
Optimization-based data analysis Fall 2017

Lecture Notes 7: Convex Optimization

1 Convex functions

Convex functions are of crucial importance in optimization-based data analysis because they can
be efficiently minimized. In this section we introduce the concept of convexity and then discuss
norms, which are convex functions that are often used to design convex cost functions when fitting
models to data.

1.1 Convexity

A function is convex if and only if its curve lies below any chord joining two of its points.

Definition 1.1 (Convex function). A function f : Rn → R is convex if for any ~x, ~y ∈ Rn and any
θ ∈ (0, 1),

θf (~x) + (1− θ) f (~y) ≥ f (θ~x+ (1− θ) ~y) . (1)

The function is strictly convex if the inequality is always strict, i.e. if ~x 6= ~y implies that

θf (~x) + (1− θ) f (~y) > f (θ~x+ (1− θ) ~y) . (2)

A concave function is a function f such that −f is convex.

Linear functions are convex, but not strictly convex.

Lemma 1.2. Linear functions are convex but not strictly convex.

Proof. If f is linear, for any ~x, ~y ∈ Rn and any θ ∈ (0, 1),

f (θ~x+ (1− θ) ~y) = θf (~x) + (1− θ) f (~y) . (3)

Condition (1) is illustrated in Figure 1. The following lemma shows that when determining whether
a function is convex we can restrict our attention to its behavior along lines in Rn.

Lemma 1.3 (Proof in Section 4.1). A function f : Rn → R is convex if and only if for any two
points ~x, ~y ∈ Rn the univariate function g~x,~y : [0, 1]→ R defined by

g~x,~y (α) := f (α~x+ (1− α) ~y) (4)

is convex. Similarly, f is strictly convex if and only if g~x,~y is strictly convex for any ~x 6= ~y.

1

f (θ~x+ (1− θ)~y)

θf (~x) + (1− θ)f (~y)

f (~x)

f (~y)

Figure 1: Illustration of condition (1) in Definition 1.1. The curve corresponding to the function must
lie below any chord joining two of its points.

Convex functions are easier to optimize than nonconvex functions because once we find a local
minimum of the function we are done: every local minimum is guaranteed to be a global minimum.

Theorem 1.4 (Local minima are global). Any local minimum of a convex function is also a global
minimum.

Proof. We prove the result by contradiction. Let ~xloc be a local minimum and ~xglob a global
minimum such that f (~xglob) < f (~xloc). Since ~xloc is a local minimum, there exists γ > 0 for which
f (~xloc) ≤ f (~x) for all ~x ∈ Rn such that ||~x− ~xloc||2 ≤ γ. If we choose θ ∈ (0, 1) small enough,
~xθ := θ~xloc + (1− θ) ~xglob satisfies ||~xθ − ~xloc||2 ≤ γ and therefore

f (~xloc) ≤ f (~xθ) (5)

≤ θf (~xloc) + (1− θ) f (~xglob) by convexity of f (6)

< f (~xloc) because f (~xglob) < f (~xloc). (7)

1.2 Norms

Many of the cost functions that we consider in data analysis involve norms. Conveniently, all
norms are convex.

Lemma 1.5 (Norms are convex). Any valid norm ||·|| is a convex function.

Proof. By the triangle inequality inequality and homogeneity of the norm, for any ~x, ~y ∈ Rn and
any θ ∈ (0, 1)

||θ~x+ (1− θ) ~y|| ≤ ||θ~x||+ ||(1− θ) ~y|| = θ ||~x||+ (1− θ) ||~y|| . (8)

2

The following lemma establishes that the composition between a convex function and an affine
function is convex. In particular, this means that any function of the form

f (~x) :=
∣∣∣∣∣∣A~x+~b

∣∣∣∣∣∣ (9)

is convex for any fixed matrix A and vector ~b with suitable dimensions.

Lemma 1.6 (Composition of convex and affine function). If f : Rn → R is convex, then for any

A ∈ Rn×m and any ~b ∈ Rn, the function

h (~x) := f
(
A~x+~b

)
(10)

is convex.

Proof. By convexity of f , for any ~x, ~y ∈ Rm and any θ ∈ (0, 1)

h (θ~x+ (1− θ) ~y) = f
(
θ
(
A~x+~b

)
+ (1− θ)

(
A~y +~b

))
(11)

≤ θf
(
A~x+~b

)
+ (1− θ) f

(
A~y +~b

)
(12)

= θ h (~x) + (1− θ)h (~y) . (13)

The number of nonzero entries in a vector is often called the `0 “norm” of the vector. Despite its
name, it is not a valid norm (it is not homogeneous: for any ~x ||2~x||0 = ||~x||0 6= ||~x||0). In fact,
the `0 “norm” is not even convex.

Lemma 1.7 (`0 “norm” is not convex). The `0 “norm” defined as the number of nonzero entries
in a vector is not convex.

Proof. We provide a simple counterexample with vectors in R2 that can be easily extended to
vectors in Rn. Let ~x := (1

0) and ~y := (0
1), then for any θ ∈ (0, 1)

||θ~x+ (1− θ) ~y||0 = 2 > 1 = θ ||~x||0 + (1− θ) ||~y||0 . (14)

Example 1.8 (Promoting sparsity). Finding sparse vectors that are consistent with observed data
is often very useful in data analysis. Let us consider a toy problem where the entries of a vector
are constrained to be of the form

~vt :=

 t
t− 1
t− 1

 . (15)

Our objective is to fit t so that ~vt is as sparse as possible or, in other words, minimize ||~vt||0.
Unfortunately this function is nonconvex. The graph of the function is depicted in Figure 2. In
contrast, if we consider

f (t) := ||~vt|| (16)

3

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

1

2

3

4

5

t

||t||0
||t||1
||t||2
||t||∞

Figure 2: Graph of the function (16) for different norms and for the nonconvex `0 “norm”.

where ||·|| is a valid norm, then we can exploit local information to find the global minimum
(we will discuss how to do this in more detail later on) because the function is convex in t by
Lemma 1.6. This is impossible to do for ||~vt||0 because it is constant except at two isolated points.
Figure 2 shows f for different norms.

The `1 norm is the best choice for our purposes: it is convex and its global minimum is at the
same location as the minimum `0 “norm” solution. This is not a coincidence: minimizing the `1
norm tends to promote sparsity. When compared to the `2 norm, it penalizes small entries much
more (ε2 is much smaller than |ε| for small ε), as a result it tends to produce solutions that contain
a small number of larger nonzero entries. 4

The rank of a matrix interpreted as a function of its entries is also not convex.

Lemma 1.9 (The rank is not convex). The rank of matrices in Rn×n interpreted as a function
from Rn×n to R is not convex.

