The following equations are considered over the reals numbers. All the answers should be justified unless mentioned differently.

Problem 1 :
Assume that the matrix A is row equivalent to B. Find bases for $\text{Col}(A)$, $\text{Row}(A)$ and $\text{Nul}(A)$.

$$
A = \begin{pmatrix}
1 & 3 & 4 & -1 & 2 \\
2 & 6 & 6 & 0 & -3 \\
3 & 9 & 3 & 6 & -3 \\
3 & 9 & 0 & 9 & 0
\end{pmatrix}
$$

$$
B = \begin{pmatrix}
1 & 3 & 4 & -1 & 2 \\
0 & 0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0 & -5 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
$$

Solution : We have proven in class that the $\text{dim}(\text{Col}(A))$ is equal to the number of pivot position, thanks to the echelon form B of A we know that column 1, 3 and 5 are the 3 pivot columns thus $\text{dim}(\text{Col}(A)) = 3$ and we also know that the pivot columns of A form a basis of $\text{Col}(A)$, thus \{ $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 6 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 2 \\ -3 \\ -3 \end{pmatrix}$ \} form a basis for $\text{Col}(A)$.

We have proven that $\text{dim}(\text{Row}(A)) = \text{dim}(\text{Col}(A)) = 3$ and that a basis for $\text{Row}(A)$ is given by the now zero rows of an echelon form of A, thus

\{ $\begin{pmatrix} 1 & 3 & 4 & -1 & 2 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & -5 \end{pmatrix}$ \}

form a basis for $\text{Row}(A)$.

We know that if $A \sim B$ then $Ax = 0$ and $Bx = 0$ have same solution set, $Bx = 0$ is equivalent to

$$
\begin{cases}
x_1 + 3x_2 + 3x_4 = 0 \\
x_3 - x_4 = 0 \\
-5x_5 = 0
\end{cases}
$$

with $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix}$.

1
Thus we have two free \(x_2 \) and \(x_4 \), and we know that \(\text{dim}(\text{Nul}(A)) = 2 \). Also, the form for a general solution is

\[
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4 \\
 x_5 \\
\end{pmatrix} = \begin{pmatrix}
 -3x_2 - 3x_4 \\
 x_2 \\
 x_4 \\
 x_4 \\
 0 \\
\end{pmatrix} = x_2 \begin{pmatrix}
 -3 \\
 1 \\
 0 \\
 0 \\
 1 \\
\end{pmatrix} + x_4 \begin{pmatrix}
 0 \\
 0 \\
 0 \\
 1 \\
 0 \\
\end{pmatrix}
\]

with \(x_2, x_4 \) scalars.

Thus \[
\begin{pmatrix}
 -3 \\
 1 \\
 0 \\
 0 \\
 1 \\
\end{pmatrix}, \quad \begin{pmatrix}
 -3 \\
 0 \\
 1 \\
 1 \\
 0 \\
\end{pmatrix}
\]
form a basis for \(\text{Nul}(A) \).

Problem 2 :
Let \(u = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \). Find \(v \) in \(\mathbb{R}^3 \) such that

\[
\begin{pmatrix}
 1 & -3 & 4 \\
 2 & -6 & 8 \\
\end{pmatrix} = uv^T
\]

Solution : Note that the second row of the matrix is twice the first row. Thus, if \(v = (1, -3, 4) \), then

\[
\begin{pmatrix}
 1 & -3 & 4 \\
 2 & -6 & 8 \\
\end{pmatrix} = uv^T
\]

Problem 9 :
Find the change-of-coordinates matrix from \(B \) to \(C \) and the change-of-coordinates matrix from \(C \) to \(B \).

\[
b_1 = \begin{pmatrix} 7 \\ 5 \end{pmatrix}, \quad b_2 = \begin{pmatrix} -3 \\ -1 \end{pmatrix}, \quad c_1 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}, \quad c_2 = \begin{pmatrix} -2 \\ 2 \end{pmatrix}
\]

Solution : In order to find the change-of-coordinates matrix from \(B \) to \(C \), \(P_{C \rightarrow B} \), we know that

\[
P_{C \rightarrow B} = [[b_1]_C, [b_2]_C]
\]

By definition, we know that if \([b_1]_C = (x_1, x_2)\) and \([b_2]_C = (y_1, y_2)\) then we have \(b_1 = x_1c_1 + x_2c_2\) and \(b_2 = y_1c_1 + y_2c_2\). So we need to solve these systems in order to solve them simultaneously, we can augment the coefficient matrix by \(b_1\) and \(b_2\) and row reduce this augmented matrix

\[
[c_1, c_2, b_1, b_2] \sim \text{Row reduce} \sim \begin{pmatrix}
 1 & 0 & -3 & 1 \\
 0 & 1 & -5 & 2 \\
\end{pmatrix}
\]

