Problems

April 29, 2014

Problem. (Jan 10 #3) Describe all meromorphic functions \(f(z) \) in the complex plane with a simple pole at \(z = 1 \), a simple zero at \(z = -1 \) and for which:

\[|f(z)| \leq M |z|, |z| \geq 2 \]

for some \(M > 0 \)

Problem. (Jan 11 #3) The function \(f \) is analytic in the whole plane with positive imaginary part. What can it be? What if all you know is that the imaginary part of \(f \) tends to 0 at \(\infty \)?

Problem. (Jan 07 #4) What is the most general entire function that takes each complex value once and only once in \(\mathbb{C} \)? Give a complete proof for full marks.

Problem. (Sept 01 #4) Suppose that \(f(z) \) is entire and has \(n \) simple zeros at \(z_1, z_2, \ldots, z_n \).

Part 1 Suppose \(|f(z)| \leq k|z|^m + L \) for some \(m \). What is \(m \)?

Part 2 What is the most general such function \(f(z) \)?

Part 3 Suppose it is known that \(|f(z)| \leq A|z|^{3/2} \), what is \(f(z) \)?

Problem. (Jan 03 #4) Let \(f \) be an entire function and \(n \) a positive integer. Show that there is an entire function \(g \) such that \(g^n = f \) if and only if the orders of zeros of \(f \) are divisible by \(n \).

Problem. (Jan 11 #5) The picture shows what the function \(f : \mathbb{C} \to \mathbb{C} \cup \{\infty\} \) does to the plane. The values 0 at 0, 1 at \(\pm 1 \), and \(\infty \) at \(\pm i \) are specified. The signatures +/− indicate that the regions so marked are mapped 1 to 1 onto the upper/lower half plane. What is \(f \)? Explain why it cannot be otherwise.

Problem. (Jan 01 #1) Explain why the function \(\sqrt{1 - z^2} \) can be thought of as single valued in a plane cut along \(-1 \leq z \leq 1\). Then the integral:

\[I = \int \frac{dz}{\sqrt{1 - z^2}} \]

taken around the circle \(|z| = R > 1 \) makes sense. How is \(I \) related to \(\int_0^1 \frac{dx}{\sqrt{1 - x^2}} = \frac{\pi}{2} \)? How does \(I \) change as \(R \to \infty \)? Compute \(I \) by “pure thought” in light of these remarks.