Proof. We provide a counterexample that is very similar to the one in the proof of Lemma 1.7.
Let

X :=

[
1 0
0 0

]
, Y :=

[
0 0
0 1

]
. (17)

For any θ ∈ (0, 1)

rank (θX + (1− θ)Y) = 2 > 1 = θ rank (X) + (1− θ) rank (Y) . (18)

4

1.0 0.5 0.0 0.5 1.0 1.5
t

1.0

1.5

2.0

2.5

3.0
Rank

Operator norm

Frobenius norm

Nuclear norm

Figure 3: Values of different norms for the matrix M (t) defined by (19). The rank of the matrix for
each t is marked in green.

Example 1.10 (Promoting low-rank structure). Finding low-rank matrices that are consistent
with data is useful in applications of PCA where data may be corrupted or missing. Let us consider
a toy problem where our goal is to find t so that

M (t) :=

0.5 + t 1 1
0.5 0.5 t
0.5 1− t 0.5

 , (19)

is as low rank as possible. In Figure 3 we compare the rank, the operator norm, the Frobenius
norm and the nuclear norm of M (t) for different values of t. As expected, the rank is highly
nonconvex, whereas the norms are all convex, which follows from Lemma 1.6. The value of t that
minimizes the rank is the same as the one that minimizes the nuclear norm. In contrast, the values
of t that minimize the operator and Frobenius norms are different. Just like the `1 norm promotes
sparsity, the nuclear norm, which the `1 norm of the singular values, promotes solutions with low
rank, which is the `0 “norm” of the singular values. 4

2 Differentiable convex functions

2.1 First-order conditions

The gradient is the generalization of the concept of derivative, which captures the local rate of
change in the value of a function, in multiple directions.

5

Definition 2.1 (Gradient). The gradient of a function f : Rn → R at a point ~x ∈ Rn is defined
to be the unique vector ∇f(~x) ∈ Rn satisfying

lim
~p→0

f(x+ ~p)− f(x)−∇f(~x)T~p

‖~p‖2
= 0,

assuming such a vector ∇f(~x) exists. If ∇f(~x) exists then it is given by the vector of partial
derivatives:

∇f (~x) =

∂f(~x)
∂~x[1]

∂f(~x)
∂~x[2]

· · ·
∂f(~x)
∂~x[n]

 . (20)

If the gradient exists at every point, the function is said to be differentiable.

The gradient encodes the variation of the function in every direction.

Lemma 2.2. If a function f : Rn → R is differentiable, the directional derivative f ′~u of f at ~x
equals

f ′~u (~x) := lim
h→0

f (~x+ h~u)− f (~x)

h
(21)

= 〈∇f (~x) , ~u〉 (22)

for any unit-norm vector ~u ∈ Rn.

We omit the proof of the lemma, which is a basic result from multivariable calculus. An important
corollary is that the gradient provides the direction of maximum positive and negative variation
of the function.

Corollary 2.3. The direction of the gradient ∇f of a differentiable function f : Rn → R is the
direction of maximum increase of the function. The opposite direction is the direction of maximum
decrease.

Proof. By the Cauchy-Schwarz inequality

|f ′~u (~x)| =
∣∣∣∇f (~x)T ~u

∣∣∣ (23)

≤ ||∇f (~x)||2 ||~u||2 (24)

= ||∇f (~x)||2 (25)

with equality if and only if ~u = ± ∇f(~x)
||∇f(~x)||2

.

Figure 4 shows the gradient of a function f : R2 → R at different locations. The gradient is
orthogonal to the contour lines of the function. The reason is that by definition the function does
not change along the contour lines, so the directional derivatives in those directions are zero.

6

Figure 4: Contour lines of a function f : R2 → R. The gradients at different points are represented by
black arrows, which are orthogonal to the contour lines.

The first-order Taylor expansion of a differentiable function is a linear function that approximates
the function around a certain point. Geometrically, in one dimension this linear approximation
is a line that is tangent to the curve (x, f(x)). In multiple dimensions, it is a hyperplane that is
tangent to the hypersurface (~x, f (~x)) at that point.

Definition 2.4 (First-order approximation). The first-order or linear approximation of a differ-
entiable function f : Rn → R at ~x is

f 1
~x (~y) := f (~x) +∇f (~x)T (~y − ~x) . (26)

By construction, the first-order approximation of a function at a given point is a linear function
that has exactly the same directional derivatives at that point. The following theorem establishes
that a function f is convex if and only if the linear approximation f 1

~x is a lower bound of f for
any ~x ∈ Rn. Figure 5 illustrates the condition.

Theorem 2.5 (Proof in Section 4.2). A differentiable function f : Rn → R is convex if and only
if for every ~x, ~y ∈ Rn

f (~y) ≥ f (~x) +∇f (~x)T (~y − ~x) . (27)

It is strictly convex if and only if

f (~y) > f (~x) +∇f (~x)T (~y − ~x) . (28)

An immediate corollary is that for a convex function, any point at which the gradient is zero is a
global minimum. If the function is strictly convex, the minimum is unique. This is very useful for
minimizing such functions, once we find a point where the gradient is zero we are done!

7

x

f (~y)

f 1
x (~y)

Figure 5: An example of the first-order condition for convexity. The first-order approximation at any
point is a lower bound of the function.

f

epi (f)

Figure 6: Epigraph of a function.

Corollary 2.6. If a differentiable function f is convex and ∇f (~x) = 0, then for any ~y ∈ R

f (~y) ≥ f (~x) . (29)

If f is strictly convex then for any ~y 6= ~x

f (~y) > f (~x) . (30)

For any differentiable function f and any ~x ∈ Rn let us define the hyperplane Hf,~x ⊂ Rn+1 that
corresponds to the first-order approximation of f at ~x,

Hf,~x :=

~y | ~y[n+ 1] = f 1
~x

~y[1]
· · ·
~y[n]

 . (31)

8

The epigraph is the subset of Rn+1 that lies above the graph of the function. Recall that the
graph is the set of vectors in Rn+1 obtained by concatenating ~x ∈ Rn and f (~x) for every ~x ∈ Rn.
Figure 6 shows the epigraph of a convex function.

Definition 2.7 (Epigraph). The epigraph of a function f : Rn → R is the set

epi (f) :=

~x | f
~x[1]
· · ·
~x[n]

 ≤ ~x[n+ 1]

 . (32)

Geometrically, Theorem 2.5 establishes that the epigraph of a convex function always lies above
Hf,~x. By construction, Hf,~x and epi (f) intersect at ~x. This implies that Hf,~x is a supporting
hyperplane of epi (f) at ~x.

Definition 2.8 (Supporting hyperplane). A hyperplane H is a supporting hyperplane of a set S
at ~x if

• H and S intersect at ~x,

• S is contained in one of the half-spaces bounded by H.

The optimality condition in Corollary 2.6 has a very intuitive geometric interpretation in terms of
the supporting hyperplane Hf,~x. ∇f = 0 implies that Hf,~x is horizontal if the vertical dimension
corresponds to the n + 1th coordinate. Since the epigraph lies above hyperplane, the point at
which they intersect must be a minimum of the function.

