Quiz #2

Justify all your answers completely (Or with a proof or with a counter example) unless mentioned differently.

Problems:

1. (10 points) Let G be an abelian group with identity e, and let H be the set of all elements $x \in G$ that satisfy the equation $x^3 = e$. Prove that H is a subgroup of G.

2. (20 points) Let $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, viewed as a 2×2 matrix with entries in $\mathbb{Z}/5\mathbb{Z}$.

 (a) Show that A belongs to $GL_2(\mathbb{Z}/5\mathbb{Z})$.

 (b) Does A belong to $SL_2(\mathbb{Z}/5\mathbb{Z})$? Why, or why not?

 (c) Find all the elements in the cyclic subgroup $\langle A \rangle$ generated by A.

 (d) Find the order of A in $GL_2(\mathbb{Z}/5\mathbb{Z})$.

3. (20 pts) Let $(\Omega_n = \{ z \in \mathbb{C} | z^n = 1 \}, \cdot)$ be the group of n^{th} roots of unity and $(\mathbb{Z}/n\mathbb{Z}, +)$ the group of the class of integers modulo n. Prove that the map

 $$\phi : (\mathbb{Z}/n\mathbb{Z}, +) \rightarrow (\Omega_n, \cdot)$$

 $$[k] \mapsto e^{2\pi ik/n}$$

 is

 (a) well defined,

 (b) an homomorphism.