MATH-GA 2150.001: Homework 2

1. Let \(k \) be an algebraically closed field. For each of the following plane curves over \(k \) write down three open affine charts and determine the intersection with the three coordinate lines (\(X = 0, Y = 0 \) or \(Z = 0 \)).

 (a) \(Y^2Z = X^3 + aXZ^2 + bZ^3 \);
 (b) \(X^2Y^2 + X^2Z^2 + Y^2Z^2 = 2XYZ(X + Y + Z) \);
 (c) \(XZ^3 = (X^2 + Z^2)Y^2 \).

2. (a) Let \(k \) be a field. Let \(P = (0 : 0 : \ldots : 0 : 1) \in \mathbb{P}_k^n \). Show that the set of lines \(\mathcal{L}_P \) in \(\mathbb{P}_k^n \) passing by \(P \) could be identified with a projective space \(\mathbb{P}_{n-1}^k \).

 (b) Let \(X \subset \mathbb{P}_k^n \) be a quadric: \(X \) is a projective variety defined by a homogeneous form \(q(x_0, \ldots, x_n) \) of degree 2. Assume that \(X \) passes by \(P \) and at least one of the derivatives \(\frac{\partial q}{\partial x_i}(P) \) is not zero (\(X \) is smooth at \(P \)).

 Let \(T_P \) be a hyperplane given by the equation \(\sum_{i=0}^n \frac{\partial q}{\partial x_i}(P)x_i = 0 \) (the tangent hyperplane to \(X \) at \(P \)).

 i. Show that the set of lines in \(\mathcal{L}_P \), that are not contained in \(T_P \), is a nonempty open \(U_P \subset \mathbb{P}_{n-1}^k \).

 ii. Show that a line \(L \in U_P \) intersects \(X \) in exactly two distinct points: \(P \) and a second point, that we call \(P_L \).

 iii. Deduce that the projection \(U \to X, L \mapsto P_L \) is bijective on its image.

3. Let \(k \) be an algebraically closed field.

 (a) Show that the set of lines in \(\mathbb{P}_k^2 \) form a projective space.

 (b) Let \(d \geq 2 \) be an integer. Consider the set of maps \(f : \mathbb{P}_k^1 \to \mathbb{P}_k^2 \) of degree \(d \). Recall that such a map is given by \((x : y) \mapsto (f_0(x, y) : f_1(x, y) : f_2(x, y)) \) where \(f_0, f_1, f_2 \in k[x, y] \) are homogeneous polynomials of degree \(d \) without a common factor.

 i. Show that the vector of coefficients of \(f_0, f_1 \) and \(f_2 \) gives a point in a projective space \(\mathbb{P}_k^N \), write explicitly \(N \) in terms of \(d \).

 ii. Show that the ideal \(I = (f_0, f_1, f_2) \) of \(k[x, y] \) contains some power of the maximal ideal \((x, y) \).

 iii. For \(m \geq 0 \) denote \(k[x, y]_m \) the set of homogeneous polynomials of degree \(m \) in \(k[x, y] \). Show that \(k[x, y]_m \) is a \(k \)-vector space and determine its dimension.

 iv. Consider a map

 \[
 S_m : (k[x, y]_m)^3 \to k[x, y]_{m+2}, (g_0, g_1, g_2) \mapsto \sum_{i=0}^2 f_ig_i.
 \]
Show that S_m is a linear map and that if S_m is not surjective then all $(m + d + 1)$-minors of some matrix, whose entries are linear combinations of the coefficients of f_0, f_1 and f_2, vanish.

v. Show that for some m the map S_m is surjective.

vi. Deduce that the set maps $f : \mathbb{P}^1_k \to \mathbb{P}^2_k$ of degree d corresponds to a Zariski open in the projective space \mathbb{P}^N_k corresponding to the coefficients of f.