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Abstract
Bayesian inference is especially compelling for deep neural networks. The key
distinguishing property of a Bayesian approach is marginalization instead of
optimization, not the prior, or Bayes rule. Neural networks are typically un-
derspecified by the data, and can represent many different but high performing
models corresponding to different settings of parameters, which is exactly when
marginalization will make the biggest difference for accuracy and calibration.
Moreover, deep ensembles can be seen as approximate Bayesian marginalization.

In many situations, the predictive distribution we want to compute is given by

p(y|x,D) =
∫
p(y|x,w)p(w|D)dw . (1)

The outputs are y (e.g., class labels, regression values, . . . ), indexed by inputs x (e.g. images,
spatial locations, . . . ), the weights (or parameters) of the model f(x;w) are w, and D are the
data. Eq. (1) represents a Bayesian model average (BMA). Rather than bet everything on one
hypothesis — with a single setting of parameters w — we want to use every possible setting of
parameters, weighted by their posterior probabilities. This process is called marginalization
of the parameters w, since the predictive distribution of interest no longer conditions on
w. This is not a controversial equation, but a direct expression of the sum and product
rules of probability. The BMA represents epistemic uncertainty — that is, uncertainty over
which setting of weights (hypothesis) is correct, given limited data. Epistemic uncertainty
is sometimes referred to as model uncertainty, in contrast to aleatoric uncertainty coming
from noise in the measurement process. One can naturally visualize epistemic uncertainty in
regression, by looking at the spread of the predictive distribution as we move in x space. As
we move away from the data, there are many more functions that are consistent with our
observations, and so our epistemic uncertainty should grow.

In classical training, one typically finds the regularized maximum likelihood solution

ŵ = argmaxw log p(w|D) = argmaxw(log p(D|w) + log p(w) + constant). (2)

This procedure is sometimes called maximum a-posteriori (MAP) optimization, as it involves
maximizing a posterior. log p(D|w) is the log likelihood, formed by relating the function
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we want to learn f(x;w) to our observations. If we are performing classification with
a softmax link function, − log p(D|w) corresponds to the cross entropy loss. If we are
are performing regression with Gaussian noise, such that p(D|w) =

∏n
j=1 p(yj |w, xj) =∏n

j=1N (yj ; f(xi;w), σ
2), then − log p(D|w) is a scaled MSE loss. In this context, the prior

p(w) acts as a regularizer. If we choose a flat prior, which has no preference for any setting
of the parameters w (it does not assign any feasible setting any more prior density than
any other), then it will have no effect on the optimization solution. On the other hand, a
flat prior may have a major effect on marginalization. Indeed, even though MAP involves a
posterior and a prior, and an instantiation of Bayes rule, it is not at all Bayesian, since it is
performing optimization to bet everything on a single hypothesis f(x; ŵ).

We can view classical training as performing approximate Bayesian inference, using the
approximate posterior p(w|D) ≈ δ(w = ŵ), where δ is a Dirac delta function that is zero
everywhere except at ŵ. In this case, we recover the standard predictive distribution
p(y|x, ŵ). From this perspective, many alternatives, albeit imperfect, will be preferable —
including impoverished Gaussian posterior approximations for p(w|D), even if the posterior
or likelihood are actually highly non-Gaussian and multimodal.

The difference between a classical and Bayesian approach will depend on how sharply peaked
the posterior p(w|D) becomes. If the posterior is sharply peaked, there may be almost no
difference, since a point mass may then be a reasonable approximation of the posterior.
However, deep neural networks are typically very underspecified by the available data, and
will thus have diffuse likelihoods p(D|w). Not only are the likelihoods diffuse, but different
settings of the parameters correspond to a diverse variety of compelling explanations for the
data. Indeed, Garipov et al. (2018) shows that there are large valleys in the loss landscape of
neural networks, over which parameters incur very little loss, but give rise to high performing
functions which make meaningfully different predictions on test data. Zołna et al. (2019)
also demonstrates the variety of good solutions that can be expressed by a neural network
posterior. This is exactly the setting when we most want to perform a Bayesian model
average, which will lead to an ensemble containing many different but high performing
models, for better accuracy and better calibration than classical training.

