Problem Set #2

1 Order on \(\mathbb{Z} \)

Exercise 1:
Prove that in any unitary commutative ordered ring \(R \), for any \(x, y \in R \):
1. \(x > y \Rightarrow x + c > y + c \), for all \(c \in R \).
2. \(x \neq 0 \Rightarrow x^2 > 0 \).
3. If \(a > 0 \) and \(b > 0 \) then \(a > b \Leftrightarrow a^2 > b^2 \). (Hint : \((b^2 - a^2) = (b - a)(b + a) \). Use Rule of Sings).

2 Equivalence relation on sets

Exercise 2:
For \(n > 1 \) define \(a \equiv b(\text{mod} \ n) \) to mean
\[b - a \text{ is an integer multiple of } n \]
Verify that this is an RST relation on \(X = \mathbb{Z} \).

3 Induction

Exercise 3:
Prove \(n^2 = (\text{sum of first } n \text{ odd integers}) = \sum_{k=1}^{n}(2k - 1) = 1 + 3 + \cdots + (2n - 1) \).

4 Integers

4.1 Absolute value

Exercise 4:
Prove
\[|x + y| \leq |x| + |y| \]
in any commutative ordered ring \(R \).
4.2 Divisibility in the system of integers

4.2.1 GCD

Exercise 5:
1. Prove \(\gcd(a, b) = \gcd(b, a) \) for \(a, b \neq 0 \).
2. If \(k \in \mathbb{Z} \) is fixed and \(a, b \neq 0 \) prove that \(\gcd(a, b) = \gcd(a + kb, b) \).
3. If \(a, b > 0 \) and \(a \) divides \(b \), show that \(\gcd(a, b) = a \).

Exercise 6:
Taking \(a = 955, b = 11422 \), use the extended GCD extended to find first \(\gcd(955, 11422) \) and find \(r, s \in \mathbb{Z} \) such that \(ra + sb = \gcd(955, 11422) \).

Exercise 7:
Generalize the definition of \(\gcd \) to define \(\gcd(a_1, \ldots, a_r) \), where \(a_i \) are nonzero. Make the obvious changes in the definition of \(\gcd(a, b) \) and
1. Prove \(c = \gcd(a_1, \ldots, a_r) \) exits by considering the set of integer linear combinations
 \[
 \Gamma = \mathbb{Z}a_1 + \cdots + \mathbb{Z}a_r = \{ \sum_{i=1}^{r} k_i a_i : k_i \in \mathbb{Z} \}
 \]
 Show that \(\Gamma \cap \mathbb{N} \neq \emptyset \) and verify that the smallest element \(c \in \Gamma \cap \mathbb{N} \) (which exists by the Minimum principle) has a properties required of \(\gcd(a_1, \ldots, a_r) \).
2. Show that \(\Gamma = \mathbb{Z}c \) all integer multiples of \(\gcd(a_1, \ldots, a_r) \).

Exercise 8:
If \(a, b \neq 0 \) and \(u_1, u_2 \) are units in \(\mathbb{Z} \), prove that \(c = \gcd(a, b) \) is equal to \(c' = \gcd(u_1 a_1, u_2 b) \).

4.2.2 Prime factorization

Exercise 9:
Prove that \(p|a \leftrightarrow p^2|a^2 \) for any prime \(p > 1 \).

Exercise 10:
If \(n = \prod_{i=1}^{r} q_i \) with each \(q_i > 1 \) prime (repeats allowed), and with \(r \geq 2 \), so \(n \) is not already a prime. Show \(\exists \) index \(i \) such that \(q_i \leq \sqrt{n} \).

Exercise 11:
If \(p > 1 \) a prime and \(n \neq 0 \) prove that \(\gcd(p, n) > 1 \leftrightarrow p \) divides \(n \).