THEORY OF PROBABILITY: HOMEWORK 7 SOLUTIONS

VLADIMIR KOBZAR

The following problems are from Ross, Chapter 3. Ross, Chapter 3, Problems 70 and Theoretical Exercises 1 and 8.

Problem (13). cf. Ross, Example 3.2g.

\[P(E_1) = \frac{\binom{4}{1} \binom{48}{12}}{\binom{52}{13}} \]
\[P(E_2|E_1) = \frac{\binom{3}{1} \binom{36}{12}}{\binom{39}{13}} \]
\[P(E_2|E_1 \cap E_2) = \frac{\binom{2}{1} \binom{24}{12}}{\binom{26}{13}} \]
\[P(E_3|E_1 \cap E_2 \cap E_3) = 1 \]
\[P(E_1 \cap E_2 \cap E_3 \cap E_4) = \frac{\binom{4}{1} \binom{48}{12}}{\binom{52}{13}} \cdot \frac{\binom{3}{1} \binom{36}{12}}{\binom{39}{13}} \cdot \frac{\binom{2}{1} \binom{24}{12}}{\binom{26}{13}} \approx .1055 \]

Problem (30). Let 1 be the event that the box containing 1 black and 1 white marble is chosen, 2 be the event that the box containing 2 black and 1 white marble is chosen, W be the event that a white ball is chosen from a randomly selected box and B be the event that a black ball is chosen from a randomly selected box. By the Bayes’s Formula

\[P(1) = 1/2; P(B) = P(B|1)P(1) + P(B|2)P(2) \]
\[= 1/2 \cdot 1/2 + 2/3 \cdot 1/2 = 7/12; \]
\[P(W) = 1 - P(B) = 5/12; P(1|W) = \frac{P(W|1)P(1)}{P(W)} = \frac{1/2 \cdot 1/2}{5/12} = 3/5; \]

Problem (49). (a) Let \(D \) = (a person tested has the disease) and \(E \) = (test is positive).

Date: July 22, 2016.
By Bayes’s, if the physician is 70 percent certain that a male has prostate cancer,

\[
P(D|E) = \frac{P(E|D)P(D)}{P(E|D)P(D) + P(E|D^c)P(D^c)}
\]

\[
= \frac{(.268)(.7)}{(.268)(.7) + (.135)(.3)} \approx .8224
\]

If the physician is 30 percent certain that a male has prostate cancer,

\[
P(D|E) = \frac{P(E|D)P(D)}{P(E|D)P(D) + P(E|D^c)P(D^c)}
\]

\[
= \frac{(.268)(.3)}{(.268)(.3) + (.135)(.7)} \approx .4597
\]

(b) If the physician is 70 percent certain that a male has prostate cancer,

\[
P(D|E^c) = \frac{P(E^c|D)P(D)}{P(E^c|D)P(D) + P(E^c|D^c)P(D^c)}
\]

\[
= \frac{(.732)(.7)}{(.732)(.7) + (.865)(.3)} \approx .6638
\]

If the physician is 30 percent certain that a male has prostate cancer,

\[
P(D|E^c) = \frac{P(E^c|D)P(D)}{P(E^c|D)P(D) + P(E^c|D^c)P(D^c)}
\]

\[
= \frac{(.732)(.3)}{(.732)(.3) + (.865)(.7)} \approx .2662
\]

Problem (56). Let \(E \) be the event that the \(n \)th coupon is new. \(F_i \) be the event that the \(n \)th coupon is a type \(i \) coupon (other coupons can be of any type). Note that \(E|F_i \) occurs if and only if all \(1, \ldots, n-1 \) are of type other than \(i \). Therefore \(P(E|F_i) = (1 - p_i)^{n-1} \) Since \(F_1, \ldots, F_m \) partition the space all possible collections of \(n \) coupons, by the law of total probability, we have

\[
P(E) = \sum_{i=1}^{m} P(E|F_i)P(F_i) = \sum_{i=1}^{m} (1 - p_i)^{n-1} p_i
\]

Problem (70). Let \(Q \) be the event that the queen has hemophilia, \(H_i \) be the event that the \(i \)th prince has hemophilia \((1 \leq i \leq 4) \). Note we need to assume a medical fact that if the queen is not a carrier than a prince will not have hemophilia.

Let \(Q' \) be the event that the queen is a carrier conditioned on her having one son without hemophilia, \(Q_i \) is the same for \(i \) sons.
\[P(Q_1) = P(Q|H_1^c) = \frac{P(H_1^c|Q)P(Q)}{P(H_1^c|Q)P(Q) + P(H_1^c|Q^c)P(Q^c)} \]
\[= \frac{(0.5)(0.5)}{(0.5)(0.5) + 1(0.5)} = 1/3 \]

\[P(Q_2) = P(Q_1|H_2^c) = \frac{P(H_2^c|Q_1)P(Q_1)}{P(H_2^c|Q_1)P(Q_1) + P(H_2^c|Q_1^c)P(Q_1^c)} \]
\[= \frac{(0.5)(1/3)}{(0.5)(1/3) + 1(2/3)} = 1/5 \]

\[P(Q_3) = P(Q_2|H_3^c) = \frac{P(H_3^c|Q_2)P(Q_2)}{P(H_3^c|Q_2)P(Q_2) + P(H_3^c|Q_2^c)P(Q_2^c)} \]
\[= \frac{(0.5)(1/5)}{(0.5)(1/5) + 1(4/5)} = 1/9 \]

\[P(H_4) = 1/2 \cdot 1/9 \]

Exercise (Theoretical 1). The left-hand side of the inequality can be expressed

\[P(AB|A) = \frac{P(AB)}{P(A)} \]

Similarly, for the right-hand side

\[P(AB|A \cup B) = \frac{P(AB(A \cup B))}{P(A \cup B)} = \frac{P(AB)}{P(A \cup B)} \]

Therefore, to prove the desired inequality, it suffices to prove \(P(A \cup B) \geq P(A) \), and that result follows from the monotonicity of \(P \).

Exercise (Theoretical 8). (a) Multiply both sides of each inequality by \(P(C) \) or \(P(C^c) \), and add them up.

\[P(A|C)P(C) > P(B|C)P(C); \]
\[P(A|C^c)P(C^c) > P(B|C^c)P(C^c); \]
\[P(A|C)P(C) + P(A|C^c)P(C^c) = P(A) \]
\[> P(B) = P(B|C)P(C) + P(B|C^c)P(C^c) \]

(b) Per hint, let \(A \) and \(B \) be the events that the first and the second die respectively land on 6. And \(C \) be the event that the sum of the
value of two dies is equal to 10. Then $C = \{(6, 4), (5, 5), (4, 6)\}$, and we see that

\[
\begin{align*}
P(A|C) &= 1/3 = 11/33 > P(A|C^c) = 5/33; \\
P(B|C) &= 11/33 > P(B|C^c) = 5/33; \\
P(A \cap B|C) &= 0 < (A \cap B|C^c) = 1/33;
\end{align*}
\]

References