2.2 Second-order conditions

The Hessian matrix of a function contains its second-order partial derivatives.

Definition 2.9 (Hessian matrix). A differentiable function f : Rn → R is twice differentiable at
~x ∈ Rn if there is a matrix ∇2f(~x) ∈ Rn×n such that

lim
~p→0

‖∇f(x+ h)−∇f(x)−∇2f(x)~p‖2
‖p‖2

= 0.

If ∇2f(~x) exists then it is given by

∇2f (~x) =

∂2f(~x)
∂~x[1]2

∂2f(~x)
∂~x[1]∂~x[2]

· · · ∂2f(~x)
∂~x[1]∂~x[n]

∂2f(~x)
∂~x[1]∂~x[2]

∂2f(~x)
∂~x[1]2

· · · ∂2f(~x)
∂~x[2]∂~x[n]

· · ·
∂2f(~x)

∂~x[1]∂~x[n]
∂2f(~x)

∂~x[2]∂~x[n]
· · · ∂2f(~x)

∂~x[n]2

 . (33)

If a function has a Hessian matrix at every point, we say that the function is twice differentiable.
If each entry of the Hessian is continuous, we say f is twice continuously differentiable.

9

x

f (~y)

f 2
x (~y)

Figure 7: Second-order approximation of a function.

Note that by (33) if f : R → Rn is differentiable everywhere and twice differentiable at ~x ∈ Rn

then the Hessian ∇2f(~x) is always a symmetric matrix.

As you might recall from basic calculus, curvature is the rate of change of the slope of the function
and is consequently given by its second derivative. The Hessian matrix encodes the curvature of
the function in every direction, another basic result from multivariable calculus.

Lemma 2.10. If a function f : Rn → R is twice differentiable, the second directional derivative
f ′′~u of f at ~x equals

f ′′~u (~x) = ~uT∇2f (~x) ~u, (34)

for any unit-norm vector ~u ∈ Rn.

The Hessian and the gradient of a twice-differentiable function can be used to build a quadratic
approximation of the function. This approximation is depicted in Figure 7 for a one-dimensional
function.

Definition 2.11 (Second-order approximation). The second-order or quadratic approximation of
f at ~x is

f 2
~x (~y) := f (~x) +∇f (~x) (~y − ~x) +

1

2
(~y − ~x)T ∇2f (~x) (~y − ~x) (35)

By construction, the second-order approximation of a function at a given point is a quadratic form
that has exactly the same directional derivatives and curvature at that point. This second-order
approximation is a quadratic form.

Definition 2.12 (Quadratic functions/forms). A quadratic function q : Rn → R is a second-order
polynomial in several dimensions. Such polynomials can be written in terms of a symmetric matrix
A ∈ Rn×n, a vector ~b ∈ Rn and a constant c

q (~x) := ~xTA~x+~bT~x+ c. (36)

A quadratic form is a (pure) quadratic function where ~b = 0 and c = 0.

10

The quadratic form f 2
~x (~y) becomes an arbitrarily good approximation of f as we approach ~x, even

if we divide the error by the squared distance between ~x and ~y. We omit the proof that follows
from multivariable calculus.

Lemma 2.13. The quadratic approximation f 2
~x : Rn → R at ~x ∈ Rn of a twice differentiable

function f : Rn → R satisfies

lim
~y→~x

f (~y)− f 2
~x (~y)

||~y − ~x||22
= 0 (37)

To find the maximum curvature of a function at a given point, we can compute an eigendecom-
position of its Hessian.

Theorem 2.14. Let A = UΛUT be the eigendecomposition of a symmetric matrix A, where
λ1 ≥ · · · ≥ λn (which can be negative) are the eigenvalues and ~u1, . . . , ~un the corresponding
eigenvectors. Then

λ1 = max
{||~x||2=1 | ~x∈Rn}

~xTA~x, (38)

~u1 = arg max
{||~x||2=1 | ~x∈Rn}

~xTA~x, (39)

λn = min
{||~x||2=1 | ~x∈Rn}

~xTA~x, (40)

~un = arg min
{||~x||2=1 | ~x∈Rn}

~xTA~x. (41)

Proof. By Theorem 4.3 in Lecture Notes 2 the eigendecomposition of A is the same as its SVD,
except that some of the eigenvalues may be negative (which flips the direction of the corresponding
eigenvectors with respect to the singular vectors). The result then follows from Theorem 2.7 in
the same lecture notes.

Corollary 2.15. Consider the eigendecomposition of the Hessian matrix of a twice-differentiable
function f at a point ~x. The maximum curvature of f at ~x is given by the largest eigenvalue of
∇2f (~x) and is in the direction of the corresponding eigenvector. The smallest curvature, or the
largest negative curvature, of f at ~x is given by the smallest eigenvalue of ∇2f (~x) and is in the
direction of the corresponding eigenvector.

If all the eigenvalues of a symmetric matrix A ∈ Rn×n are nonnegative, the matrix is said to be pos-
itive semidefinite. The pure quadratic form corresponding to such matrices is always nonnegative.

Lemma 2.16 (Positive semidefinite matrices). The eigenvalues of a symmetric matrix A ∈ Rn×n

are all nonnegative if and only if

~xTA~x ≥ 0 (42)

for all ~x ∈ Rn. Such matrices are called positive semidefinite.

11

Convex Concave Neither

Figure 8: Quadratic forms for which the Hessian is positive definite (left), negative definite (center) and
neither positive nor negative definite (right).

Proof. By Theorem 2.14, the matrix has an eigendecomposition A = UΛUT where the eigenvectors
~u1, . . . , ~un form an orthonormal basis so that

~xTA~x = ~xTUΛUT~x (43)

=
n∑
i=1

λi〈~ui, ~x〉2. (44)

If the eigenvalues are positive the matrix is positive definite. If the eigenvalues are all nonposi-
tive, the matrix is negative semidefinite. If they are negative, the matrix is negative definite. By
Corollary 2.15 a twice-differentiable function has positive (resp. nonnegative) curvature in every
direction if its Hessian is positive definite (resp. semidefinite) and it has negative (resp. nonposi-
tive) curvature in every direction if the Hessian is negative definite (resp. semidefinite). Figure 8
illustrates this in the case of quadratic forms in two dimensions.

For univariate functions that are twice differentiable, convexity is dictated by the curvature. The
following lemma establishes that univariate functions are convex if and only if their curvature is
always nonnegative.

Lemma 2.17 (Proof in Section 4.4). A twice-differentiable function g : R → R is convex if and
only if g′′ (x) ≥ 0 for all x ∈ R.

A corollary of this result is that twice-differentiable functions in Rn are convex if and only if their
Hessian is positive semidefinite at every point.

Corollary 2.18. A twice-differentiable function f : Rn → R is convex if and only if for every
~x ∈ Rn, the Hessian matrix ∇2f (~x) is positive semidefinite.

