Definition 1. The Trace of a matrix M is the sum of the diagonal entries.

Theorem 2. $\text{Tr}(AB) = \text{Tr}(BA)$. You have to keep them in order though, i.e. $\text{Tr}(ABC) \neq \text{Tr}(ACB)$

Proof. Write out the matrix product in terms of the entries to see they have the same diagonal sum. □

Theorem 3. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A. Then $\text{Tr}(A) = \sum_{i=1}^{n} \lambda_i$. In fact, for any polynomial $p(x)$, we have $\text{Tr}(p(A)) = \sum_{i=1}^{n} p(\lambda_i)$.

Proof. Bring matrix to Jordan form, $A = SJS^{-1}$ Then $\text{Tr}(A) = \text{Tr}(SJS^{-1}) = \text{Tr}(JS^{-1}S) = \text{Tr}(J)$. Same trick works for powers of A, and since Tr is linear, will work for polynomials. □

Definition 4. The Determinant of a matrix A is defined to be “the volume of the parallelepiped spanned by the columns of A”

Theorem 5. $\det([v_1 \ v_2 \ \ldots \ v_n])$ is the unique function that is multilinear in the columns v_1, \ldots, v_n with $\det(I_n) = 1$, which is antisymmetric in any of the columns $\det([v_1 \ v_2 \ \ldots \ v_n]) = -\det([v_2 \ v_1 \ \ldots \ v_n])$.

Theorem 6. $\det([v_1 \ v_2 \ \ldots \ v_n]) = 0$ if and only if $\{v_1, v_2, \ldots, v_n\}$ is dependent.

Remark 7. Multilinear means that if you fix all but one column, its linear in the last column e.g. $\det([\alpha v + w \ v_2 \ \ldots \ v_n]) = \alpha \det([v \ v_2 \ \ldots \ v_n]) + \det([w \ v_2 \ \ldots \ v_n])$. Below are two other useful formulas for \det:

Theorem 8. Permutation expansion $\det(M) = \det([M_1, \ldots, M_n]) = \sum_{\pi \in S_n} \text{sgn}(\pi) M_{\pi_1} M_{\pi_2} \cdots M_{\pi_n}$.

Theorem 9. Laplace expansion:

$$\det(M) = \det(M_{1, \ldots, M_{1j}e_1 + \cdots + M_{nj}e_n, \ldots, M_n})$$

$$= \sum_{i=1}^{n} M_{ij} \det(M_{1, \ldots, e_i, \ldots, M_n})$$

$$= \sum_{i=1}^{n} (-1)^{i+j} M_{ij} \det(M - \{i-th \ row \ and \ j-th \ column\})$$

Example 10. $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$

Definition 11. Inner product space: $<\cdot, \cdot>$ is sesquilinear. (That is, bilinear, except complex numbers come out of the second entry with a conjugate.)

Remark 12. You should think of this like a dot product. One thing you can do is see how projections onto a vector v works. Draw a picture:

$\text{Proj}_v(w) = \frac{v}{||v||} (w \cdot \frac{v}{||v||})$

Theorem 13. [Graham-Schmidt Process] Given $\{a_1, \ldots, a_n\}$ there is an orthonormal set $\{v_1, \ldots, v_n\}$ so that they have the same span.

Proof. First set $v_1 = \frac{a_1}{||a_1||}$. Then draw a picture to figure out that we should set $u_2 = a_2 - \langle a_2, v_1 \rangle v_1$, to make $\langle u_2, v_1 \rangle = 0$. Normalize u_2 to get v_2 i.e. $v_2 = \frac{u_2}{||u_2||}$. Keep doing this! i.e. $u_3 = a_3 - \langle a_3, v_1 \rangle v_1 - \langle a_3, v_2 \rangle v_2$, $v_3 = \frac{u_3}{||u_3||}$. You can check your work at every step e.g. verify that $\langle u_3, v_2 \rangle = \langle u_3, v_1 \rangle = 0$. □

Remark 14. Notice that at every step, $\text{span}\{v_1, \ldots, v_k\} = \text{span}\{a_1, \ldots, a_k\}$. In particular, $\langle v_k, a_j \rangle = 0$ for $j < k$ since $a_j \in \text{span}\{v_1, v_2, \ldots, v_j\}$ which is all orthogonal to v_k. If we keep track of the Gram-Schmidt process in a matrix, we will get:

$\begin{bmatrix} a_1 & a_2 & \ldots & a_n \\ 1 & 0 & \ldots & 0 \end{bmatrix} = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix} \begin{bmatrix} \langle v_1, a_1 \rangle & \langle v_1, a_2 \rangle & \cdots & \langle v_1, a_n \rangle \\ \langle v_2, a_2 \rangle & \langle v_2, a_3 \rangle & \cdots & \langle v_2, a_n \rangle \\ 0 & 0 & \cdots & \langle v_n, a_n \rangle \end{bmatrix}$

This is known as the QR DECOMPOSITION, every matrix can be written as a product of a unitary and upper triangular matrix. (Unitary just means the columns are orthonormal). To see this is true, you can multiply both sides by Proj_v:
Theorem 15. (Schur Decomposition) Every matrix is orthogonally upper triangularizable: There is an orthonormal basis \(\{v_1, \ldots, v_n\} \) so that in this basis \(A \) is upper triangular.

