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ScienceDirect
Three years ago, we released the Omniglot dataset for one-

shot learning, along with five challenge tasks and a

computational model that addresses these tasks. The model

was not meant to be the final word on Omniglot; we hoped that

the community would build on our work and develop new

approaches. In the time since, we have been pleased to see

wide adoption of the dataset. There has been notable progress

on one-shot classification, but researchers have adopted new

splits and procedures that make the task easier. There has

been less progress on the other four tasks. We conclude that

recent approaches are still far from human-like concept

learning on Omniglot, a challenge that requires performing

many tasks with a single model.
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Introduction
Three years ago, we released the Omniglot dataset of

handwritten characters from 50 different alphabets [1��].
The dataset was developed to study how humans and

machines perform one-shot learning — the ability to

learn a new concept from just a single example. The

domain of handwritten characters provides a large set of

novel, high-dimensional concepts that people learn and

use in the real world. Characters are far more complex

than the low-dimensional artificial stimuli used in classic

psychological studies of concept learning [2,3], and they

are still simple and tractable enough to hope that

machines, in the near future, will see most of the structure

in the images that people do. For these reasons, Omniglot
www.sciencedirect.com 
is an ideal testbed for studying human and machine

learning, and it was released as a challenge to the cogni-

tive science, machine learning, and artificial intelligence

(AI) communities.

In this paper, we review the progress made since Omni-

glot’s release. Our review is organized through the lens of

the dataset itself, since datasets have been instrumental

in driving progress in AI. New larger datasets contributed

to the resurgence of interest in neural networks, such as

the ImageNet dataset for objection recognition that pro-

vides 1000 classes with about 1200 examples each [4,5]

and the Atari benchmark that typically provides 900 hours

of experience playing each game [6,7]. These datasets

opened important new lines of work, but they offer far

more experience than human learners require. People can

learn a new concept from just one or a handful of exam-

ples, and then use this concept for a range of tasks beyond

recognition (Figure 1). Similarly, people can learn a new

Atari game in minutes rather than hundreds of hours, and

then generalize to game variants beyond those that were

trained [8]. Given the wide gap between human and

machine learning and the trend toward unrealistically

large datasets, a new benchmark was needed to challenge

machines to learn concepts more like people do.

The Omniglot challenge is to build a single model that

can perform five concept learning tasks at a human level

(Figure 1). In the same paper, we introduced a framework

called Bayesian Program Learning (BPL) that represents

concepts as probabilistic programs and utilizes three

key ingredients — compositionality, causality, and learn-

ing to learn — to learn programs from just one or a few

examples [1��]. Programs allow concepts to be built

‘compositionally’ from simpler primitives, while captur-

ing real ‘causal’ structure about how the data was formed.

The model ‘learns to learn’ by using experience with

related concepts to accelerate the learning of new con-

cepts, through the formation of priors over programs and

by re-using sub-programs to build new concepts. Finally,

probabilistic modeling handles noise and facilitates crea-

tive generalizations. BPL produces human-like behavior

on all five tasks, and lesion analyses confirm that each of

the three ingredients contribute to the model’s success.

But we did not see our work as the final word on

Omniglot. We hoped that the machine learning, AI,

and cognitive science communities would build on our

work to develop more neurally grounded learning models

that address the Omniglot challenge. In fact, we antici-

pated that new models could meet the challenge by
Current Opinion in Behavioral Sciences 2019, 29:97–104
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Figure 1

The Omniglot challenge of performing five concept learning tasks at a human level. (a) Two trials of one-shot classification, where a single image

of a new character is presented (top) and the goal is to select another example of that character amongst other characters from the same

alphabet (in the grid below). In panels (b–e), human participants and Bayesian Program Learning (BPL) are compared on four tasks. (b) Nine

human drawings (top) are shown with the ground truth parses (human) and the best model parses (machine). (c) Humans and BPL were given an

image of a new character (top) and asked to produce new examples. (d) Humans and BPL were given a novel alphabet and asked to produce

new characters for that alphabet. (e) Humans and BPL produced new characters from scratch. The grids generated by BPL are (c) (by row) 1, 2;

(d) 2, 2; (e) 2, 2. Reprinted and modified from Lake et al. [1��].
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incorporating compositionality, causality, and learning to

learn.

We have been pleased to see that the Omniglot dataset

has been widely adopted and that the challenge has been

well-received by the community. There has been genu-

ine progress on one-shot classification, but it has been

difficult to gauge since researchers have adopted different

splits and training procedures that make the task easier.