Proof. By Lemma 1.3 we just need to show that the univariate function g~a,~b defined by (4) is

convex for all ~a,~b ∈ Rn. By Lemma 2.17 this holds if and only if the second derivative of g~a,~b
is nonnegative. This quantity is nonnegative for all ~a,~b ∈ Rn if and only if ∇2f (~x) is positive
semidefinite for any ~x ∈ Rn.

12

Remark 2.19 (Strict convexity). If the Hessian is positive definite, then the function is strictly
convex (the proof is essentially the same). However, there are functions that are strictly convex
for which the Hessian may equal zero at some points. An example is the univariate function
f (x) = x4, for which f ′′ (0) = 0.

We can interpret Corollary 2.18 in terms of the second-order Taylor expansion of f : Rn → R at
~x: f is convex if and only if this quadratic approximation is always convex.

3 Minimizing differentiable convex functions

In this section we describe different techniques for solving the optimization problem

min
~x∈Rn

f (~x) , (45)

when f is differentiable and convex. By Theorem 1.4 any local minimum of the function is also
a global minimum. This motivates trying to make progress towards a solution by exploiting local
first and second order information.

3.1 Gradient descent

Gradient descent exploits first-order local information encoded in the gradient to iteratively ap-
proach the point at which f achieves its minimum value. The idea is to take steps in the direction
of steepest descent, which is −∇f (~x) by Corollary 2.3.

Algorithm 3.1 (Gradient descent, aka steepest descent). Set the initial point ~x (0) to an arbitrary
value in Rn. Update by setting

~x (k+1) := ~x (k) − αk∇f
(
~x (k)

)
, (46)

where αk > 0 is a nonnegative real number which we call the step size, until a stopping criterion
is met.

Examples of stopping criteria include checking whether the relative progress∣∣∣∣~x (k+1) − ~x (k)
∣∣∣∣
2

||~x (k)||2
(47)

or the norm of the gradient are below a predefined tolerance. Figure 9 shows two examples in
which gradient descent is applied in one and two dimensions. In both cases the method converges
to the minimum.

In the examples of Figure 9 the step size is constant. In practice, determining a constant step
that is adequate for a particular function can be challenging. Figure 10 shows two examples to
illustrate this. In the first, the step size is too small and as a result convergence is extremely slow.
In the second the step size is too large which causes the algorithm to repeatedly overshoot the
minimum and eventually diverge.

13

f : R→ R f : R2 → R

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Figure 9: Iterations of gradient descent applied to a univariate (left) and a bivariate (right) function.
The algorithm converges to the minimum in both cases.

Ideally, we would like to adapt the step size automatically as the iterations progress. A possibility
is to search for the minimum of the function along the direction of the gradient,

αk := arg min
α
h (α) (48)

= arg min
α∈R

f
(
~x (k) − αk∇f

(
~x (k)

))
. (49)

This is called a line search. Recall that the restriction of an n-dimensional convex function to a
line in its domain is also convex. As a result the line-search problem is a one-dimensional convex
problem. However, it may still be costly to solve. The backtracking line search is an alternative
heuristic that produces very similar results in practice at less cost. The idea is to ensure that we
make some progress in each iteration, without worrying about actually minimizing the univariate
function.

Algorithm 3.2 (Backtracking line search with Armijo rule). Given α0 ≥ 0 and β, η ∈ (0, 1), set
αk := α0 βi for the smallest integer i such that ~x (k+1) := ~x (k) − αk∇f

(
~x (k)

)
satisfies

f
(
~x (k+1)

)
≤ f

(
~x (k)

)
− 1

2
αk
∣∣∣∣∇f (~x (k)

)∣∣∣∣2
2
, (50)

a condition known as Armijo rule

Figure 11 shows the result of applying gradient descent with a backtracking line search to the
same example as in Figure 10. In this case, the line search manages to adjust the step size so that
the method converges.

Example 3.3 (Gradient descent for least squares). Gradient descent can be used to minimize the
least-squares cost function

minimize~β∈Rp

∣∣∣∣∣∣~y −X~β
∣∣∣∣∣∣2
2
, (51)

14

Small step size Large step size

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

10
20
30
40
50
60
70
80
90
100

Figure 10: Iterations of gradient descent when the step size is small (left) and large (right). In the first
case the convergence is very small, whereas in the second the algorithm diverges away from the minimum.
The initial point is bright red.

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Figure 11: Gradient descent using a backtracking line search based on the Armijo rule. The function is
the same as in Figure 10.

15

described in Section 2 of Lecture Notes 6 to fit a linear regression model from n examples of the
form, (

y(1), ~x (1)
)
,
(
y(2), ~x (2)

)
, . . . ,

(
y(n), ~x (n)

)
. (52)

The cost function is convex by Lemma 1.6 (also its Hessian XTX is positive semidefinite). The
gradient of the quadratic function

f(~β) :=
∣∣∣∣∣∣~y −X~β

∣∣∣∣∣∣2
2

(53)

= ~βTXTX~β − 2~βTXT~y + ~yT~y (54)

equals

∇f(~β) = 2XTX~β − 2XT~y (55)

so the gradient descent updates are

~β(k+1) = ~β(k) + 2αkX
T
(
~y −X~β(k)

)
(56)

= ~β(k) + 2αk

n∑
i=1

(
~y(i) − 〈x(i), ~β(k)〉

)
x(i). (57)

This has a very intuitive interpretation in terms of the examples: if ~y(i) is larger than 〈x(i), ~β(k)〉
we add a small multiple of x(i) in order to reduce the difference, if it is smaller we subtract it.

Gradient descent is not the best first-order iterative optimization method for least-squares min-
imization. The conjugate-gradients method is better suited for this problem. We refer to [5] for
an excellent tutorial on this method. 4

Example 3.4 (Gradient ascent for logistic regression). Since gradient descent minimizes convex
functions, gradient ascent (where we climb in the direction of the gradient) can be used to maximize
concave functions. In particular, let us consider the logistic regression log-likelihood cost function

f(~β) :=
n∑
i=1

y(i) log g
(
〈~x (i), ~β〉

)
+
(
1− y(i)

)
log
(

1− g
(
〈~x (i), ~β〉

))
(58)

from Definition 4.2 of Lecture Notes 6, where g (t) = (1− exp−t)− 1 the labels y(i), 1 ≤ i ≤ n,
are equal to 0 or 1, and the features ~x (i) are vectors in Rn. We establish that this cost function is
concave in Corollary 3.23. The gradient of this cost function is given in the following lemma.