The recent success of deep ensembles (Lakshminarayanan et al., 2017) is not discouraging, but
indeed strong motivation for following a Bayesian approach. Deep ensembles involves MAP
training of the same architecture many times starting from different random initializations,
to find different local optima. Thus using these models in an ensemble is an approximate
Bayesian model average, with weights that correspond to models with high likelihood and
diverse predictions. Instead of using a single point mass to approximate our posterior, as with
classical training, we are now using multiple point masses in good locations, enabling a better
approximation to the integral in Eq. (1) that we are trying to solve. The functional diversity
is important for a good approximation to the BMA integral, because we are summing
together terms of the form p(y|x,w); if two settings of the weights wi and wj each provide
high likelihood (and consequently high posterior mass), but give rise to similar models, then
they will be largely redundant in the model average, and the second setting of parameters
will not contribute much to the integral estimate.

While a recent report (Ovadia et al., 2019) shows that deep ensembles appear to outperform
some particular approaches to Bayesian neural networks, there are two key reasons behind
these results that are actually optimistic for Bayesian approaches. First, the deep ensembles
being used are finding many different basins of attraction, corresponding to diverse solutions,
which enables a better approximation to a Bayesian model average than the specific Bayesian
methods considered in Ovadia et al. (2019), which focus their modelling effort on a single
basin of attraction. The second is that the deep ensembles require retraining a network from
scratch many times, which incurs a great computational expense. If one were to control for
computation, the approaches which focus on a single basin may be preferred.
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There is an important distinction between a Bayesian model average and some approaches
to ensembling. The Bayesian model average assumes that one hypothesis (one setting of
the weights) is correct, and averages over models due to an inability to distinguish between
hypotheses given limited data (Minka, 2000). As we observe more data, the posterior collapses,
and the Bayesian model average converges to the maximum likelihood solution. If the true
explanation for the data is actually a combination of hypotheses, the Bayesian model average
may then perform worse as we observe more data. Some ensembling methods instead work by
enriching the hypothesis space, and thus do not collapse in this way. Deep ensembles, however,
are finding different MAP or maximum likelihood solutions, corresponding to different basins
of attraction, starting from different random initializations. Therefore the deep ensemble
will collapse when the posterior concentrates, as with a Bayesian model average. Since the
hypothesis space is highly expressive for a modern neural network, posterior collapse in many
cases is desirable.

Regarding priors, the prior that matters is the prior in function space, not parameter space.
In the case of a Gaussian process (e.g. Williams and Rasmussen, 2006), a vague prior would
be disastrous, as it is a prior directly in function space and would correspond to white
noise. However, when we combine a vague prior over parameters p(w) with a structured
function form f(x;w) such as a convolutional neural network (CNN), we induce a structured
prior distribution over functions p(f(x;w)). Indeed, the inductive biases and equivariance
constraints in such models is why they work well in classical settings. We can sample
from this induced prior over functions by first sampling parameters from p(w) and then
conditioning on these parameters in f(x;w) to form a sample from p(f(x;w)) (e.g., Wilson,
2014, Ch 2). Alternatively, we can use a neural network kernel with a Gaussian process, to
induce a structured distribution over functions (Wilson et al., 2016).

Bayesian or not, the prior, just like the functional form of a model, or the likelihood, will
certainly be imperfect, and making unassailable assumptions will be impossible. Attempting
to avoid an important part of the modelling process because one has to make assumptions,
however, will often be a worse alternative than an imperfect assumption. There are many
considerations one might have in selecting a prior. Sometimes a consideration is invariance
under reparametrization. Parametrization invariance is also a question in considering
regularizers, optimization procedures, model specification, etc., and is not specific to whether
or not one should follow a Bayesian approach. Nonetheless, I will make some brief additional
remarks on these questions.

If we truly have a vague prior over parameters, perhaps subject to some constraint for
normalization, then our posterior reflects essentially the same relative preferences between
models as our likelihood, for it is a likelihood scaled by a factor that does not depend on
w outside some basic constraints. In computing the integral for a Bayesian model average,
each setting of parameters is weighted by the quality of the associated function, as measured
by the likelihood. Thus the model average is happening in function space, and is invariant
to reparametrization. In the context of many standard architectural specifications, there are
also some additional benefits to using relatively broad zero-mean centred Gaussian priors,
which help provide smoothness in function space by bounding the norm of the weights. But
this smoothness is not a central reason to follow a Bayesian approach, as one could realize
similar advantages in performing MAP optimization. Bayesian methods are fundamentally
about marginalization as an alternative to optimization.

