Problem Set #2

Due monday 16 September in Class

We recall the following important results good to know:

Let \(R \) be a GCD ring, and \(f(X) \in R[X] \). Then the content of \(f \), \(\text{cont}(f(X)) \) is the greatest common divisor of the coefficients of \(f(X) \).

Lemma 1: If \(\text{cont}(F(X)) = \text{cont}(G(X)) = 1 \), \(F(X), G(X) \in R[X] \), then

\[
\text{cont}(F(X)G(X)) = 1.
\]

More generally, for \(f(X), g(X) \in R[X] \), \(\text{cont}(f(X)g(X)) = \text{cont}(f(X))\text{cont}(g(X)) \).

Proof of Lemma 1: Suppose irreducible \(p \in R \) divides all coefficients of \(F(X)G(X) \). Then \(F(X)G(X) = 0 \) in \((R/p)[X] \), wish is an integral domain. Thus \(p \) either divides all coefficients of \(F(X) \) or \(p \) divides all coefficients of \(G(X) \), since one of \(F(X), G(X) \) must be 0 in \((R/p)[X] \). But this contradicts the assumption \(\text{cont}(F) = \text{cont}(G) = 1 \).

In the general case, write \(f = dF \), \(g = d'G \), where \(\text{cont}(F) = \text{cont}(G) = 1 \). Then \(fg = dd'FG \), so, by the first part of the Lemma, \(\text{cont}(f(X)g(X)) = \text{cont}(f(X))\text{cont}(g(X)) \).

Lemma 2 (Gauss): Let \(K \) be the field of fractions of \(R \). If \(P(X) \in R[X] \) factors in \(K[X] \) then \(P(X) \) factors in \(R[X] \) with factors of the same degrees as the \(K[X] \) factors. In particular if \(P(X) \in R[X] \) is irreducible if and only if \(P(X) \) is also irreducible in \(K[X] \).

Proof of Lemma 2: Every element of \(K[X] \) can be written \(A(X)/a \), where \(A(X) \in R[X] \) and \(a \in R \). Suppose in \(K[X] \), we have \(P(X) = (A(X)/a)(B(X)/b) \), with \(a, b \in R \) and \(A(X), B(X) \in R[X] \). Then \(abP(X) = A(X)B(X) \in R[X] \). Consider an irreducible factor \(p \) of \(ab \) in \(R \). Then \(A(X)B(X) = 0 \) in \((R/p)[X] \). Thus \(p \) either divides all coefficients of \(A(X) \) or \(p \) divides all coefficients of \(B(X) \). We can then cancel a factor \(p \) in the \(R[X] \) equation \(abP(X) = A(X)B(X) \), without leaving \(R[X] \). By induction on the number of prime factors of \(ab \) in \(R \), conclude \(P(X) = A'(X)B'(X) \in R[X] \), where \(\text{deg}(A'(X)) = \text{deg}(A(X)) \) and \(\text{deg}(B'(X)) = \text{deg}(B'(X)) \).

Theorem 1: \(R \) is a UFD then \(R \) is a UFD. In particular, by induction \(R[X_1, ..., X_n] \).

Proof of Theorem 1: First, suppose \(f(X) = a_0 + a_1X + a_2X^2 + ... + a_nX^n \), for
In the polynomial ring

Exercise 3 p 15 [N]

We give different approaches to prove that

Solution:

We give different approaches to prove that \(p \) is a prime ideal:

1. **To prove that the polynomial**
 \(f(X) = X^2 - Y^3 \) **is irreducible in** \(\mathbb{Q}[X,Y] \), **it suffices to prove that it is irreducible in** \(\mathbb{Q}(Y)[X] \). This is clear because being a polynomial of degree 2, it has no root in \(\mathbb{Q}(Y) \).

2. **We can also prove that we have an isomorphism**

\[
\mathbb{Q}[X,Y]/(X^2 - Y^3) \cong \mathbb{Q}[t^2, t^3]
\]

and conclude, since \(\mathbb{Q}[T^2, T^3] \) being an integral domain implies \((X^2 - Y^3) \) will be a prime ideal.