Lemma 3.5. The gradient of the function f in equation (58) equals

∇f(~β) =
n∑
i=1

y(i)
(

1− g(〈~x (i), ~β〉)
)
~x (i) −

(
1− y(i)

)
g(〈~x (i), ~β〉)~x (i). (59)

Proof. The result follows from the identities

g′ (t) = g (t) (1− g (t)) , (60)

(1− g (t))′ = −g (t) (1− g (t)) . (61)

and the chain rule. 4

16

The gradient ascent updates

~β(k+1) := ~β(k) + αk

n∑
i=1

y(i)
(

1− g(〈~x (i), ~β(k)〉)
)
~x (i) −

(
1− y(i)

)
g(〈~x (i), ~β(k)〉)~x (i). (62)

have an intuitive interpretation. If ~y(i) equals 1, we add x(i) scaled by the error 1 − g(〈~x (i), ~β〉)
to push g(〈~x (i), ~β〉) up towards ~y(i). Similarly, if ~y(i) equals 0, we subtract x(i) scaled by the error

g(〈~x (i), ~β〉) to push g(〈~x (i), ~β〉) down towards ~y(i). 4

3.2 Convergence of gradient descent

In this section we analyze the convergence of gradient descent. We begin by introducing a notion
of continuity for functions from Rn to Rm.

Definition 3.6 (Lipschitz continuity). A function f : Rn → Rm is Lipschitz continuous with
Lipschitz constant L if for any ~x, ~y ∈ Rn

||f (~y)− f (~x)||2 ≤ L ||~y − ~x||2 . (63)

We focus on functions that have Lipschitz-continuous gradients. The following theorem shows
that these functions are upper bounded by a quadratic function.

Theorem 3.7 (Proof in Section 4.5). If the gradient of a function f : Rn → R is Lipschitz
continuous with Lipschitz constant L,

||∇f (~y)−∇f (~x)||2 ≤ L ||~y − ~x||2 (64)

then for any ~x, ~y ∈ Rn

f (~y) ≤ f (~x) +∇f (~x)T (~y − ~x) +
L

2
||~y − ~x||22 . (65)

The quadratic upper bound immediately implies a bound on the value of the cost function after
k iterations of gradient descent.

Corollary 3.8. Let ~x (i) be the ith iteration of gradient descent and αi ≥ 0 the ith step size, if ∇f
is L-Lipschitz continuous,

f
(
~x (k+1)

)
≤ f

(
~x (k)

)
− αk

(
1− αkL

2

) ∣∣∣∣∇f (~x (k)
)∣∣∣∣2

2
. (66)

Proof. Applying the quadratic upper bound we obtain

f
(
~x (k+1)

)
≤ f

(
~x (k)

)
+∇f

(
~x (k)

)T (
~x (k+1) − ~x (k)

)
+
L

2

∣∣∣∣~x (k+1) − ~x (k)
∣∣∣∣2
2
. (67)

The result follows because ~x (k+1) − ~x (k) = −αk∇f
(
~x (k)

)
.

17

We can now establish that if the step size is small enough, the value of the cost function at each
iteration will decrease (unless we are at the minimum, where the gradient is zero).

Corollary 3.9 (Gradient descent is a descent method). If αk ≤ 1
L

f
(
~x (k+1)

)
≤ f

(
~x (k)

)
− αk

2

∣∣∣∣∇f (~x (k)
)∣∣∣∣2

2
. (68)

Note that up to now we are not assuming that the function we are minimizing is convex. Gra-
dient descent will make local progress even for nonconvex functions if the step size is sufficiently
small. We now establish global convergence for gradient descent applied to convex functions with
Lipschitz-continuous gradients.

Theorem 3.10. We assume that f is convex, ∇f is L-Lipschitz continuous and there exists a
point ~x ∗ at which f achieves a finite minimum. If we set the step size of gradient descent to
αk = α ≤ 1/L for every iteration,

f
(
~x (k)

)
− f (~x ∗) ≤

∣∣∣∣~x (0) − ~x ∗
∣∣∣∣2
2

2α k
(69)

Proof. By the first-order characterization of convexity

f
(
~x (k−1))+∇f

(
~x (k−1))T (~x ∗ − ~x (k−1)) ≤ f (~x ∗) , (70)

which together with Corollary 3.9 yields

f
(
~x (k)

)
− f (~x ∗) ≤ ∇f

(
~x (k−1))T (~x (k−1) − ~x ∗

)
− α

2

∣∣∣∣∇f (~x (k−1))∣∣∣∣2
2

(71)

=
1

2α

(∣∣∣∣~x (k−1) − ~x ∗
∣∣∣∣2
2
−
∣∣∣∣~x (k−1) − ~x ∗ − α∇f

(
~x (k−1))∣∣∣∣2

2

)
(72)

=
1

2α

(∣∣∣∣~x (k−1) − ~x ∗
∣∣∣∣2
2
−
∣∣∣∣~x (k) − ~x ∗

∣∣∣∣
2

)
(73)

Using the fact that by Corollary 3.9 the value of f never increases, we have

f
(
~x (k)

)
− f (~x ∗) ≤ 1

k

k∑
i=1

f
(
~x (k)

)
− f (~x ∗) (74)

≤ 1

2α k

(∣∣∣∣~x (0) − ~x ∗
∣∣∣∣2
2
−
∣∣∣∣~x (k) − ~x ∗

∣∣∣∣2
2

)
(75)

≤
∣∣∣∣~x (0) − ~x ∗

∣∣∣∣2
2

2α k
. (76)

The theorem assumes that we know the Lipschitz constant of the gradient beforehand. However,
the following lemma establishes that a backtracking line search with the Armijo rule is capable of
adjusting the step size adequately.

18

Lemma 3.11 (Backtracking line search). If the gradient of a function f : Rn → R is Lipschitz
continuous with Lipschitz constant L the step size obtained by applying a backtracking line search
using the Armijo rule with η = 0.5 satisfies

αk ≥ αmin := min

{
α0,

β

L

}
. (77)

Proof. By Corollary 3.8 the Armijo rule with η = 0.5 is satisfied if αk ≤ 1/L. Since there must
exist an integer i for which β/L ≤ α0βi ≤ 1/L this establishes the result.

We can now adapt the proof of Theorem 3.10 to establish convergence when we apply a back-
tracking line search.

Theorem 3.12 (Convergence with backtracking line search). If f is convex and ∇f is L-Lipschitz
continuous. Gradient descent with a backtracking line search produces a sequence of points that
satisfy

f
(
~x (k)

)
− f (~x ∗) ≤

∣∣∣∣~x (0) − ~x ∗
∣∣∣∣2

2

2αmin k
, (78)

where αmin := min
{
α0, β

L

}
.

