Problem 1: Show that if \(r \in \mathbb{Q} \) is an algebraic integer, then \(r \in \mathbb{Z} \).

Solution: Let \(r = \frac{c}{d}, \ (c,d) = 1 \) be an algebraic integer. Then \(r \) is the root of a monic polynomial in \(\mathbb{Z}[x] \), say \(f(x) = x^n + b_{n-1}x^{n-1} + ... + b_0 \).

So

\[
f(r) = (\frac{c}{d})^n + b_{n-1}(\frac{c}{d})^{n-1} + ... + b_0 = 0
\]

\[
\iff c^n + b_{n-1}c^{n-1}d + ... + b_0d^n = 0
\]

This implies that \(d | c^n \), which is true only when \(d = \pm 1 \). So \(r = \pm c \in \mathbb{Z} \).

Problem 2:

1. Let \(f(x) = x^n + a_nx^{n-1} + ... + a_1x + a_0 \) and assume that \(p | a_i \) for \(0 \leq i < n \) and \(p^2 \nmid a_0 \). Show that \(f(x) \) is irreducible. (Hint: By contradiction, suppose that \(f(x) \) is reducible.)

2. Let \(p \) be a prime number and define the cyclotomic polynomial \(\Phi_p \) of order \(p \) by

\[
\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + ... + x + 1 \in \mathbb{Z}[x]
\]

Show that \(\Phi_p(x) \) is irreducible over \(\mathbb{Z} \). (Hint: Compute \(\Phi_p(x+1) \).)

Solution:

1. By contradiction, if \(p(x) \) factors as a product of two rational polynomials having integer coefficients. Thus if we assume that \(p(x) \) is reducible, then

\[
p(x) = (b_0 + b_1x + ... + b_rx^r)(c_0 + c_1x + .. + c_sx^s),
\]

where the \(b \)'s and the \(c \)'s are integers and where \(r > 0 \) and \(s > 0 \). Reading off the coefficient we first get \(a_0 = b_0c_0 \). Since \(p | a_0 \), \(p \) must divide one of \(b_0 \) or \(c_0 \). Since \(p^2 \nmid a_0 \), \(p \) cannot divide both \(b_0 \) and \(c_0 \). Suppose that \(p | b_0 \), \(p \nmid c_0 \). Not all the coefficients \(b_0, \ ... , b_r \) can be divisible by \(p \); otherwise since \(p \nmid a_n \). Let \(b_k \) be the first \(b \) not divisible by \(p \), which manifestly false since \(p \nmid a_n \). Let \(b_k \) be the first \(b \) not divisible by \(p \), \(k \leq r < n \). Thus, \(p | b_{k-1} \) and earlier \(b \)'s. But \(a_k = b_kc_0 + b_{k-1}c_1 + b_{k-2}c_2 + ... + b_0c_k \), which conflicts with \(p | b_kc_0 \). This contradiction proves that we could not have factored \(p(x) \) and so \(p(x) \) is indeed irreducible.
2. Note first that
\[\Phi_p(x + 1) = \frac{(x + 1)^p - 1}{x} = \sum_{i=1}^{p} \binom{p}{i} x^{i-1} \]

We have that \(p \mid \binom{p}{i} \) for all \(i \in \{1, 2, ..., p - 1\} \) and \(p^2 \nmid \binom{p}{1} = p \). Therefore by Eisenstein’s Criterion, we have that \(\Phi_p(x + 1) \) is irreducible over \(\mathbb{Q} \) and hence over \(\mathbb{Z} \).

Lastly, note that if \(\Phi_p(x) \) were reducible, then \(\Phi_p(x + 1) \) is also irreducible over \(\mathbb{Z} \).

Problem 3:

1. Let \(a \) be a nonzero ideal of \(\mathcal{O}_K \). Show that \(a \cap \mathbb{Z} \neq \{0\} \).

2. Show that every nonzero prime ideal in \(\mathcal{O}_K \) contains exactly one integer prime.

Solution:

1. Let \(\alpha \) be a nonzero algebraic integer in \(a \) satisfying the minimal polynomial \(x^r + a_{r-1}x^{r-1} + ... + a_0 = 0 \) with \(a_i \in \mathbb{Z} \), for any \(i \) and \(a_0 \) not zero. Then \(a_0 = -(\alpha^r + ... + a_1 \alpha) \). The left hand side of this equation is in \(\mathbb{Z} \), while the right-hand side is in \(a \).