The other four tasks have received less attention, and

critically, no new algorithm has attempted to perform all

of the tasks together. Human-level understanding

requires developing a single model that can do all of

these tasks, acquiring conceptual representations that

support fast and flexible, task-general learning. We con-

jectured that compositionality and causality are essential

to this capability [8] yet most new approaches aim to

‘learn from scratch,’ utilizing learning to learn in inge-

nious new ways while incorporating compositionality and

causality only to the extent that they can be learned from

images. People never learn anything from scratch in this

way, and thus the Omniglot challenge is not just to learn

from increasingly large amounts of background training

(e.g. 30 alphabets, or more with augmentation) and mini-

mal inductive biases, only to tackle one of many tasks.

Instead, the challenge is to learn from a small amount of

background training (e.g. 5 alphabets) and the kinds of

inductive biases people bring to the domain (whatever

one conjectures those biases are), with the aim of tackling

the full suite of tasks with a single algorithm. To facilitate

research in this direction, we are re-releasing the Omni-

glot dataset with the drawing data in a new format, and we

highlight two more human-like minimal splits containing

only five alphabets for learning to learn, which we think of

as more representative of human prior experience in

writing and drawing. We hope our renewed challenge

can drive the AI community towards more human-like

forms of learning, and can encourage the cognitive sci-

ence community to engage with AI in deeper ways.

One-shot classification
One-shot classification was evaluated in Lake et al. [1��]
through a series of 20-way within-alphabet classification

problems. Two classification trials are illustrated in

Figure 1a. A single image of a new character is presented,

and the goal is to select another example of that same

character from a set of 20 images produced by a typical

drawer of that alphabet. Human participants are skilled

one-shot classifiers, achieving an error rate of 4.5%,

although this is an upper bound since they responded

quickly and were not incentivized for performance. The

goal for computational models is to perform similarly or

better.

Models learn to learn from a set of 964 background

characters spanning 30 alphabets, including both images

and drawing demonstrations for learning general domain
www.sciencedirect.com 
knowledge. These characters and alphabets are not used

during the subsequent evaluation problems, which pro-

vide only images. BPL performs comparably to people,

achieving an error rate of 3.3% on one-shot classification

(Table 1 column 1). Lake et al. [1��] also trained a simple

convolutional neural network (ConvNet) to perform the

same task, achieving a one-shot error rate of 13.5% by

using the features learned on the background set through

964-way image classification. The most successful neural

network at the time was a deep Siamese ConvNet that

achieves an 8.0% error rate after training with substantial

data augmentation [9], which is still about twice as many

errors as people and BPL. As both ConvNets are discrim-

inative models, they were not applicable to the other tasks

beyond classification, an ability critical to how the Omni-

glot challenge was formulated.

In the time since Omniglot was released, the machine

learning community has embraced the one-shot classifi-

cation challenge. Table 1 shows a summary of notable

results. Among the most successful new approaches,

meta-learning algorithms can train discriminative neural

networks specifically for one-shot classification

[10,11�,12]. Rather than training on a single auxiliary

problem (e.g. 964-way classification), meta-learning net-

works utilize learning to learn by training directly on

many randomly generated one-shot classification pro-

blems (known as episodes) from the background set.

They do not incorporate compositional or causal structure

of how characters are formed, beyond what is learned

implicitly through tens of thousands of episodes of char-

acter discrimination. Unfortunately it has been difficult to

compare performance with the original results, since most

meta-learning algorithms were evaluated on alternative

variants of the classification challenge. Vinyals et al. [10]

introduced a one-shot classification task that requires

discriminating characters from different Omniglot alpha-

bets (between-alphabet classification), rather than the

more challenging task of discriminating characters from

within the same alphabet (within-alphabet classification;

Figure 1a). This setup also used a different split with

more background characters and applied class augmenta-

tion to further increase the number of background char-

acters four-fold, creating new classes by rotating existing

classes in increments of 90 degrees. With class augmen-

tation, the between-alphabets problem has effectively

4800 background characters (Table 1 column 4), and

meta-learning approaches have performed well (Table 1),

achieving 6.2% using matching networks [10], 4.0% using

prototypical networks [11�], and 4.2% using model-agnos-

tic meta-learning (MAML [12]).