Proof. Following the reasoning in the proof of Theorem 3.10 up until equation (73) we have

f
(
~x (k)

)
− f (~x ∗) ≤ 1

2αi

(∣∣∣∣x(k−1) − x∗∣∣∣∣2
2
−
∣∣∣∣x(k) − x∗∣∣∣∣

2

)
. (79)

By Lemma 3.11 αi ≥ αmin, so we just mimic the steps at the end of the proof of Theorem 3.10 to
obtain

f
(
x(k)
)
− f (x∗) ≤ 1

k

k∑
i=1

f
(
x(k)
)
− f (x∗) (80)

=
1

2αmin k

(∣∣∣∣x(0) − x∗∣∣∣∣2
2
−
∣∣∣∣x(k) − x∗∣∣∣∣2

2

)
(81)

≤
∣∣∣∣x(0) − x∗∣∣∣∣2

2

2αmin k
. (82)

The results that we have proved imply that we need O (1/ε) to compute a point at which the cost
function has a value that is ε close to the minimum. However, in practice gradient descent and
related methods often converge much faster.

19

3.3 Accelerated gradient descent

The following theorem by Nesterov shows that no algorithm that uses first-order information can
converge faster than O (1/

√
ε) for the class of functions with Lipschitz-continuous gradients. The

proof is constructive, see Section 2.1.2 of [4] for the details.

Theorem 3.13 (Lower bound on rate of convergence). There exist convex functions with L-
Lipschitz-continuous gradients such that for any algorithm that selects x(k) from

x(0) + span
{
∇f

(
x(0)
)
,∇f

(
x(1)
)
, . . . ,∇f

(
x(k−1)

)}
(83)

we have

f
(
x(k)
)
− f (x∗) ≥

3L
∣∣∣∣x(0) − x∗∣∣∣∣2

2

32 (k + 1)2
. (84)

This rate is in fact optimal. The convergence of O (1/
√
ε) can be achieved if we modify gradient

descent by adding a momentum term.

Algorithm 3.14 (Nesterov’s accelerated gradient descent). Set the initial point ~x (0) to an arbi-
trary value in Rn. Update by setting

y(k+1) = x(k) − αk∇f
(
x(k)
)
, (85)

x(k+1) = βk y
(k+1) + γk y

(k), (86)

where αk is the step size and βk and γk are nonnegative real parameters, until a stopping criterion
is met.

Intuitively, the momentum term y(k) prevents the algorithm from overreacting to changes in the
local slope of the function. We refer the interested reader to [3, 4] for more details.

Example 3.15 (Digit classification). In this example we apply both gradient descent and accel-
erated gradient descent to train a logistic-regression model on the MNIST data set1. We consider
the task of determining whether a digit is a 5 or not. The feature vector ~xi contains the pixel
values of an image of a 5 (~yi = 1) or another number (~yi = 0). We use different numbers of
training examples to fit a logistic regression model. The cost function is maximized by running
gradient descent and accelerated gradient descent until the gradient is smaller than a certain value.
Figure 12 shows the time taken by both algorithms for different training-set sizes. 4

3.4 Stochastic gradient descent

Cost functions used to fit models from data are often additive, in the sense that we can write them
as a sum of m terms, each of which often depends on just one measurement,

f (~x) =
1

m

m∑
i=1

fi (~x) . (87)

1Available at http://yann.lecun.com/exdb/mnist/

20

http://yann.lecun.com/exdb/mnist/

102 103 104

Sizes

10-1

100

101

T
im

e
s

(s
)

Gradient Descent
Accelerated Descent

Figure 12: Time taken by gradient descent and accelerated gradient descent to train a logistic-regression
model on the MNIST data set for different training-set sizes.

Two important examples are the least-squares and logistic-regression log-likelihood functions dis-
cussed in Examples 3.3 and 3.4. In those cases each term fi corresponds to a different example
in the training set. If the training set is extremely large, then computing the whole gradient may
be computationally infeasible. Stochastic gradient descent circumvents this issue by using the
gradient of individual components instead.

Algorithm 3.16 (Stochastic gradient descent). Set the initial point ~x (0) to an arbitrary value in
Rn. Until a stopping criterion is met, update by:

1. Choosing a random subset of b indices B, where b� m is the batch size.

2. Setting

~x (k+1) := ~x (k) − αk
∑
i∈B

∇fi
(
~x (k)

)
(88)

where αk > 0 is the step size.

Apart from its computational efficiency, an advantage of stochastic gradient descent is that it can
be applied in online settings, where we need to optimize a function that depends on a large data
set but only have access to portions of the data set at a time.

Intuitively, stochastic gradient descent replaces the gradient of the whole function by

m∑
i=1

1i∈B∇fi
(
~x (k+1)

)
. (89)

If B is generated so that every index has the same probability p of belonging to it, then this is an

21

unbiased estimate of ∇f

E

(
m∑
i=1

1i∈B∇fi
(
~x (k)

))
=

m∑
i=1

E (1i∈B)∇fi
(
~x (k)

)
(90)

=
m∑
i=1

P (i ∈ B)∇fi
(
~x (k)

)
(91)

= mp∇f
(
~x (k)

)
. (92)

Intuitively, the direction of the stochastic-gradient descent is the one of steepest descent on average.
However, the variation in the estimate can make stochastic gradient descent diverge unless the
step size is diminishing. We refer to [1] for more details on this algorithm.

Example 3.17 (Stochastic gradient descent for least squares and logistic regression). By the
derivation in Example 3.3, in the case of least squares the stochastic gradient descent update is

~β(k+1) := ~β(k) + 2αk
∑
i∈B

(
~y(i) − 〈x(i), ~β(k)〉

)
x(i), (93)

Similarly, by the derivation in Example 3.4, the update for stochastic gradient ascent applied to
logistic regression is

~β(k+1) := ~β(k) + αk
∑
i∈B

y(i)
(

1− g(〈~x (i), ~β(k)〉)
)
~x (i) −

(
1− y(i)

)
g(〈~x (i), ~β(k)〉)~x (i). (94)

In both cases the algorithm is very intuitive: instead of adjusting ~β using all of the examples, we
just use the ones in the batch. 4

Example 3.18 (Digit classification). In this example we apply stochastic gradient descent for
to train a logistic-regression model on the MNIST data set for the same task as Example 3.18.
Figure 13 shows the convergence of the algorithm for different batch sizes. 4

3.5 Newton’s method

Newton’s method minimizes a convex function by iteratively minimizing its quadratic approxi-
mation. The following simple lemma derives a closed form for the minimum of the quadratic
approximation at a given point.

Lemma 3.19. The minimum of the second-order approximation of a convex function f at ~x ∈ Rn

f 2
~x (~y) := f (~x) +∇f (~x) (~y − ~x) +

1

2
(~y − ~x)T ∇2f (~x) (~y − ~x) , (95)

which has a positive definite Hessian at ~x, is equal to

arg min
~y∈Rn

f 2
~x (~y) = ~x−∇2f (~x)−1∇f (~x) . (96)

22

100 101 102 103 104 105 106

Steps

0

2

4

6

8

10

12

14

16

T
ra

in
in

g
 L

o
ss

Gradient Descent

SGD (1)

SGD (10)

SGD (100)

SGD (1000)

SGD (10000)

Figure 13: Convergence of stochastic gradient descent when fitting a logistic-regression model on the
MNIST data set. The plot shows the value of the cost function on the training set for different batch
sizes. Note that the updates for smaller batch sizes are much faster so the horizontal axis does not reflect
running time.

