Problem Set #5

Let prove first a result extending the one of \(\mathbb{Z} \), if \(a = \prod_i p_i^{e_i} \) and \(b = \prod_i p_i^{f_i} \) where the \(p_i \)'s are maximal ideal, then

\[
\begin{align*}
a + b &= \prod_i p_i^{\min(e_i,f_i)} \\
a \cap b &= \prod_i p_i^{\max(e_i,f_i)}.
\end{align*}
\]

Note that \(a + b \) is the smallest ideal containing \(a \) and \(b \) and \(a \cap b \) is the smallest ideal contained in \(a \) and \(b \). The results follows then from the fact, that \(\prod_i p_i^{e_i} \subseteq \prod_i p_i^{f_i} \) if and only if \(e_i \geq f_i \), for all \(i \).

Exercise 5 p 23 of [N]:
The quotient ring \(\mathcal{O}/a \) of a Dedekind domain by an ideal \(a \neq 0 \) is a principal ideal domain.

Solution:
By Chinese remainder theorem, it is enough to prove the result for \(a \) of the form \(p^n \) where \(p \) is a prime ideal. The ideal of \(\mathcal{O}/a \) are in bijection with the ideals of \(\mathcal{O} \) dividing \(p^n \), that is \(p^i \) for \(i = 0, \ldots, n \). So the proper ideal of \(\mathcal{O}/a \) are exactly \(p^i / p^n \), \(\ldots \), \(p^i / p^n \). Let now \(\pi \in p \setminus p^2 \). Then, \(p^\mu = (\pi^\mu) + p^n \) for any \(\mu = \{1, \ldots, n\} \), since they have the same prime factorization (see above for prime factorization of the sum). So, that we have the result.

Exercise 6 p 23 of [N]
Every ideal of a Dedekind domain can be generated by two elements.

Solution:
Let \(a \) be a nonzero ideal of a Dedekind domain \(\mathcal{O} \). Then, \(\mathcal{O}/a \) is a PID, in particular, for \(a \neq 0 \) in \(\mathcal{O} \) we have that \((a)/a \) is principal so that there is \(b \in \mathcal{O} \) such that \((a)/a = (b) \) so that \((a) + (b) = a \).

Direct proof: Let \(a = \prod_i p_i^{f_i} \) as a finite product and choose \(a \in A \) with \(v_{p_i}(a) = f_i \), so that \((a) = I \prod_i q_i^{e_i} \), also a finite product where the \(q_i \) are different from all \(p_i \). Choose \(b \in A \) with \(v_{p_i}(b) = f_i + 1 \) and \(v_{q_i} = 0 \) (always possible by chinese remainder theorem). Then, \(I = (a) + (b) \) (see above for prime factorization of the sum).

Exercise 3 p 28 of [N] (Minkowski’s Theorem on Linear forms).
Let

\[
L_i(x_1, \ldots, x_n) = \sum_{j=1}^{n} a_{i,j}x_j, \quad i = 1, \ldots, n
\]
be a real form such that $\det(a_{i,j})$, and let $c_1, ..., c_n$ be positive real number such that $c_1, ..., c_n > |\det(a_{i,j})|$. Show that there exist integers $m_1, ..., m_n \in \mathbb{Z}$ such that

$$|L_i(m_1, ..., m_n)| < c_i, \ i = 1, ..., n$$

Solution:
Let $\mathcal{C} = \{x \in \mathbb{R}^n : |\sum a_{i,j}x_j| < c_j, \ 1 \leq i \leq n\}$. Note that $|\sum a_{i,j}x_j| < c_j, \ 1 \leq i \leq n$ is equivalent to $Ax = c$ where $x = (x_1, ..., x_n)^t$ and $c = (c_1, ..., c_n)^t$. Consider the lattice $AZ^n = a_1\mathbb{Z} + ... + a_n\mathbb{Z}$ where the a's are the columns of A linearly independent since $\det(A) \neq 0$. Then $\det(AZ^n) = |\det(A)|$, so that $\text{vol}(\mathcal{C}) = (2^n c_1 ... c_n)/|\det(A)|$. Now, consider the lattice $\Gamma = Z^n$, then $2^n\text{vol}(\Gamma) = 2^n < \text{vol}(\mathcal{C})$ and by Minkowski’s lattice point theorem, there is $x \in \mathbb{Z}^n$ nonzero with $x \in \mathcal{C}$.