Recall that if $f(x) \in \mathbb{Z}[x]$ is a non-constant polynomial. Let $P_f = \{ p \text{ prime} | \exists n \in \mathbb{N} \text{ such that } p | f(n) \neq 0 \}$. Then P_f is infinite. Indeed, assume the contrary and let $p_1, ..., p_k$ be a enumeration of P_f. Choose an integer s so that $f(s) = t \neq 0$; such an s exists as f is non-constant. Now note that

$$f(s + tp_1...p_kw) = f(s) + tp_1...p_kg(x) = t(1 + p_1...p_kg(x))$$

for some $g(x) \in \mathbb{Z}[x]$; in particular $f(s + tp_1...p_kx)$ is divisible by t for any $x \in \mathbb{Z}$. Now consider $h(x) := \frac{1}{t}f(s + tp_1...p_kx) = 1 + p_1...p_kx = 1 + p_1...p_kg(x)$. But h is non-constant, so we may choose $u \in \mathbb{Z}$ with $h(u) \neq 1$. So $h(u) \equiv 1 \text{ mod } p_1...p_k$, and thus $h(u)$ is divisible by some prime $p \neq p_i$ for $i = 1, ..., k$. But then $p \in P_f$, which is a contradiction.

Exercise 1 p 64 (Dirichlet’s Prime Number Theorem)

For every natural number n there are infinitely many prime numbers $p \equiv 1 \text{ mod } n$.

Solution:

Let $\phi_n(x) \in \mathbb{Z}[x]$ be the n-th cyclotomic polynomial, that is the minimal polynomial of a primitive n-th root of unity ξ_n over \mathbb{Q}.

Let $a \in \mathbb{Z}$ and consider p prime with $p|\phi_n(a) \neq 0$ where $p \nmid n$. Let m be the order of a mod p; we claim that $n = m$. Indeed $\phi_n|\phi_m(x-1)$, so $p|a^m - 1$ and thus $m|n$. Assume $m < n$. But then $p|\phi_n(a)$, $a^m - 1$; but both $\phi_n(x)$, $x^m - 1$ divide $x^n - 1$ and the two polynomials are relatively prime mod p (indeed, the former is irreducible and does not divide the latter), so $x^n - 1$ has a double root mod p at a. But the discriminant of $x^n - 1$ is n^n, which is non-zero mod p (as $p \nmid n$) so this is a contradiction. So we must have $m = n$. But note that $a^{p-1} \equiv 1 \text{ mod } p$, so $n|p - 1$, and thus $p \equiv 1 \text{ mod } n$. So any prime is $P_{\phi_n(x)}$ either divides n or satisfies $p \equiv 1 \text{ mod } n$. But, by the reminder above the exercise, there are infinitely many primes in $P_{\phi_n(x)}$, and only finitely many prime divide n, so there are infinitely many primes satisfying $p \equiv 1 \text{ mod } n$.

Exercise 2 p 65

For every finite abelian group A there exists a Galois extension $L|\mathbb{Q}$ with Galois group $G(L|\mathbb{Q}) \simeq A$. (We will prove that there is infinitely many such extension).

Solution:

This will first be proven for G cyclic.

Let $|G| = n$. By Dirichlet’s theorem on primes in arithmetic progressions, there exists a prime p with $p \equiv 1 \text{ mod } n$. Let ξ_p denote a primitive p^th root of unity. Let $L = \mathbb{Q}(\xi_p)$. Then $L|\mathbb{Q}$ is Galois with $\text{Gal}(L|\mathbb{Q})$ cyclic of order $p - 1$. Since n divides p^2-1, there exists a subgroup H of $\text{Gal}(L|\mathbb{Q})$ such that $|H| = \frac{p^2-1}{n}$. Since $\text{Gal}(L|\mathbb{Q})$ is cyclic, it is
abelian, and H is a normal subgroup of $\text{Gal}(L/\mathbb{Q})$. Let $K = L^H$, the subfield of L fixed by H. Then K/\mathbb{Q} is Galois with $\text{Gal}(K/\mathbb{Q})$ cyclic of order n. Thus, $\text{Gal}(K/\mathbb{Q}) \approx G$.

Let p and q be distinct primes with $p \equiv 1 \mod n$ and $q \equiv 1 \mod n$. Then there exist subfields K_1 and K_2 of $\mathbb{Q}(\xi_p)$ and $\mathbb{Q}(\xi_q)$, respectively, such that $\text{Gal}(K_1/\mathbb{Q}) \simeq G$ and $\text{Gal}(K_2/\mathbb{Q}) \simeq G$. Note that $K_1 \cap K_2 = \mathbb{Q}$ since $\mathbb{Q} \subseteq K_1 \cap K_2 \subseteq \mathbb{Q}(\xi_p) \cap \mathbb{Q}(\xi_q) = \mathbb{Q}$.

Thus, $K_1 \neq K_2$. Therefore, for every prime p with $p \equiv 1 \mod n$, there exists a distinct number field K such that K/\mathbb{Q} is Galois and $\text{Gal}(K/\mathbb{Q}) \simeq G$. The theorem in the cyclic case follows from using the full force of Dirichlet’s theorem on primes in arithmetic progressions: There exist infinitely many primes p with $p \equiv 1 \mod n$.

The general case follows immediately from the above argument, the fundamental theorem of finite abelian groups, and a theorem regarding the Galois group of the compositum of two Galois extensions.