Proof. If the Hessian is positive definite, then f 2
~x is strictly convex and it has a unique global

minimum. Its gradient equals

∇f 2
~x (y) = ∇f (~x) +∇2f (~x) (~y − ~x) (97)

so it is equal to zero if

∇2f (~x) (~y − ~x) = −∇f (~x) . (98)

If the Hessian is positive definite, then it is also full rank. The only solution to this system
of equations is consequently ~y = ~x − ∇2f (~x)−1∇f (~x), which must be the minimum of f 2

~x by
Corollary 2.6 because the gradient vanishes.

The idea behind Newton’s method is that convex functions are often well approximated by
quadratic functions, especially close to their minimum.

Algorithm 3.20 (Newton’s method). Set the initial point ~x (0) to an arbitrary value in Rn. Update
by setting

~x (k+1) := ~x (k) −∇2f
(
~x (k)

)−1∇f (~x (k)
)

(99)

until a stopping criterion is met.

Figure 14 illustrates Newton’s method in a one-dimensional setting. When applied to a quadratic
function, the algorithm converges in one step: if we start at the origin it is equivalent to computing

23

Quadratic approximation

Figure 14: Newton’s method applied to a one-dimensional convex function. The quadratic approxima-
tions to the function at each iteration are depicted in red.

the closed-form solution for least squares derived in Theorem 2.1 of Lectures Notes 6. This is
illustrated in Figure 15, along with another example where the function is convex but not quadratic.
Newton’s method can provide significant acceleration for problems of moderate sizes where the
quadratic approximation is accurate, but often inverting the Hessian may be computationally
expensive.

Example 3.21 (Newton’s method for logistic regression). The following lemma derives the Hes-
sian of the logistic regression log-likelihood cost function (58).

Lemma 3.22. The Hessian of the function f in equation (58) equals

∇2f(~β) = −XTG(~β)X, (100)

where the rows of X ∈ Rn×p contain the feature vectors ~x (1), . . .~x (n) and G is a diagonal matrix
such that

G(~β)ii := g(〈~x (i), ~β〉)
(

1− g(〈~x (i), ~β〉)
)
, 1 ≤ i ≤ n. (101)

Proof. By the identities (60) and (61) and the chain rule we have

∂2f (~x)

∂~x[j]∂~x[l]
= −

n∑
i=1

g(〈~x (i), ~β〉)
(

1− g(〈~x (i), ~β〉)
)
~x(i)[j]~x(i)[l] (102)

for 1 ≤ j, l ≤ p. 4

Corollary 3.23. The logistic regression log-likelihood cost function (58) is concave.

24

Quadratic function Convex function

Figure 15: Newton’s method applied to a quadratic function (left) and to a convex function that is not
quadratic.

Proof. The Hessian is negative semidefinite, for any arbitrary ~β,~v ∈ Rp

~vT∇2f(~β)~v = −
n∑
i=1

G(~β)ii (X~v) [i]2 ≤ 0 (103)

since the entries of G(~β) are nonnegative. 4

The Newton updates are consequently of the form

~β(k+1) := ~β(k) −
(
XTG(~β(k))X

)−1
∇f(~β(k)). (104)

A potentially problematic feature of this application of Newton’s method is that the Hessian
XTG(~β)X may become ill conditioned if most of the examples are classified correctly, since in
that case the matrix G mostly contains zeros. Intuitively, in this case the cost function is very flat
in certain directions. 4

4 Proofs

4.1 Proof of Lemma 1.3

The proof for strict convexity is exactly the same, replacing the inequalities by strict inequalities.

f being convex implies that g~x,~y is convex for any ~x, ~y ∈ Rn

25

For any α, β, θ ∈ (0, 1)

g~x,~y (θα + (1− θ) β) = f ((θα + (1− θ) β) ~x+ (1− θα− (1− θ) β) ~y) (105)

= f (θ (α~x+ (1− α) ~y) + (1− θ) (β~x+ (1− β) ~y)) (106)

≤ θf (α~x+ (1− α) ~y) + (1− θ) f (β~x+ (1− β) ~y) by convexity of f

= θg~x,~y (α) + (1− θ) g~x,~y (β) . (107)

g~x,~y being convex for any ~x, ~y ∈ Rn implies that f is convex

For any α, β, θ ∈ (0, 1)

f (θ~x+ (1− θ) ~y) = g~x,~y (θ) (108)

≤ θg~x,~y (1) + (1− θ) g~x,~y (0) by convexity of g~x,~y (109)

= θf (~x) + (1− θ) f (~y) . (110)

4.2 Proof of Theorem 2.5

The proof for strict convexity is almost exactly the same; we omit the details.

The following lemma, proved in Section 4.3 below establishes that the result holds for univariate
functions

Lemma 4.1. A univariate differentiable function g : R → R is convex if and only if for all
x, y ∈ R

g (y) ≥ g′ (x) (y − x) + g (x) (111)

and strictly convex if and only if for all x, y ∈ R

g (y) > g′ (x) (y − x) + g (x) . (112)

To complete the proof we extend the result to the multivariable case using Lemma 1.3.

If f (~y) ≥ f (~x) +∇f (~x)T (~y − ~x) for any ~x, ~y ∈ Rn then f is convex

By Lemma 1.3 we just need to show that the univariate function g~a,~b defined by (4) is convex for

all ~a,~b ∈ Rn. Applying some basic multivariate calculus yields

g′
~a,~b

(α) = ∇f
(
α~a+ (1− α)~b

)T (
~a−~b

)
. (113)

Let α, β ∈ R. Setting ~x := α~a+ (1− α)~b and ~y := β ~a+ (1− β)~b we have

g~a,~b (β) = f (~y) (114)

≥ f (~x) +∇f (~x)T (y − ~x) (115)

= f
(
α~a+ (1− α)~b

)
+∇f

(
α~a+ (1− α)~b

)T (
~a−~b

)
(β − α) (116)

= g~a,~b (α) + g′
~a,~b

(α) (β − α) by (113), (117)

26

which establishes that g~a,~b is convex by Lemma 4.1 above.