Moreover, vague priors over parameters are also often a reasonable description of our a priori
subjective beliefs. We want to use a given functional form, which is by no means vague, but
we often do not have any strong a priori preference for a setting of the parameters. It is
worth reiterating that a vague prior in parameter space combined with a highly structured
model such as a convolutional neural network does not imply a vague prior in function
space, which is also why classical training of neural networks provides good results. Indeed,
vague parameter priors are often preferable to entirely ignoring epistemic uncertainty, which

3



would be the standard alternative. In fact, ignoring epistemic uncertainty is a key reason
that standard neural network training is miscalibrated. By erroneously assuming that the
model (parameter setting we want to use) is completely determined by a finite dataset, the
predictive distribution becomes overconfident : for example, the highest softmax output of a
CNN that has undergone standard training (e.g. MAP optimization) will typically be much
higher than the probability of the corresponding class label (Guo et al., 2017). Importantly,
ignoring epistemic uncertainty also leads to worse accuracy in point predictions, because we
are now ignoring all the other compelling explanations for the data. While improvements
in calibration are an empirically recognized benefit of a Bayesian approach, the enormous
potential for gains in accuracy through Bayesian marginalization with neural networks is a
largely overlooked advantage.

There are also many examples where flat priors over parameters combined with marginaliza-
tion sidestep pathologies of maximum likelihood training. Priors without marginalization
are simply regularization, but Bayesian methods are not about regularization (MacKay,
2003, Ch 28). And there is a large body of work considering approximate Bayesian methods
with uninformative priors over parameters (but not functions) (e.g., Clyde and George, 2004;
Berger and Pericchi, 1996; O’Hagan, 1995; Berger et al., 2006; Gelman et al., 2013; MacKay,
2003, 1992a; Neal, 1996). This approach is well-motivated, marginalization is still compelling,
and the results are often better than regularized optimization.

By accounting for epistemic uncertainty through uninformative parameter (but not function)
priors, we, as a community, have developed Bayesian deep learning methods with improved
calibration, reliable predictive distributions, and improved accuracy (e.g., MacKay, 1992b;
Neal, 1996; Gal and Ghahramani, 2016; Saatci and Wilson, 2017; Kendall and Gal, 2017;
Ritter et al., 2018; Khan et al., 2018; Maddox et al., 2019; Sun et al., 2019; Izmailov et al.,
2019; Zhang et al., 2020). MacKay (1995) and Neal (1996) are particularly notable early
works considering Bayesian inference for neural networks. Seeger (2006) also provides a clear
tutorial on Bayesian methods in machine learning. Of course, we can always make better
assumptions — Bayesian or not. We should strive to build more interpretable parameter
priors. There are works that consider building more informative parameter priors for neural
networks by reasoning in function space (e.g., Sun et al., 2019; Yang et al., 2019; Louizos
et al., 2019; Hafner et al., 2018). And we should also build better posterior approximations.
Deep ensembles are a promising step in this direction.

But we should not undermine the progress we are making so far. Bayesian inference is
especially compelling for deep neural networks. Bayesian deep learning is gaining visibility
because we are making progress, with good and increasingly scalable practical results. We
should not discourage these efforts. If we are shying away from an approximate Bayesian
approach because of some challenge or imperfection, we should always ask, “what is the
alternative”? The alternative may indeed be a more impoverished representation of the
predictive distribution we want to compute.

There are certainly many challenges to computing the integral of Eq. (1) for modern neural
networks, including a posterior landscape which is difficult to navigate, and an enormously
high (e.g., 30 million) dimensional parameter space. Many of the above papers are working
towards addressing such challenges. We have been particularly working on recycling geometric
information in the SGD trajectory for scalable approximate Bayesian inference (Izmailov et al.,
2019; Maddox et al., 2019), exploiting large loss valleys (Garipov et al., 2018), and creating
subspaces of low dimensionality that capture much of the variability of the network (Izmailov
et al., 2019). Pradier et al. (2018) also considers different approaches to dimensionality
reduction, based on non-linear transformations. For exploring multiple distinct basins of
attraction, we have been developing cyclical stochastic MCMC approaches (Zhang et al.,
2020), which could be seen as sharing many of the advantages of deep ensembles, but with
an added attempt to also marginalize within basins of attraction.
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