
to be orthonormal.

Definition 5.4 (Orthonormal basis). A basis of mutually orthogonal vectors with inner-
product norm equal to one is called an orthonormal basis.

It is very easy to find the coefficients of a vector in an orthonormal basis: we just need
to compute the dot products with the basis vectors.

Lemma 5.5 (Coefficients in an orthonormal basis). If {~u1, . . . , ~un} is an orthonormal
basis of a vector space V, for any vector ~x ∈ V

~x =
n∑

i=1

〈~ui, ~x〉 ~ui. (70)

Proof. Since {~u1, . . . , ~un} is a basis,

~x =
m∑
i=1

αi ~ui for some α1, α2, . . . , αm ∈ R. (71)

Immediately,

〈~ui, ~x〉 =

〈
~ui,

m∑
i=1

αi ~ui

〉
=

m∑
i=1

αi 〈~ui, ~ui〉 = αi (72)

because 〈~ui, ~ui〉 = 1 and 〈~ui, ~uj〉 = 0 for i 6= j.

We can construct an orthonormal basis for any subspace in a vector space by applying the
Gram-Schmidt method to a set of linearly independent vectors spanning the subspace.

Algorithm 5.6 (Gram-Schmidt). Consider a set of linearly independent vectors ~x1, . . . ,
~xm in Rn. To obtain an orthonormal basis of the span of these vectors we:

1. Set ~u1 := ~x1/ ||~x1||2.

2. For i = 1, . . . ,m, compute

~vi := ~xi −
i−1∑
j=1

〈~uj, ~xi〉 ~uj. (73)

and set ~ui := ~vi/ ||~vi||2.

It is not difficult to show that the resulting set of vectors ~u1, . . . , ~um is an orthonormal
basis for the span of ~x1, . . . , ~xm: they are orthonormal by construction and their span is
the same as that of the original set of vectors.
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6 Orthogonal projection

If two subspaces are disjoint, i.e. their only common point is the origin, then a vector
that can be expressed as a sum of a vector from each subspace is said to belong to their
direct sum.

Definition 6.1 (Direct sum). Let V be a vector space. For any subspaces S1,S2 ⊆ V such
that

S1 ∩ S2 = {0} (74)

the direct sum is defined as

S1 ⊕ S2 := {~x | ~x = ~s1 + ~s2 ~s1 ∈ S1, ~s2 ∈ S2} . (75)

The representation of a vector in the direct sum of two subspaces as the sum of vectors
from the subspaces is unique.

Lemma 6.2. Any vector ~x ∈ S1 ⊕ S2 has a unique representation

~x = ~s1 + ~s2 ~s1 ∈ S1, ~s2 ∈ S2. (76)

Proof. If ~x ∈ S1⊕S2 then by definition there exist ~s1 ∈ S1, ~s2 ∈ S2 such that ~x = ~s1 +~s2.
Assume ~x = ~v1 + ~v2, ~v1 ∈ S1, ~v2 ∈ S2, then ~s1 − ~v1 = ~s2 − ~v2. This implies that ~s1 − ~v1
and ~s2−~v2 are in S1 and also in S2. However, S1 ∩S2 = {0}, so we conclude ~s1 = ~v1 and
~s2 = ~v2.

Given a vector x and a subspace S, the orthogonal projection of ~x onto S is the vector
that we reach when we go from x to S following a direction that is orthogonal to S. This
allows to express ~x as the sum of a component that belongs to S and another that belongs
to its orthogonal complement. This is illustrated by a simple example in Figure 7.

Definition 6.3 (Orthogonal projection). Let V be a vector space. The orthogonal pro-
jection of a vector ~x ∈ V onto a subspace S ⊆ V is a vector denoted by PS ~x such that
~x− PS ~x ∈ S⊥.

Theorem 6.4 (Properties of the orthogonal projection). Let V be a vector space. Every
vector ~x ∈ V has a unique orthogonal projection PS ~x onto any subspace S ⊆ V of finite
dimension. In particular ~x can be expressed as

~x = PS ~x+ PS⊥ ~x. (77)

For any vector s ∈ S

〈~x, s〉 = 〈PS ~x, s〉 . (78)
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Figure 7: Orthogonal projection of a vector ~x ∈ R2 on a two-dimensional subspace S.