For this, consider the morphism:

\[
\phi : \mathbb{Q}[X,Y] \rightarrow \mathbb{Q}[T^2, T^3]
\]

\[
X \mapsto T^3
\]

\[
Y \mapsto T^2
\]

It is clearly a surjective morphism and \((X^2 - Y^3) \subseteq \ker(\phi) \).

Take an element \(f(X,Y) \in \ker(\phi) \), i.e. as a polynomial in variable \(X \) and
coefficients coming from \(k[Y] \). If you divide \(f(X,Y) \) by \((X^2 - Y^3) \), we will get

\[
f(X,Y) = g(X,Y)(X^3 - Y^2) + r(X,Y)
\]

where \(r(X,Y) \in k[Y][X] \) and degree of \(r(X,Y) \) is less than two. But then \(f(T^3, T^2) = 0 \) implies \(r(T^3, T^2) = 0 \). But if \(r(X,Y) \) is not zero, \(r(T^3, T^2) \) cannot be zero because \(r(X,Y) \) is a polynomial of degree less two in variable \(X \) with coefficients in \(K[Y] \). So that \(r(T^3, T^2) = 0 \) and \(f(X,Y) \in \text{ker}(\phi) \).

Note that we could also have just argued by contradiction, supposing that \(X^2 - Y^3 \) can be factorized and it will be the factorization in \(K(X)[Y] \) and argue on the degree and the form of the possible polynomials.

As a consequence it is an integral domain but not integrally closed \(t = \bar{x}/\bar{y} \) is in the fraction field and integral (satisfies \(z^2 - t^2 = 0 \) in \(\mathbb{C}[t^2, t^3] \)) but not in \(\mathbb{C}[t] \).

Exercise 4 p 15 [N]

Let \(D \) be a square free integer \(\neq 0,1 \) and \(d \) the discriminant of the quadratic number field \(K = \mathbb{Q}[\sqrt{D}] \). Show that

\[
d = D \text{ and } \{1, (1 + \sqrt{D})/2\} \text{ is an integral basis of } K \quad \text{if } D \equiv 1 \text{ mod } 4 \\
d = 4D \text{ and } \{1, \sqrt{D}\} \text{ is an integral basis of } K \quad \text{if } D \equiv 2 \text{ or } 3 \text{ mod } 4
\]

and that \(\{1, (d + \sqrt{d})/2\} \) is an integral basis of \(K \) in both cases.

Solution:

Let \(\alpha \in K, \ \alpha = \frac{a+b\sqrt{D}}{c} \) with \(\gcd(a, b, c) = 1 \). Claim that \(\alpha \in \mathcal{O}_K \) if and only if

\[
(t - \frac{a + b\sqrt{D}}{c}) \in \mathbb{Z}[t]
\]

So if and only if

1. \(\frac{2a}{c} \in \mathbb{Z} \), and

2. \(\frac{a^2 - b^2D}{c^2} \in \mathbb{Z} \)

Let \(q = \gcd(a,c) \). From (2), \(q^2|a^2 - b^2D \). But \(q^2|a^2 \) and \(D \) is square free, so \(q|b \). But \(\gcd(a,b,c) = 1 \) so \(q = 1 \). From (1), then \(c = 1 \) or \(2 \). If \(c = 1 \) then \(\alpha \in \mathcal{O}_K \), anyway. If \(c = 2 \) then \(a^2 - b^2d \equiv 0 \) mod 4, by (2). But \(a \) is odd as \(q = 1 \) and so \(b \) must be odd too, whence \(a^2 \equiv b^2 \equiv 1 \) mod 4. Hence, \(1 - d \equiv 0 \) mod 4.