Proof. (By induction of the size of the matrix)

Base Case: It’s obvious for a 1x1 matrix.

Induction Step: Suppose it works for every \((n-1) \times (n-1)\) matrix. For a \(n \times n\) matrix \(A \) choose any eigenvector \(v \) of \(A \).

WOLOG \(||v|| = 1 \). (Exists since \(\det(A-\lambda I) \) has \(n \) roots!). Extend \(v \) to a basis for all of \(\mathbb{R}^n \) e.g. \(\{v, a_1, a_2, \ldots, a_{n-1}\} \) is a basis. Now apply the Graham to this basis to get an orthogonal basis \(\{v, u_1, \ldots, u_{n-1}\} \). In this basis the matrix for \(A \) is:

\[
[A]_{\{v, u_1, \ldots, u_{n-1}\}} = \begin{bmatrix}
\lambda & * & * & * \\
0 & & & \\
& \ddots & \ddots & \ddots \\
& & \dot{\ddots} & \ddots & \\
& & & \ddots & \ddots \\
0 & & & & \\
\end{bmatrix}
\]

Here \(\tilde{A} \) is the \((n-1) \times (n-1)\) matrix that you get, \(A : \text{span}\{u_1, \ldots, u_{n-1}\} \to \text{span}\{u_1, \ldots, u_{n-1}\} \) by \(\tilde{A}u_i = Au_i - v \langle Au_i, v \rangle \).

(This is the projection into \(\text{span}\{u_1, \ldots, u_{n-1}\} \)). By the induction hypothesis, there is an orthogonal basis \(\{w_1, \ldots, w_{n-1}\} \), so that \(\text{span}\{w_1, \ldots, w_{n-1}\} = \text{span}\{u_1, \ldots, u_n\} \) so that in this basis \(\tilde{A} \) is upper triangular. Notice now that \(\{v, w_1, \ldots, w_{n-1}\} \) is an orthonormal basis for \(\mathbb{R}^n \) and that in this basis, we have:

\[
[A] = \begin{bmatrix}
\lambda & * & * & * \\
0 & & & \\
& \ddots & \ddots & \ddots \\
& & \dot{\ddots} & \ddots & \\
& & & \ddots & \ddots \\
0 & & & & \\
\end{bmatrix}
\]

Which is upper triangular since \([\tilde{A}]_{\{w_1, \ldots, w_n\}} \) is upper triangular! \(\square \)

Definition 16. The adjoint of \(L \) is the matrix \(L^* \) so that \(\langle v, Lw \rangle = \langle L^* v, w \rangle \) for every \(v, w \).

Remark 17. You can figure out \(L^* \) by choosing an orthonormal basis \(\{e_1, \ldots, e_n\} \) and notice that \(\langle L^* e_i, e_j \rangle = \langle e_i, Le_j \rangle \). Hence \(L^* e_i = \sum_{j=1}^n e_j \langle e_i, Le_j \rangle = \sum_{j=1}^n \langle Le_j, e_i \rangle e_j \) which characterizes \(L^* \). Notice that in this basis, because of this, the matrix \(L^* \) is the conjugate transpose of the matrix for \(L \).

Definition 18. A matrix \(A \) is called \textbf{normal} if \(AA^* = A^*A \).

Theorem 19. \(A \) is normal if and only if \(A \) is orthogonally diagonalizable. That is, there is an orthogonal basis where \(A \) is diagonal.

Proof. If \(A \) is orthogonally diagonalizable, write \(A = UDU^* \) and do a computation to see \(AA^* = A^*A \).

If \(A \) is normal, use the Schur decomposition to write \(A = UTU^* \) where \(T \) is upper triangular and \(U \) is the change of basis matrix to the orthogonal basis. Notice \(AA^* = A^*A \) implies that \(T^* T = TT^* \). Now, since \(T \) is upper triangular, we have a nice expression for the diagonal terms:

\[
(T^* T)_{ii} = \sum_{k=1}^n |t_{ki}|^2 = \sum_{k=1}^n |t_{ki}|^2 \\
(TT^*)_{ii} = \sum_{k=1}^n |t_{ik}|^2 = \sum_{k=1}^n |t_{ki}|^2
\]

Since these are equal, we get a series of equations:

\[
|t_{11}|^2 = |t_{11}|^2 + |t_{12}|^2 + \ldots + |t_{1n}|^2 \\
|t_{12}|^2 + |t_{22}|^2 = |t_{22}|^2 + \ldots + |t_{n2}|^2 \\
\vdots
\]

The first line implies that \(|t_{ii}| = 0 \) for \(i = 2, \ldots, n \). Using that in the second line, the second line says that \(|t_{i2}| = 0 \) for \(i = 3 \ldots n \). Doing this for all the equations we see that \(T \) must be diagonal! So the Schur decomposition gives us exactly an orthogonal diagonalization. \(\square \)

Definition 20. A matrix \(A \) is called \textbf{Hermitian} if \(A^* = A \). Notice that every Hermitian matrix is normal, and you check all the eigenvalues are real since \(\lambda = \langle Av, v \rangle = \langle v, A^* v \rangle = \lambda \).