To compare our results with these recent methods, we

retrained and evaluated a top-performing method, proto-

typical networks, on the original one-shot classification

task released with Omniglot. Note that for one-shot

classification, matching networks and prototypical
Current Opinion in Behavioral Sciences 2019, 29:97–104
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Table 1

One-shot classification error rate for both within-alphabet classification [1��] and between-alphabet classification [10], either with the

‘Original’ background set or with an ‘Augmented’ set that uses more alphabets (# alphabets) and character classes for learning to learn (#

classes). The best results for each problem formulation are bolded, and the results for ‘minimal’ setting are the average of two different

splits

Original Augmented

Within alphabet Within alphabet (minimal) Within alphabet Between alphabet

Background set

# alphabets 30 5 30 40

# classes 964 146 3856 4800

2015 results

Humans �4.5%

BPL 3.3% 4.2%

Simple ConvNet 13.5% 23.2%

Siamese Net 8.0%a

2016–2018 results

Prototypical Net 13.7% 30.1% 6.0% 4.0%

Matching Net 6.2%

MAML 4.2%

Graph Net 2.6%

ARC 1.5%a 2.5%a

RCN 7.3%

VHE 18.7% 4.8%

a Results used additional data augmentation beyond class expansion.
networks are equivalent up to the choice of distance

metric, and we modified the implementation from Snell

et al. [11�] for within-alphabet classification.a The neural

network performs with an error rate of 13.7% (Table 1

column 1), which is substantially worse than the 4.0%

error for the between-alphabet problem. Using class

augmentation to expand the number of characters within

each alphabet, the network achieves 6.0% error. Even

with these additional classes, the error rate is still sub-

stantially higher than BPL, which like children can learn

to learn from quite limited amounts of background expe-

rience [13], perhaps familiarity with only one or a few

alphabets with related drawing experience. BPL learns to

learn so efficiently because it makes strong causal and

compositional architectural assumptions, which are con-

troversial but so far necessary for training from limited

background experience (see critical commentaries from

Botvinick et al. [14], Davis and Marcus [15], Hansen et al.
[16] and response from Lake et al. [17]). To measure

performance in this more human-like setting, Omniglot

was released with two more challenging ‘minimal’ splits

containing only five background alphabets (Table 1 col-

umn 2), and BPL still performed well (4.3% and 4.0%
a The code’s default parameters use 60-way classification for training

and 20-way classification for evaluation. The default was used for the

augmented within-alphabet task, but 20-way training was used for the

original task since there are not enough characters within alphabets.

Background alphabets with less than the required n-way classes were

excluded during training. The number of training epochs was deter-

mined by the code’s default early stopping train/validation procedure,

except for the five alphabet case where it was trained for 200 fixed

epochs.
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errors). In contrast, the meta-learner shows substantial

degradation with minimal background training (30.8%

and 29.3% errors), showing that meta-learning currently

solves the problem in very different ways than people

and BPL.

There are two other noteworthy recent architectures for

constructing context-sensitive image representations.

Meta-learning can be combined with graph neural net-

works to learn embeddings that are sensitive to the other

items in the episode, achieving 2.6% error on the

between-alphabets classification task with four-fold class

augmentation as before (Graph Net [18]). Attentive

recurrent comparators (ARCs) use a learned attention

mechanism to make repeated targeted comparisons

between two images [19], achieving strong results

(2.5% error between-alphabets and 1.5% error within-

alphabets) while training with four-fold class augmenta-

tion and adding random image deformations such as

scaling, shearing, translations, etc. These more complex

architectures are especially at risk for overfitting, and it

has been noted that training with both class augmentation

and image deformations are needed for the ARC network

(P Shyam, personal communication, 2018). As researchers

interested in human-level learning in AI systems, we

want to develop algorithms that learn with minimal

training, given a rough estimate of what minimal means

for people. Training with random image deformations is

arguably a stand-in for invariances in the human visual

system, but class augmentation is more problematic. Most

people only experience one or a few alphabets through

reading and writing, which is far less than the 30 provided
www.sciencedirect.com
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in the Lake et al. [1��] background set. For the goal of

reaching human-level performance with human-like

training, there is a need to explore settings with both

few examples per class and few background classes for

learning to learn.

Another serious limitation of discriminative methods is

that they only perform the task they were trained for.

Human conceptual representations are far more flexible

and task-general, and thus discriminative learning is not a

plausible account, at least not on its own. Generative

models capture more causal structure about images and

can perform multiple tasks, and deep generative models

have recently been applied to one-shot classification,

including the neural statistician (12% error between-

alphabets [20]) and recursive cortical networks (RCNs),

a more explicitly compositional architecture (7.3% error

within-alphabets [21�]). The variational homoencoder

(VHE [22�]) performs well on the Vinyals et al. [10]

between-alphabet classification task with 4.8% error,

but performs much worse on the original within-alphabet

classification problem (18.7% error), which is a harder task

with less background training available. Deep generative

models have made important progress but they have not

solved the one-shot classification problem either; they
Figure 2

Generating new exemplars with deep neural architectures. The task is to ge

character (above each grid). (a) The sequential generative model (SG [28�]) 

in some cases, while showing too much variation in others (highlighted in re

new examples but has too little variation relative to human examples from O

freedom that people grasp in these concepts. Reprinted with permission.

www.sciencedirect.com 
have only the barest form of causality and do not under-

stand how real-world characters are generated, a point we

discuss further in the next section.