Thus, thanks to the reduce form, we get easily that

\[
[b_1]_C = \begin{pmatrix} -3 \\ -5 \end{pmatrix}, \quad \text{and} \quad [b_2]_C = \begin{pmatrix} 1 \\ 2 \end{pmatrix}
\]
As a consequence,

\[P_{C \to \mathcal{B}} = \begin{pmatrix} -3 & 1 \\ -5 & 2 \end{pmatrix} \]

and we know that

\[P_{\mathcal{B} \to C} = P_{C \to \mathcal{B}}^{-1} = \text{(compute...)} = \begin{pmatrix} -2 & 1 \\ -5 & 3 \end{pmatrix} \]

Problem 3 :
In \(\mathbb{P}_2 \), find the change-of-coordinates matrix from the basis \(\mathcal{B} = \{1 - 2t + t^2, 3 - 5t + 4t^2, 2t + 3t^2\} \) to the standard basis \(\mathcal{C} = \{1, t, t^2\} \). Then find the \(\mathcal{B} \)-coordinate vector for \(-1 + 2t \).

Solution : The \(\mathcal{C} \) coordinate of a polynomial \(p \) are \([p]_C = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}\) with \(x_1, x_2, x_3 \) scalar such that \(p = x_11 + x_2t + x_3t^3 \).

Thus, the \(\mathcal{C} \) coordinate of \(b_1, b_2 \) and \(b_3 \) are

\[[b_1]_C = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, [b_2]_C = \begin{pmatrix} 3 \\ -5 \\ 4 \end{pmatrix}, [b_3]_C = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} \]

Thus the the change-of-coordinates matrix from the basis \(\mathcal{B} = \{1 - 2t + t^2, 3 - 5t + 4t^2, 2t + 3t^2\} \) to the standard basis \(\mathcal{C} = \{1, t, t^2\} \),

\[P_{C \to \mathcal{B}} = [[b_1]_C, [b_2]_C, [b_3]_C] = \begin{pmatrix} 1 & 3 & 0 \\ -2 & -5 & 2 \\ 1 & 4 & 3 \end{pmatrix} \]

Now let \(x = -1 + 2t \), by definition of \(P_{C \to \mathcal{B}} \) we have;

\[P_{C \to \mathcal{B}}[x]_\mathcal{B} = [x]_C = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} \]

This system may be solved by row reducing its augmented matrix

\[
\begin{pmatrix} 1 & 3 & 0 & -1 \\ -2 & -5 & 2 & 2 \\ 1 & 4 & 3 & 0 \end{pmatrix} \sim \text{Row reduce!} \sim \begin{pmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 \end{pmatrix}
\]

By the reduced form of the augmented matrix, one can find easily that the coordinate of \(x \)

\[[x]_\mathcal{B} = \begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix} \]
Problem 4:
Show that the given signal is a solution of the difference equation. Then find the general solution of that difference equation.

\[y_k = k^2, \quad y_{k+2} + 3y_{k+1} - 4y_k = 7 + 10k \]

Solution: To show that \(y_k = k^2 \) is a solution of \(y_{k+2} + 3y_{k+1} - 4y_k = 10k + 7 \), substitute \(y_k = k^2, \ y_{k+1} = (k + 1)^2 \) and \(y_{k+2} = (k + 2)^2 \):

\[
\begin{align*}
y_{k+2} + 3y_{k+1} & = (k + 2)^2 + 3(k + 1)^2 - 4k^2 \\
& = (k^2 + 4k + 4) + 3(k^2 + 2k + 1) - 4k^2 \\
& = k^2 + 4k + 4 + 3k^2 + 6k + 3 - 4k^2 \\
& = 10k + 7 \text{ for all } k
\end{align*}
\]

The auxiliary equation for the homogeneous difference equation \(y_{k+2} + 3y_{k+1} - 4y_k = 0 \) is \(r^2 + 3r - 4 = 0 \). By quadratic formula (or factoring), \(r = -4 \) or \(r = 1 \), so two solution of difference equation are \((-4)^k\) or \(1^k\). The signals \((-4)^k\) and \(1^k\) are linearly independent because neither is multiple of the other. The solution space is two-dimensional, so the two linearly independent signals \((-4)^k\) and \(1^k\) form a basis for the solution space of the homogeneous difference equation is thus \(c_1(-4)^k + c_21^k\). Adding the particular solution \(k^2\) of the nonhomogeneous differential equation, we find that the general solution of the difference equation \(y_{k+2} + 3y_{k+1} - 4y_k = 10k + 7 \) is \(y_k = k^2 + c_1(-4)^k + c_2\).