For any orthonormal basis ~b1, . . . ,~bm of S,

PS ~x =
m∑
i=1

〈
~x,~bi

〉
~bi. (79)

The orthogonal projection is a linear operation. For any vectors ~x and ~y and any subspace
S

PS (~x+ ~y) = PS ~x+ PS ~y. (80)

Proof. Let us denote the dimension of S by m. Since m is finite, there exists an orthonor-
mal basis of S: ~b′1, . . . ,~b

′
m. Consider the vector

~p :=
m∑
i=1

〈
~x,~b′i

〉
~b′i. (81)

It turns out that ~x− ~p is orthogonal to every vector in the basis. For 1 ≤ j ≤ m,〈
~x− ~p,~b′j

〉
=

〈
~x−

m∑
i=1

〈
~x,~b′i

〉
~b′i,~b

′
j

〉
(82)

=
〈
~x,~b′j

〉
−

m∑
i=1

〈
~x,~b′i

〉〈
~b′i,~b

′
j

〉
(83)

=
〈
~x,~b′j

〉
−
〈
~x,~b′j

〉
= 0, (84)

so ~x − ~p ∈ S⊥ and ~p is an orthogonal projection. Since S ∩ S⊥ = {0} 3 there cannot be
two other vectors ~x1 ∈ S, ~x1 ∈ S⊥ such that ~x = ~x1 + ~x2 so the orthogonal projection is
unique.

3For any vector ~v that belongs to both S and S⊥ 〈~v,~v〉 = ||~v||22 = 0, which implies ~v = 0.
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Notice that ~o := ~x−~p is a vector in S⊥ such that ~x−~o = ~p is in S and therefore in
(
S⊥
)⊥

.
This implies that ~o is the orthogonal projection of ~x onto S⊥ and establishes (77).

Equation (78) follows immediately from the orthogonality of any vector in S and PS⊥ ~x.

Equation (79) follows from (78).

Finally, linearity follows from (79) and linearity of the inner product

PS (~x+ ~y) =
m∑
i=1

〈
~x+ ~y,~bi

〉
~bi (85)

=
m∑
i=1

〈
~x,~bi

〉
~bi +

m∑
i=1

〈
~y,~bi

〉
~bi (86)

= PS ~x+ PS ~y. (87)

The following corollary relates the dimensions of a subspace and its orthogonal comple-
ment within a finite-dimensional vector space.

Corollary 6.5 (Dimension of orthogonal complement). Let V be a finite-dimensional
vector space, for any subspace S ⊆ V

dim (S) + dim
(
S⊥
)

= dim (V) . (88)

Proof. Consider a set of vectors B defined as the union of a basis of S, which has dim (S)
elements, and a basis of S⊥, which has dim

(
S⊥
)

elements. Due to the orthogonality of
S and S⊥ all the dim (S) + dim

(
S⊥
)

vectors in B are linearly independent and by (77)
they span the whole space, which establishes the result.

Computing the inner-product norm of the projection of a vector onto a subspace is easy
if we have access to an orthonormal basis.

Lemma 6.6 (Norm of the projection). The norm of the projection of an arbitrary vector
~x ∈ V onto a subspace S ⊆ V of dimension d can be written as

||PS ~x||〈·,·〉 =

√√√√ d∑
i

〈
~bi, ~x

〉2
(89)

for any orthonormal basis ~b1, . . . ,~bd of S.
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Proof. By (79)

||PS ~x||2〈·,·〉 = 〈PS ~x,PS ~x〉 (90)

=

〈
d∑
i

〈
~bi, ~x

〉
~bi,

d∑
j

〈
~bj, ~x

〉
~bj

〉
(91)

=
d∑
i

d∑
j

〈
~bi, ~x

〉〈
~bj, ~x

〉〈
~bi,~bj

〉
(92)

=
d∑
i

〈
~bi, ~x

〉2
. (93)

The orthogonal projection of a vector ~x onto a subspace S has a very intuitive interpreta-
tion that generalizes to other sets: it is the vector in S that is closest to ~x in the distance
associated to the inner-product norm.

Theorem 6.7 (The orthogonal projection is closest). The orthogonal projection PS ~x of
a vector ~x onto a subspace S is the solution to the optimization problem

minimize
~u

||~x− ~u||〈·,·〉 (94)

subject to ~u ∈ S. (95)

Proof. Take any point ~s ∈ S such that ~s 6= PS ~x
||~x− ~s||2〈·,·〉 = ||~x− PS ~x+ PS ~x− ~s||2〈·,·〉 (96)

= ||~x− PS ~x||2〈·,·〉 + ||PS ~x− ~s||2〈·,·〉 (97)

> ||~x− PS ~x||2〈·,·〉 because ~s 6= PS ~x, (98)

where (97) follows from the Pythagorean theorem since because PS⊥ ~x = ~x−PS ~x belongs
to S⊥ and PS ~x− ~s to S.