Generating new exemplars
The Omniglot challenge is about more than classification;

when a human learner acquires a new concept, the

representation endows a realm of capabilities beyond

mere recognition [23]. Lake et al. [1��] studied one-shot

exemplar generation — how people and models generate

new examples given just a single example of a new

concept. Human participants and computational models

were compared through visual Turing tests, in which

human judges attempt to determine which drawings were

produced by humans and which by machines (Figure 1c).

Models were evaluated using the identification (ID) level

of the judges, where ideal model performance was an ID

level of 50%. BPL can generate new examples that can

pass for human, achieving an average 52% ID level where

only 3 of 48 judges were reliably above chance.

There has been substantial interest in developing gener-

ative models on the Omniglot dataset, including new

neural network approaches that build on variational auto-

encoders, adversarial training, and reinforcement
nerate new examples (shown in grid) given an image of a new

and variational homoencoder (VHE [22�]) produce compelling examples

d). (b) The recursive cortical network (RCN) [21�] produces reasonable

mniglot, suggesting the model is not capturing all the degrees of

Current Opinion in Behavioral Sciences 2019, 29:97–104
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learning. Some models can generate high-quality uncon-

ditional samples from Omniglot, but it is unclear how

these approaches would produce new examples of a

particular concept [24–27]. Other generative models

have been applied to one-shot (or few-shot) learning

problems, examining only generative tasks [28�] or both

classification and exemplar generation [20,21�,22�].
These approaches generate compelling new examples

of a character in some cases, while in other cases they

produce examples that are not especially human-like. So

far, deep generative models tend to produce unarticu-

lated strokes (Figure 2a and b), samples with too much

variation (Figure 2a), and samples with too little variation

(Figure 2b). These machine-generated examples have

not been quantitatively compared to human generated

examples, but we are doubtful they would pass a visual

Turing test.

Deep generative architectures could perform in more

human-like ways by incorporating stronger forms of

compositionality and causality. Current neural network

models use only image data for background training,

unlike BPL which learns to learn from images and

drawing demonstrations. As a consequence, the net-

works learn to generate images in ways unrelated to

how the data was actually produced, although some

notable neural network models have taken more causal

approaches in the past [29]. In contrast, people have

rich causal and compositional knowledge of this and

many other domains in which they can rapidly learn

and use new concepts [30]. BPL has rich domain

knowledge too and does not try to learn everything

from scratch: some of these causal and compositional

components are built into the architecture, while other

components are learned by training on drawing demon-

strations. Several recent deep generative models

applied to Omniglot have taken initial steps toward

incorporating causal knowledge, including using a pen

or pen-like attentional window for generating charac-

ters [24,27]. Stronger forms of compositionality and

causality could be incorporated by training on the

Omniglot drawing demonstrations rather than just

the images. To encourage further explorations in this

direction, we are re-releasing the Omniglot drawing

demonstrations (trajectory data) in a more accessible

format.b The drawing demonstrations can be used in

other predictive tasks, such as predicting people’s

motor programs for producing novel letters. BPL draws

in realistic enough ways to confuse most judges in a

visual Turing test of this task (Figure 1b), although

there is room for improvement since the average ID

level was 59%. We believe that building generative

models with genuine causal and compositional compo-

nents, whether learned or built in, is key to solving the

five Omniglot tasks.
b https://github.com/brendenlake/omniglot.
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Generating new concepts
In addition to generating new examples, the Omniglot

challenge includes generating whole new concepts

(Figure 1d and e). To examine this productive capability,

human participants were shown a few characters from a

novel foreign alphabet, and they were asked to quickly

generate new characters that could plausibly belong to

that alphabet (Figure 1d). BPL performs this task by

placing a non-parametric prior on its programs, and judges

in a visual Turing test had only a 49% ID level in

discriminating human versus machine produced letters

[1��]. This ability has been explored in several deep

generative architectures but with limited success, often

producing blurry and unarticulated novel characters

[28�,22�]. This task remains wide open challenge for deep

neural networks.