Exercise 3 p 65
Every quadratic number field $\mathbb{Q}(\sqrt{d})$ is contained in some cyclotomic field $\mathbb{Q}(\xi_n)$, ξ_n a primitive n^{th} root of unity.

Solution:
Since $\mathbb{Q}(\sqrt{a}) \subseteq \mathbb{Q}(\xi_m)$ and $\mathbb{Q}(\sqrt{b}) \subseteq \mathbb{Q}(\xi_n)$, then $\mathbb{Q}(\sqrt{ab}) \subseteq \mathbb{Q}(\sqrt{a}, \sqrt{b}) \subseteq \mathbb{Q}(\xi_m, \xi_n) \subseteq \mathbb{Q}(\xi_{mn})$, so in order to prove the general statement it is enough to prove that:

1. $\mathbb{Q}(\sqrt{-1}) = \mathbb{Q}(\xi_4)$;
2. $\mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\xi_8)$ and $\mathbb{Q}(\sqrt{-2}) \subset \mathbb{Q}(\xi_8)$.
3. If p is a prime congruent to 1 modulo 4, then $\mathbb{Q}(\sqrt{p}) \subseteq \mathbb{Q}(\xi_p)$.
4. If p is a prime congruent to 3 modulo 4, then $\mathbb{Q}(\sqrt{-p}) \subseteq \mathbb{Q}(\xi_p)$.

1. is obvious. 2. come from the fact that $\xi_8 = (1 + i)/\sqrt{2}$. We have proven, p 51 that if τ is the Gauss sum $\tau = \sum_{a \in (\mathbb{Z}/p\mathbb{Z})^*} (\frac{a}{p}) \xi^a$, then $\tau^2 = (\frac{-1}{p})p = p^* \text{ and }$

$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = \begin{cases} 1 & \text{if } p \equiv 1 \mod 4 \\ -1 & \text{if } p \equiv 3 \mod 4 \end{cases}$$

(Note that for p prime, $\mathbb{Q}(\sqrt{p^*})$ is the unique quadratic field intermediate between \mathbb{Q} and $\mathbb{Q}(\xi_p)$. Indeed, $\text{Gal}(\mathbb{Q}(\xi_p), \mathbb{Q}) \simeq \mathbb{Z}/(p-1)\mathbb{Z}$ contains a unique subgroup of index two, so there is a unique quadratic field intermediate between \mathbb{Q} and $\mathbb{Q}(\xi_p)$ and we have just identified that field.)

Exercise 3, 4, 5 p 65

4. Describe the quadratic subfields of $\mathbb{Q}(\xi_n)|\mathbb{Q}$ in the case where n is odd.

5. Show that $\mathbb{Q}(\sqrt{-1})$, $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{-2})$ are the quadratic subfield of $\mathbb{Q}(\xi_n)|\mathbb{Q}$ for $n = 2^t$, $q \geq 3$.

Solution:
We will prove 4. and 5. proving that more generally that if $n > 2$ is an integer. Define $A = \{a_i\}_{i=1,...,t}$ as follows: if p is an odd prime factor of n, then $p^* \in A$. If n is
divisible by 4, then \(-1 \in A\). If \(n\) is divisible by 8, then \(2 \in A\). Then \(Q(\xi_n)\) contains \(2^t - 1\) quadratic extensions of \(Q\) and they are \(Q(\sqrt{m})\) for \(m\) any nontrivial product of distinct elements of \(A\).

By the fundamental Theorem of Galois Theory, the quadratic extensions of \(Q\) contained in \(Q(\xi_n)\) are in 1–1 correspondence with the subgroups of index 2 of \(\text{Gal}(Q(\xi_n), Q) \cong (\mathbb{Z}/n\mathbb{Z})^*\). Now if \(n = 2^{e_2}3^{e_3}5^{e_5} \ldots\),

\[(\mathbb{Z}/n\mathbb{Z})^* \cong (\mathbb{Z}/2^{e_2}\mathbb{Z})^* \times (\mathbb{Z}/3^{e_3}\mathbb{Z})^* \times (\mathbb{Z}/5^{e_5}\mathbb{Z})^* \times \ldots\]

For \(p\) odd and \(k \geq 1\), \((\mathbb{Z}/p^k\mathbb{Z})^*\) is a cyclic group of even order. Also, \((\mathbb{Z}/2\mathbb{Z})^*\) is trivial, \((\mathbb{Z}/4\mathbb{Z})^* \cong (\mathbb{Z}/2\mathbb{Z})\), and \((\mathbb{Z}/2^{k}\mathbb{Z})^* \cong ((\mathbb{Z}/2\mathbb{Z}) \oplus (\mathbb{Z}/2^{k-2}\mathbb{Z})\). Thus \((\mathbb{Z}/n\mathbb{Z})^*\) contains \(2^t - 1\) subgroups of index 2. (A subgroup of index 2 is the kernel of an epimorphism \(\psi : \text{Gal}(Q(\xi_n), Q) \to \mathbb{Z} = 2\mathbb{Z}\) and since \(\text{Gal}(Q(\xi_n), Q)\) is isomorphic to the direct sum of \(t\) cyclic group of even order, there are \(2^t\) homomorphism from \(\text{Gal}(Q(\xi_n), Q)\) to \(\mathbb{Z}/2\mathbb{Z}\), one of which is the trivial one.) Since \(Q(\sqrt{m}) \subseteq Q(\xi_n)\) for each of the \(2^t - 1\) values of \(m\) in \(A\), by the previous exercise, we see that these are all the quadratic subfields of \(Q(\xi_n)\).