7 Denoising

In this section we consider the problem of denoising a signal that has been corrupted by
an unknown perturbation.

Definition 7.1 (Denoising). The aim of denoising is to estimate a signal from perturbed
measurements. If the noise is assumed to be additive, the data are modeled as the sum of
the signal ~x and a perturbation ~z

~y := ~x+ ~z. (99)

The goal is to estimate ~x from ~y.
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error

0

S

PS~y

~y

~x ~z

PS⊥~x

PS~z

Figure 8: Illustration of the two terms in the error decomposition of Lemma 7.3 for a simple
denoising example, where the data vector is denoised by projecting onto a 1D subspace.

In order to denoise a signal, we need to have some prior information about its structure.
For instance, we may suspect that the signal is well approximated as belonging to a
predefined subspace. This suggests estimating the signal by projecting the noisy data
onto the subspace.

Algorithm 7.2 (Denoising via orthogonal projection). Denoising a data vector ~y via
orthogonal projection onto a subspace S, consists of setting the signal estimate to PS ~y,
the projection of the noisy data onto S.

The following lemma gives a simple decomposition of the error incurred by this denoising
technique, which is illustrated in Figure 8.

Lemma 7.3. Let ~y := ~x+ ~z and let S be an arbitrary subspace, then

||~x− PS ~y||22 = ||PS⊥ ~x||22 + ||PS ~z||22 . (100)

Proof. By linearity of the orthogonal projection

~x− PS ~y = ~x− PS ~x− PS ~z (101)

= PS⊥ ~x− PS ~z, (102)

so the result follows by the Pythagorean theorem.

The error is divided into two terms. The first term is the projection of the signal onto the
orthogonal complement of the chosen subspace S. For this term to be small, the signal
must be well represented by its projection onto S. The second term is the projection of
the noise onto S. This term will be small if the noise is mostly orthogonal to S. This
makes sense: denoising via projection will only be effective if the projection preserves the
signal but eliminates the noise.
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S1 := span

( )

Projection
onto S1

Projection
onto S⊥1

Signal

~x
= 0.993 + 0.114

+

Noise
~z

= 0.007 + 0.150

=

Data
~y

= +

Estimate

Figure 9: Denoising of the image of a face by projection onto the span of 9 other images of
the same person, denoted by S1. The original image is normalized to have `2 norm equal to
one. The noise has `2 norm equal to 0.1. The `2 norms of the projections of the original image
and of the noise onto S1 and its orthogonal complement are indicated beside the corresponding
images. The estimate is the projection of the noisy image onto S1.
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S2 := span

(

· · · )

Projection
onto S2

Projection
onto S⊥2

Signal
~x

= 0.998 + 0.063

+

Noise
~z

= 0.043 + 0.144

=

Data
~y

= +

Estimate

Figure 10: Denoising of the image of a face by projection onto the span of 360 other images
of different people (including 9 of the same person), denoted by S2. The original image is
normalized to have `2 norm equal to one. The noise has `2 norm equal to 0.1. The `2 norms of
the projections of the original image and of the noise onto S2 and its orthogonal complement are
indicated beside the corresponding images. The estimate is the projection of the noisy image
onto S2.
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Example 7.4 (Denoising of face images). In this example we again consider the Olivetti
Faces dataset4, with a training set of 360 64× 64 images taken from 40 different subjects
(9 per subject). The goal is to denoise a test image ~x of the same dimensions that is
not in the training set. The data ~y are obtained by adding noise to the test image. The
entries of the noise vector z are sampled independently from a Gaussian distribution and
scaled so that the signal-to-noise ratio equals 10,

SNR :=
||~x||2
||~z||2

= 6.67. (103)

We denoise the image by projecting onto two subspaces:

• S1: the span of the 9 images in the training set that correspond to the same subject.

• S2: the span of the 360 images in the training set.