The final task examines generating new concepts without

constraints (Figure 1e). This task has received more

attention and can be performed through unconditional

sampling from a generative model trained on Omniglot.

Many new approaches produce high-quality uncondi-

tional samples [24–27], although they have not been

evaluated for their generative creativity, as opposed to

merely copying characters in the training set. Nonethe-

less we believe this task is within reach of current neural

network approaches, and the greater challenge is devel-

oping new architectures than can perform all of the tasks

together.

Discussion
There are many promising new models that have

advanced the state-of-the-art in one-shot learning, yet

they are still far from solving the Omniglot challenge.

There has been evident progress on neural architectures

for one-shot classification and one-shot exemplar genera-

tion, but these algorithms do not yet solve the most

difficult versions of these problems. BPL, which incorpo-

rates more compositional and causal structure than sub-

sequent approaches, achieves a one-shot classification

error rate of 4.5% on the original task, while the best

neurally grounded architecture achieves 7.3% (Table 1).

On the same task with minimal background training, BPL

achieves 4.2% while the best neural network results are

23.2% errors. The more creative tasks can be evaluated

with visual Turing tests [1��], where ideal model perfor-

mance is a 50% ID level based on human judges. BPL

achieves an ID level of 52% on one-shot exemplar gen-

eration (and 55% with minimal background training), 59%

on parsing new examples, 49% on generating new con-

cepts from a type, and 51% on generating new concepts

without constraints. The Omniglot challenge is to achieve

similar success with a single model across all of these tasks

jointly.

Some of the most exciting advances in the last three years

have come from using learning to learn in innovative
www.sciencedirect.com
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ways. A similar sustained and creative focus on compo-

sitionality and causality will lead to substantial further

advances. We have yet to see deep learning approaches

that can achieve human-level performance without

explicitly making use of this structure, and we hope

researchers will take up the challenge of incorporating

compositionality and causality into more neurally

grounded architectures. This is a promising avenue for

addressing the Omniglot challenge and for building more

domain-general and more powerful human-like learning

algorithms [8].

Human concept learning is characterized by both broad

and deep expertise: broad in that people learn a wide

range of different types of concepts — letters, living

things, artifacts, abstract concepts, etc., and deep in that

people learn rich representations for individual concepts

that can be used in many different ways — for action,

imagination, and explanation (Figure 1). Both forms of

expertise are essential to human-level intelligence, yet

new algorithms usually aim for breadth at the expense of

depth, targeting a narrow task and measuring perfor-

mance across many datasets. As a representative case,

matching networks were applied to three different data-

sets but only to one task, which was one-shot classification

[10]. Deep conceptual representations remain elusive in

AI, even for simple concepts such as handwritten char-

acters; indeed Hofstadter [31] famously argued that learn-

ing to recognize the characters in all the ways that people

do contains most of the fundamental challenges of AI. As

Mitchell [32] put it recently, ‘artificial intelligence [has

hit] the barrier of meaning,’ in that machines do not

understand the world as people do.

Cognitive scientists can help break this barrier. They

have expertise in studying how much people know about

a domain, such as handwriting or drawing, and how richly

they know it. Cognitive scientists can lead expeditions

into new domains, which like Omniglot could be intro-

duced as new challenges for AI. As with the Omniglot

challenge, the goal would not be to tackle just one task

across many domains, or to tackle separate tasks with

separate models. Achieving human-level learning

requires tackling a range of tasks together by learning

deeper, more flexible, and more human-like conceptual

representations, such that one model can seamlessly

perform many different tasks.

Human-level understanding includes the five tasks dis-

cussed here and many more. These five representative

tasks are surely an important start, yet more tasks and

benchmarks would further accelerate progress — another

promising avenue for cognitive scientists and AI research-

ers to pursue together. Several novel and interesting

classification tasks with Omniglot have already been

contributed: Santoro et al. [33] and Rae et al. [34] studied

sequential one-shot classification where stimuli arrive
www.sciencedirect.com 
sequentially, and Woodward and Finn [35] studied an

active learning version of the same task. Other more

challenging versions of within-alphabet classification

should be studied too. We especially encourage new

Omniglot tasks that go beyond classification, and new

directions could include filling in occluded images,

understanding CAPTCHAs constructed with novel char-

acters, classifying new characters by alphabet, or con-

structing new characters from verbal descriptions. Each

new task offers an additional bridge between cognitive

science and AI, with potential for human behavior and

cognitive principles to inform the development of new

algorithms. We are excited to see what additional progress

the next three years will bring.
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