2. By the previous question, if \(\mathfrak{p} \) is a prime ideal of \(\mathcal{O}_K \), then certainly it contains an integer. By the definition of a prime ideal, if \(ab \in \mathfrak{p} \), either \(a \in \mathfrak{p} \) or \(b \in \mathfrak{p} \). So \(\mathfrak{p} \) must contain some rational prime. Now, if \(\mathfrak{p} \) contain their greatest common denominator which is 1. But this contradict the assumption of non triviality. So every prime ideal of \(\mathcal{O}_K \) contains exactly one integer prime.

Problem 4: Find an integral basis for \(\mathbb{Q}(\sqrt{2\sqrt{-3}}) \).

Solution: If \(K = \mathbb{Q}(\sqrt{2}) \), \(L = \mathbb{Q}(\sqrt{-3}) \), then \(d_K = 8 \), \(d_L = -3 \) which are coprime. So that, a \(\mathbb{Z} \)-basis for the ring of integers of \(\mathbb{Q}(\sqrt{2}, \sqrt{-3}) \) is given by
\[\{1, \sqrt{2}, \frac{1+\sqrt{-3}}{2}, \sqrt{2}(\frac{1+\sqrt{-3}}{2})\} \]

Problem 5: Show that \(\mathbb{Z}[\sqrt{-5}] \) is a Dedekind domain, but not a principal ideal domain.

Solution: \(\mathbb{Z}[\sqrt{-5}] \) is not a unique factorization domain by taking \(6 = 2 \times 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}) \), and so cannot be a principal domain.

To see that it is a Dedekind domain, it is enough to show that it is the set of algebraic integers of the algebraic number field \(K = \mathbb{Q}(\sqrt{-5}) \).

Problem 6: Show that a finite integral domain is a field.

Solution: Let \(R \) be a finite integral domain. Let \(x_1, x_2, ..., x_n \) be the elements of \(R \). Suppose that \(x_i x_j = x_k \), for some \(x_i \neq 0 \). Then \(x_i(x_j - x_k) = 0 \). Since \(R \) is an integral domain \(x_j = x_k \), so \(j = k \). Thus, for any \(x_i \neq 0 \),
\[\{x_ix_1, x_ix_2, ..., x_ix_n\} = \{x_1, x_2, ..., x_n\} \]
Since $1 \in R$, there exists x_j such that $x_ix_j = 1$. Therefore, x_i is invertible. Thus all nonzero elements are invertible, so R is a field.

Problem 7: Show that if a and b are ideals of O_K, then $b|a$ if and only if there is an ideal c of O_K with $a = bc$.

Solution: If $a \subseteq b$, then $c = ab^{-1} \subseteq bb^{-1} = O_K$. Thus, $a = bc$, with c an ideal of O_K.

If $a = bc$ with $c \subseteq O_K$, then $a = bc \subseteq b$.

Problem 8: Find a prime ideal factorization of $7O_K$ in $\mathbb{Z}[(1 + \sqrt{-3})/2]$.

Solution: We now consider $f(x) \pmod{7}$. We have

$$x^2 - x + 1 \equiv x^2 + 6x + 1 \equiv (x + 2)(x + 4) \pmod{7}$$

so 7 splits and its factorization is

$$(7) = (7, \frac{5 + \sqrt{-3}}{2})(7, \frac{9 + \sqrt{-3}}{2})$$

Problem 9: Show that

$$\sum_{a=1}^{p} \left(\frac{a}{p} \right) = 0$$

for any fixed prime p.

Solution: Follows directly from the fact that the number of residues equals the number of non residues.

Problem 10: Show that W_K, the group of roots of unity in a number field K is cyclic, of even order.

Solution: Let $\alpha_1, \ldots, \alpha_l$ be the roots of unity in K. For $j = 1, \ldots, l$, $\alpha_j^{q_j} = 1$ for some q_j which implies that $\alpha_j = e^{2\pi i q_j y}$, for some $0 \leq p_j \leq q_j - 1$. Let $q_0 = \prod_{i=1}^{l} q_i$. Then clearly, each $\alpha_i \in (e^{2\pi i y})$ so W_K is a subgroup of the cyclic group $(e^{2\pi i})$ and is, thus cyclic. Moreover, since $\{\pm 1\} \subseteq W_K$, W_K has even order.

Problem 11: Show that, for any real quadratic field $K = \mathbb{Q}(\sqrt{d})$, where d is a positive square free integer, $U_K \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}$. That is, there is a fundamental unit $\epsilon \in U_K$ such that $U_K = \{\pm \epsilon^k : k \in \mathbb{Z}\}$.

Solution: Since $K \subseteq \mathbb{R}$, the only roots of unity in K are $\{\pm 1\}$ so $W_K = \{\pm 1\}$. Moreover, since there are $r_1 = 2$ real and $2r_2 = 0$ non real