Figure 9 and 10 show the results for S1 and S2 respectively. The relative `2-norm error
of both estimates is:

||~x− PS1 ~y||2
||~x||2

= 0.114, (104)

||~x− PS2 ~y||2
||~x||2

= 0.078. (105)

The two estimates look very different. To interpret the results we separate the error into
two components, as in Lemma 7.3. The norm of the projection of the noise onto S1 is
smaller than its projection onto S2

0.007 =
||PS1 ~z||2
||~x||2

<
||PS2 ~z||2
||~x||2

= 0.043. (106)

The reason is that S1 has lower dimension. The ratio between the two projections
(0.043/0.007 = 6.14) is close to the square root of the ratio of the dimensions of the
subspaces (6.32). This is not a coincidence, as we will see later on. However, the projec-
tion of the signal onto S1 is not as close to ~x as the projection onto S2, which is particularly
obvious in the lower half of the face,

0.063 =

∣∣∣∣∣∣PS⊥2 ~x∣∣∣∣∣∣2
||~x||2

<

∣∣∣∣∣∣PS⊥1 ~x∣∣∣∣∣∣2
||~x||2

= 0.114. (107)

The conclusion is that the projection onto S2 produces a noisier looking image (because
the noise-component of the error is larger), which nevertheless looks more similar to the
original signal (because the signal-component of the error is smaller). This illustrates an
important tradeoff when using projection-based denoising: subspaces with larger dimen-
sion approximate the signal better, but don’t suppress the noise as much. 4
4Available at http://www.cs.nyu.edu/~roweis/data.html
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8 Proofs

8.1 Proof of Theorem 1.7

We prove the claim by contradiction. Assume that we have two bases {~x1, . . . , ~xm} and
{~y1, . . . , ~yn} such that m < n (or the second set has infinite cardinality). The proof follows
from applying the following lemma m times (setting r = 0, 1, . . . ,m − 1) to show that
{~y1, . . . , ~ym} spans V and hence {~y1, . . . , ~yn} must be linearly dependent.

Lemma 8.1. Under the assumptions of the theorem, if {~y1, ~y2, . . . , ~yr, ~xr+1, . . . , ~xm} spans
V then {~y1, . . . , ~yr+1, ~xr+2, . . . , ~xm} also spans V (possibly after rearranging the indices
r + 1, . . . ,m) for r = 0, 1, . . . ,m− 1.

Proof. Since {~y1, ~y2, . . . , ~yr, ~xr+1, . . . , ~xm} spans V

~yr+1 =
r∑

i=1

βi ~yi +
m∑

i=r+1

γi ~xi, β1, . . . , βr, γr+1, . . . , γm ∈ R, (108)

where at least one of the γj is non zero, as {~y1, . . . , ~yn} is linearly independent by assump-
tion. Without loss of generality (here is where we might need to rearrange the indices)
we assume that γr+1 6= 0, so that

~xr+1 =
1

γr+1

(
r∑

i=1

βi ~yi −
m∑

i=r+2

γi~xi

)
. (109)

This implies that any vector in the span of {~y1, ~y2, . . . , ~yr, ~xr+1, . . . , ~xm}, i.e. in V , can
be represented as a linear combination of vectors in {~y1, . . . , ~yr+1, ~xr+2, . . . , ~xm}, which
completes the proof.

8.2 Proof of Theorem 3.10

If ||~x||〈·,·〉 = 0 then ~x = ~0 because the inner product is positive semidefinite, which implies
〈~x, ~y〉 = 0 and consequently that (34) holds with equality. The same is true if ||~y||〈·,·〉 = 0.

Now assume that ||~x||〈·,·〉 6= 0 and ||~y||〈·,·〉 6= 0. By semidefiniteness of the inner product,

0 ≤
∣∣∣∣∣∣||~y||〈·,·〉 ~x+ ||~x||〈·,·〉 ~y

∣∣∣∣∣∣2 = 2 ||~x||2〈·,·〉 ||~y||
2
〈·,·〉 + 2 ||~x||〈·,·〉 ||~y||〈·,·〉 〈~x, ~y〉 , (110)

0 ≤
∣∣∣∣∣∣||~y||〈·,·〉 ~x− ||~x||〈·,·〉 ~y∣∣∣∣∣∣2 = 2 ||~x||2〈·,·〉 ||~y||

2
〈·,·〉 − 2 ||~x||〈·,·〉 ||~y||〈·,·〉 〈~x, ~y〉 . (111)

These inequalities establish (34).

Let us prove (40) by proving both implications.

( =⇒ ) Assume 〈~x, ~y〉 = − ||~x||〈·,·〉 ||~y||〈·,·〉. Then (110) equals zero, so ||~y||〈·,·〉 ~x = − ||~x||〈·,·〉 ~y
because the inner product is positive semidefinite.
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(⇐= ) Assume ||~y||〈·,·〉 ~x = − ||~x||〈·,·〉 ~y. Then one can easily check that (110) equals zero,
which implies 〈~x, ~y〉 = − ||~x||〈·,·〉 ||~y||〈·,·〉.
The proof of (41) is identical (using (111) instead of (110)).
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