If \(D \equiv 1 \) mod 4 then \(d = \left(\det \left(\begin{array}{cc} 1 & 1 \\ 1 - \sqrt{D}/2 & 1 + \sqrt{D}/2 \end{array} \right) \right)^2 = D \)

If \(D \equiv 2 \) or \(3 \) mod 4 then \(d = \left(\det \left(\begin{array}{cc} 1 & 1 \\ \sqrt{D} & -\sqrt{D} \end{array} \right) \right)^2 = 4D \)
Then,

If $D \equiv 1 \pmod{4}$ then $(d + \sqrt{d})/2 = (D + \sqrt{D})/2 \in O_K$

If $D \equiv 2$ or $3 \pmod{4}$ then $(d + \sqrt{d})/2 = 2D + \sqrt{D} \in O_K$

So that, in both cases, $\{1, (d + \sqrt{d})/2\}$ is an integral basis of K.

Exercise 5 p 15 [N]

Show that $\{1, 3\sqrt{2}, 3\sqrt{2^2}\}$ is an integral basis of $\mathbb{Q}(3\sqrt{2})$.

Solution:

Let $K = \mathbb{Q}(3\sqrt{2})$. We can calculate $d = \text{disc}(1, 3\sqrt{2}, 3\sqrt{2^2})$ using the formula for $\theta = 3\sqrt{2}$,

$$\text{disc}(1, \theta, \theta^2) = ((\theta_1 - \theta_2)(\theta_1 - \theta_3)(\theta_2 - \theta_3))^2$$

where $\theta_1 = \theta, \theta_2 = e^{\frac{2\pi i}{3}}\theta, \theta_2 = e^{\frac{4\pi i}{3}}\theta$, the image of θ by the 3 \mathbb{Q}-embedding $\sigma_1 = \text{Id}, \sigma_2 : \theta \mapsto e^{\frac{2\pi i}{3}}\theta$ and $\sigma_3 : \theta \mapsto e^{\frac{4\pi i}{3}}\theta$. Then

$$d = 4 \left(1 - e^{\frac{2\pi i}{3}}\right)^2 \left(e^{\frac{2\pi i}{3}} - e^{\frac{4\pi i}{3}}\right)^2 \left(1 - e^{\frac{4\pi i}{3}}\right)^2 = 108$$

Hence we know that

$$d = \left[O_K : \mathbb{Z} + \mathbb{Z}^3\sqrt{2} + \mathbb{Z}^3\sqrt{4}\right]^2 \text{disc}(O_K) = 108 = 2^23^3.$$

The possible values for $i = \left[O_K : \mathbb{Z} + \mathbb{Z}^3\sqrt{2} + \mathbb{Z}^3\sqrt{4}\right]$ are the numbers whose squares divide 108, namely 1, 2, 3, and 6. In particular, in each cases, $i|6$. So that

$$iO_K \subseteq \mathbb{Z} + \mathbb{Z}^3\sqrt{2} + \mathbb{Z}^3\sqrt{4}$$

So that if $\alpha = a + b\sqrt{2} + c\sqrt{2} (a, b, c \in \mathbb{Q})$ is integral over \mathbb{Z}, then the coefficients a, b, and c must have denominator dividing 6 (when the fractions are reduced). Moreover, a product of the denominators must also divide 6. Consider the minimal polynomial of α

$$f(x) = \prod_{i=1}^{3}(x - \sigma_i(\alpha)) = x^3 - 3ax^2 + (3a^2 - 6bc)x + (-a^3 - 2b^3 + 6abc - 4c^3).$$

The coefficients of $f(x)$ must be in \mathbb{Z}. The element a cannot have a 2, 3, or 6 in its denominator because otherwise the coefficients of x^2 and x in $f(x)$ would not be integers, as a consequence a is an integer. Similarly, b and c must be integers so that the coefficient of x and the constant term will be integers. Therefore, $\left[O_K : \mathbb{Z} + \mathbb{Z}^3\sqrt{2} + \mathbb{Z}^3\sqrt{4}\right] = 1$, and we have equality $O_K = \mathbb{Z} + \mathbb{Z}^3\sqrt{2} + \mathbb{Z}^3\sqrt{4}$.