Quiz #4

Problems:

1. (20 pt) Let \(\phi : D_n \to \mathbb{Z}/2\mathbb{Z} \) be the map given by

\[
\phi(x) = \begin{cases}
0 & \text{if } x \text{ is a rotation} \\
1 & \text{if } x \text{ is a reflection}
\end{cases}
\]

(a) Show \(\phi \) is a homomorphism. (Hint: Remember it is enough for this to consider the product of two reflection, the product of a reflection and a rotation, the product of two rotations.)

(b) What is \(\ker(\phi) \)? What is \(\text{Im}(\phi) \)?

Solutions:

(a) The product of two reflections is a rotation around the intersection point of the two reflection axes; the product of a reflection and a rotation is a reflection; and the product of two rotations is again a rotation.

(b) \(\ker(\phi) \simeq \mathbb{Z}/n\mathbb{Z} \) is the cyclic subgroup generated by a rotation through \(360/n \) degrees.

\[
\text{Im}(\phi) = \mathbb{Z}/2\mathbb{Z}.
\]

2. (20pt) Consider the group \(G = S_3 \times \mathbb{Z}/6\mathbb{Z} \).

(a) Determine the set of orders of elements in \(G \), that is, the set \(\{|g| \mid g \in G\} \).

(b) Prove that \(G \) is not cyclic.

Solutions:

(a) Orders of elements in \(S_3 \): 1, 2, 3; Orders of elements in \(\mathbb{Z}/6\mathbb{Z} \): 1, 2, 3, 6; Orders of elements in \(S_3 \times \mathbb{Z}/6\mathbb{Z} \): \(\mathbb{Z} \); 1, 2, 3, 6.

(b) The order of \(G \) is 36, but there are no elements of order 36 in \(G \). Hence \(G \) is not cyclic.

3. (10 pt) List the group of order 6 without proof, up to isomorphism.

Solutions:

\(\mathbb{Z}/6\mathbb{Z}, D_3 \).