Problem 5:
Let \(y_k = k^2 \) and \(z_k = 2k|k| \). Are the signals \(\{y_k\} \) and \(\{z_k\} \) linearly independent? Evaluate the associated Casorati matrix \(C(k) \) for \(k = 0, k = -1 \) and \(k = -2 \), and discuss your results.

Solution: The Casorati matrix \(C(k) \) is:

\[
C(k) = \begin{pmatrix} y_k & z_k \\ y_{k+1} & z_{k+1} \end{pmatrix} = \begin{pmatrix} k^2 & 2k \cdot |k| \\ (k + 1)^2 & 2(k + 1)|k + 1| \end{pmatrix}
\]

is particular.

\[
C(0) = \begin{pmatrix} 0 & 0 \\ 1 & 2 \end{pmatrix}, \quad C(-1) = \begin{pmatrix} 1 & -2 \\ 0 & 0 \end{pmatrix} \text{ and } C(-2) = \begin{pmatrix} 4 & -8 \\ 1 & -2 \end{pmatrix}
\]

none of which are invertible. In fact, \(C(k) \) is not invertible for all \(k \), since

\[
det(C(k)) = 2k^2(k + 1)|k + 1| - 2(k + 1)^2k|k| - 2k(k + 1)(k + 1)|k + 1| - (k + 1)|k|
\]

If \(k = 0 \) or \(k = -1 \), \(det(C(k)) = 0 \). If \(k > 0 \), then \(k + 1 > 0 \) and \(k|k + 1| - (k + 1)|k| = k(k + 1) - (k + 1)k = 0 \), so \(det(C(k)) = 0 \). Thus, \(det(C(k)) = 0 \) for all \(k \), and \(C(k) \) is not invertible for all \(k \). Since \(C(k) \) is not invertible for all \(k \), it provides no information about whether the signals \(\{y_k\} \) and \(\{z_k\} \) are linearly dependent or linearly independent. In fact, neither signal is a multiple of the other, so the signals \(\{y_k\} \) and \(\{z_k\} \) are linearly independent.
Problem 6:
Write the difference equation as first-order systems, \(x_{k+1} = Ax_k\), for all \(k\).

\[y_{k+4} + 3y_{k+3} - 8y_{k+2} + 6y_{k+1} - 2y_k = 0\]

Solution: Let \(x_k = \left(\begin{array}{c} y_k \\ y_{k+1} \\ y_{k+2} \\ y_{k+3} \end{array} \right)\). Then

\[x_{k+1} = \left(\begin{array}{c} y_{k+1} \\ y_{k+2} \\ y_{k+3} \\ y_{k+4} \end{array} \right) = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & -6 & 8 & -3 \end{array} \right) \left(\begin{array}{c} y_k \\ y_{k+1} \\ y_{k+2} \\ y_{k+3} \end{array} \right) = Ax_k\]

Problem 7:
Find the steady-state vector.

\[\begin{pmatrix} 0.4 & 0.5 & 0.8 \\ 0 & 0.5 & 0.1 \\ 0.6 & 0 & 0.1 \end{pmatrix}\]

Solution: Finding the steady-vector is the same as finding \(x\) such that \(Px = x\) that is \(x\) such that \((P - I)x = 0\), where

\[P - I = \left(\begin{array}{ccc} -0.6 & 0.5 & 0.8 \\ 0 & -0.5 & 0.1 \\ 0.6 & 0 & -0.9 \end{array} \right)\]

Row reducing the augmented matrix for the homogeneous system \((P - I)x = 0\) gives

\[\left(\begin{array}{cccc} -0.6 & 0.5 & 0.8 & 0 \\ 0 & -0.5 & 0.1 & 0 \\ 0.6 & 0 & -0.9 & 0 \end{array} \right) = \left(\begin{array}{cccc} 1 & 0 & -3/2 & 0 \\ 0 & 1 & -1/5 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)\]

Thus, the system associated to the reduce form gives

\[x = \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right) = x_3 \left(\begin{array}{c} 3/2 \\ 1/5 \\ 1 \end{array} \right),\]

and one solution is \(\begin{pmatrix} 15 \\ 2 \\ 0 \end{pmatrix}\) sum to 27, multiply by \(1/27\) to obtain the steady-state vector

\[q = \left(\begin{array}{c} 15/27 \\ 2/27 \\ 10/27 \end{array} \right) = \left(\begin{array}{c} 0.556 \\ 0.74 \\ 0.370 \end{array} \right)\]