If f is convex then f (~y) ≥ f (~x) +∇f (~x)T (~y − ~x) for any ~x, ~y ∈ Rn

By Lemma 1.3, g~x,~y is convex for any ~x, y ∈ Rn.

f (~y) = g~x,~y (1) (118)

≥ g~x,~y (0) + g′~x,~y (0) by convexity of g~x,~y and Lemma 4.1 (119)

= f (~x) +∇f (~x)T (y − ~x) by (113). (120)

4.3 Proof of Lemma 4.1

g being convex implies g (y) ≥ g′ (x) (y − x) + g(x) for all x, y ∈ R

If g is convex then for any x, y ∈ R and any 0 ≤ θ ≤ 1

θ (g (y)− g (x)) + g (x) ≥ g (x+ θ (y − x)) . (121)

Rearranging the terms we have

g (y) ≥ g (x+ θ (y − x))− g (x)

θ
+ g (x) . (122)

Setting h = θ (y − x), this implies

g (y) ≥ g (x+ h)− g (x)

h
(y − x) + g (x) . (123)

Taking the limit when h→ 0 yields

g (y) ≥ g′ (x) (y − x) + g(x). (124)

If g (y) ≥ g′ (x) (y − x) + g(x) for all x, y ∈ R then g is convex

Let z = θx+ (1− θ) y, then by if g (y) ≥ g′ (x) (y − x) + g(x)

g (x) ≥ g′ (z) (x− z) + g (z) (125)

= g′ (z) (1− θ) (x− y) + g (z) (126)

g (y) ≥ g′ (z) (y − z) + g (z) (127)

= g′ (z) θ (y − x) + g (z) (128)

Multiplying (126) by θ, then (128) by 1− θ and summing the inequalities, we obtain

θg (x) + (1− θ) g (y) ≥ g (θx+ (1− θ) y) . (129)

27

4.4 Proof of Lemma 2.17

The second derivative of g is nonnegative anywhere if and only if the first derivative is nonde-
creasing, because g′′ is the derivative of g′.

If g is convex g′ is nondecreasing

By Lemma 4.1, if the function is convex then for any x, y ∈ R such that y > x

g (x) ≥ g′ (y) (x− y) + g (y) , (130)

g (y) ≥ g′ (x) (y − x) + g (x) . (131)

Rearranging, we obtain

g′ (y) (y − x) ≥ g (y)− g (x) ≥ g′ (x) (y − x) . (132)

Since y − x > 0, we have g′ (y) ≥ g′ (x).

If g′ is nondecreasing, g is convex

For arbitrary x, y, θ ∈ R, such that y > x and 0 < θ < 1, let η = θy + (1− θ)x. Since y > η > x,
by the mean-value theorem there exist γ1 ∈ [x, η] and γ2 ∈ [η, y] such that

g′ (γ1) =
g (η)− g (x)

η − x
, (133)

g′ (γ2) =
g (y)− g (η)

y − η
. (134)

Since γ1 < γ2, if g′ is nondecreasing

g (y)− g (η)

y − η
≥ g (η)− g (x)

η − x
, (135)

which implies

η − x
y − x

g (y) +
y − η
y − x

g (x) ≥ g (η) . (136)

Recall that η = θy + (1− θ)x, so that θ = (η − x) / (y − x) and θ = (η − x) / (y − x) and
1− θ = (y − η) / (y − x). (136) is consequently equivalent to

θg (y) + (1− θ) g (x) ≥ g (θy + (1− θ)x) . (137)

4.5 Proof of Proposition 3.7

Consider the function

g (~x) :=
L

2
~xT~x− f (~x) . (138)

We first establish that g is convex using the following lemma, proved in Section 4.6 below.

28

Lemma 4.2 (Monotonicity of gradient). A differentiable function f : Rn → R is convex if and
only if

(∇f (~y)−∇f (~x))T (~y − ~x) ≥ 0. (139)

By the Cauchy-Schwarz inequality, Lipschitz continuity of the gradient of f implies

(∇f (~y)−∇f (~x))T (~y − ~x) ≤ L ||~y − ~x||22 , (140)

for any ~x, ~y ∈ Rn. This directly implies

(∇g (~y)−∇g (~x))T (~y − ~x) = (L~y − L~x+∇f (~x)−∇f (~y))T (~y − ~x) (141)

= L ||~y − ~x||22 − (∇f (~y)−∇f (~x))T (~y − ~x) (142)

≥ 0 (143)

and hence that g is convex. By the first-order condition for convexity,

L

2
~yT~y − f (~y) = g (~y) (144)

≥ g (~x) +∇g (~x)T (~y − ~x) (145)

=
L

2
~xT~x− f (~x) + (L~x−∇f (~x))T (~y − ~x) . (146)

Rearranging the inequality we conclude that

f (~y) ≤ f (~x) +∇f (~x)T (~y − ~x) +
L

2
||~y − ~x||22 . (147)

4.6 Proof of Lemma 4.2

Convexity implies (∇f (~y)−∇f (~x))T (~y − ~x) ≥ 0 for all ~x, ~y ∈ Rn

If f is convex, by the first-order condition for convexity

f (~y) ≥ f (~x) +∇f (~x)T (~y − ~x) , (148)

f (~x) ≥ f (~y) +∇f (~y)T (~x− ~y) , (149)

(150)

Adding the two inequalities directly implies the result.

(∇f (~y)−∇f (~x))T (~y − ~x) ≥ 0 for all ~x, ~y ∈ Rn implies convexity

Recall the univariate function ga,b : [0, 1]→ R defined by

ga,b (α) := f (αa+ (1− α) b) , (151)

for any a, b ∈ Rn. By multivariate calculus, g′a,b (α) = ∇f (α a+ (1− α) b)T (a− b). For any
α ∈ (0, 1) we have

g′a,b (α)− g′a,b (0) = (∇f (α a+ (1− α) b)−∇f (b))T (a− b) (152)

=
1

α
(∇f (α a+ (1− α) b)−∇f (b))T (α a+ (1− α) b− b) (153)

≥ 0 because (∇f (y)−∇f (x))T (y − x) ≥ 0 for any x, y. (154)

29

This allows us to prove that the first-order condition for convexity holds. For any ~x, ~y

f (~x) = g~x,~y (1) (155)

= g~x,~y (0) +

∫ 1

0

g′~x,~y (α) dα (156)

≥ g~x,~y (0) + g′~x,~y (0) (157)

= f (~y) +∇f (~y) (~x− ~y) . (158)

References

A very readable and exhaustive reference on convex optimization is Boyd and Vandenberghe’s
seminal book [2].

[1] L. Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pages 421–436.
Springer, 2012.

[2] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[3] S. Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and Trends in
Machine Learning, 8(3-4):231–357, 2015.

[4] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer Publishing
Company, Incorporated, 1 edition, 2014.

[5] J. R. Shewchuk et al. An introduction to the conjugate gradient method without the agonizing pain,
1994.

30

http://stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

	Convex functions
	Convexity
	Norms

	Differentiable convex functions
	First-order conditions
	Second-order conditions

	Minimizing differentiable convex functions
	Gradient descent
	Convergence of gradient descent
	Accelerated gradient descent
	Stochastic gradient descent
	Newton's method

	Proofs
	Proof of Lemma 1.3
	Proof of Theorem 2.5
	Proof of Lemma 4.1
	Proof of Lemma 2.17
	Proof of Proposition 3.7
	Proof of Lemma 4.2

