Problem Set #7

In the following, \(\cong\) denotes a isomorphism of groups.

Exercise 1:
Let \(G\) be a finite abelian group with \(|G| = n\), we will see next week that \(x^n = e\). Let \(k > 0\) be an integer such that \(\gcd(k, n) = 1\). Prove that every \(g \in G\) can be written in the form \(g = x^k\) for some \(x \in G\).

Exercise 2:
In \(\text{GL}(n, \mathbb{C})\) and \(\text{SL}(n, \mathbb{C})\) define the subgroups of *scalar* matrices
\[
\mathbb{C}^*I = \{\lambda I : \lambda \neq 0 \text{ in } \mathbb{C}\}, \quad \Omega_n I = \{\lambda I : \lambda \in \Omega_n\}
\]
where \(\Omega_n\) are the complex \(n\)th roots of unity.

(a) Prove that \(\mathbb{C}^*I\) and \(\Omega_n I\) are normal in \(\text{GL}(n, \mathbb{C})\) and \(\text{SL}(n, \mathbb{C})\) respectively.

(b) Prove that \(\text{GL}(n, \mathbb{C})/\mathbb{C}^*I \cong \text{SL}(n, \mathbb{C})/\Omega_n I\)

Hint: Use the Second Isomorphism Theorem. If \(N = \mathbb{C}^*I\) show that
\[
N \cdot \text{SL}(n, \mathbb{C}) = \text{GL}(n, \mathbb{C})
\]

Exercise 3:
If \(H\) is a subgroup of finite index in a group \(G\), prove that there are only finitely many distinct “conjugate” subgroups \(aHa^{-1}\) for \(a \in G\).

Exercise 4:
Let \(G = (\mathbb{R}^*, \cdot)\) be the multiplicative group of nonzero real numbers, and let \(N\) be the subgroup consisting of the numbers \(\pm 1\). Let \(G' = (0, +\infty)\) equipped with multiplication as its group operation. Prove that \(N\) is normal in \(G\) and that \(G/N \cong G' \cong (\mathbb{R}, +)\).

Exercise 5:
If \(H\) is a subgroup of \(G\), its *normalizer* is \(N_G(H) = \{g : gHg^{-1} = H\}\). Prove that
(a) $N_G(H)$ is a subgroup.
(b) H is a normal subgroup in $N_G(H)$.
(c) If $H \subseteq K \subseteq G$ are subgroups such that H is a normal subgroup in K, prove that K is contained in the normalizer $N_C(H)$.
(d) A subgroup H is normal in G if $N_G(H) = G$.

Note: Part (c) shows that $N_G(H)$ is the largest subgroup of G in which H is normal.

Exercise 6:
If $x, y \in G$, products of the form $[x, y] = xyx^{-1}y^{-1}$ are called commutators and the subgroup they generate
\[[G, G] = \langle xyx^{-1}y^{-1} : x, y \in G \rangle \]
is the **commutator subgroup** of G. Prove that

(a) The subgroup $[G, G]$ is normal in G.
(b) The quotient $G/[G, G]$ is abelian.

Hint: In (a) recall that a subgroup H is normal if $gHg^{-1} = H$ for all $g \in G$. What do conjugations α_g do to the generators $[x, y]$ of the commutator subgroup?

Exercise 7:
Let G be the group of all real 2×2 matrices of the form
\[
\begin{pmatrix}
a & b \\
0 & d
\end{pmatrix}
such that \(ad \neq 0\).
\]
Show that the commutator subgroup $[G, G]$ defined in the previous exercise is precisely the subset of matrices in G with 1’s on the diagonal and an arbitrary entry in the upper right corner.

Exercise 8:
Consider the group $(\mathbb{Z}/12\mathbb{Z}, +)$.

(a) Identify the set of units U_{12}.
(b) What is the order of the multiplicative group (U_{12}, \cdot)? Is this abelian group **cyclic**?

Hint: What is the maximal order of any element $g \in U_{12}$?

Exercise 9:
Let G be any group and let $\text{Int}(G)$ be the set of conjugation operations $\alpha_g(x) = gxg^{-1}$ on G. Prove that
(a) Each map α_g is a homomorphism from $G \to G$.
(b) Each map α_g is a bijection, hence an automorphism in $\text{Aut}(G)$.
(c) $\alpha_e = \text{id}_G$, the identity map on G.

Exercise 10:
Show that the group $\text{Int}(G)$ of inner automorphisms is a normal subgroup in $\text{Aut}(G)$.

Note: The quotient $\text{Aut}(G)/\text{Int}(G)$ is regarded as the group of outer automorphisms $\text{Out}(G)$.

Exercise 11:
The permutation group $G = S_3$ on three objects has $6 = 3!$ elements

$$S_3 = \{e, (12), (23), (13), (123), (132)\}$$

Prove by direct calculation the center of S_3 is trivial (Note: you have proven that $G \cong \text{Int}(G)$).

Exercise 12:
For any group G prove that the commutator subgroup $[G, G] = \langle xyx^{-1}y^{-1} | x, y \in G \rangle$ is a characteristic subgroup that is for any $\sigma \in \text{Aut}(G)$, we have $\sigma([G, G]) = [G, G]$.

Hint: What does an automorphism do to the generators of $[G, G]$?

Note: This example shows that if G is abelian its automorphism gorup may nevertheless be noncommuative (while $\text{Int}(G)$ is trivial).

Exercise 13:
If G is a group, Z is its center, and the quotient group G/Z is cyclic, prove that G must be abelian.