Quiz #2

Problems:

1. Let G be the matrix group $GL(n, \mathbb{C})$ of all $n \times n$ matrices A with complex entries and $\det(A) \neq 0$. This is a group under matrix multiplication, and so is the subgroup $N = SL(n, \mathbb{C})$ of matrices with determinant +1.
 (a) Prove that $SL(n, \mathbb{C})$ is a normal subgroup of $GL(n, \mathbb{C})$. What does this imply for the quotient $GL(n, \mathbb{C})/SL(n, \mathbb{C})$?
 (b) Let p be the matrix group $GL(2, \mathbb{C})$ by definition of n the usual determinant is multiplicative, and it is surjective because if $\lambda \neq 0$ in \mathbb{C} the diagonal matrix $D = \text{diag}(\lambda^{1/n}, \ldots, \lambda^{1/n})$ has $\det D = \lambda$. (Here $\lambda^{1/n}$ is any complex nth root of λ; for instance if λ has polar form $\lambda = re^{i\theta}$ we can take the principal nth root $\lambda^{1/n} = r^{1/n}e^{i\theta/n}$ where $r^{1/n}$ is the usual nth root of a non-negative real number.) The kernel of ϕ is precisely $N = SL(n, \mathbb{C})$, by definition of $SL(n, \mathbb{C})$. The conditions of the First Isomorphism Theorem are fulfilled. We conclude that $GL(n, \mathbb{C})/SL(n, \mathbb{C}) \cong (\mathbb{C}^\times, \cdot)$ as claimed.

2. (a) Give the center of S_3. What you can deduce about S_3?

 $S_3 = \{\text{Id}, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)\}$

 (1, 2)(1, 2, 3) = (1, 3), and (1, 2, 3)(1, 2) = (2, 3), so neither (1, 2) nor (1, 2, 3) is in the center. (2, 3)(1, 3, 2) = (1, 3), and (1, 3, 2)(2, 3) = (1, 2), so neither (2, 3) nor (1, 3, 2) is in the center. (1, 2)(1, 3) = (1, 2, 3), and (1, 3)(1, 2) = (1, 3, 2), so (1, 3) isn’t in the center either.

 That leaves the identity permutation (1), which has to commute with everything, so the center is just $\{(1)\}$.

 (b) Give the order of $(1, 3, 2)$ in S_3 and the group generated by $(1, 3, 2)$, to which well know group is it isomorphic to?

 $(1, 2, 3)^2 = (1, 3, 2)$, and $(1, 2, 3)^3 = \text{Id}$, so $\langle (1, 2, 3) \rangle = \{\text{Id}, (1, 2, 3), (1, 3, 2)\}$.

 $\alpha(1, 2, 3) = 3$ and $\langle (1, 2, 3) \rangle \cong \mathbb{Z}/3\mathbb{Z}$.
3. For each the following pair of groups, decide whether they are isomorphic or not. In each case, give a brief reason why.
 (a) \(U_5 \) and \(U_{10} \).
 Yes. They are both cyclic of order 4.
 (b) \(U_8 \) and \(\mathbb{Z}/4\mathbb{Z} \).
 No. \(U_8 \) doesn’t have an element of order 4, but \(\mathbb{Z}/4\mathbb{Z} \) does.
 (c) \(U_{10} \) and \(\mathbb{Z}/4\mathbb{Z} \).
 Yes. They are both cyclic of order 4.
 (d) \(S_3 \) and \(\mathbb{Z}/6\mathbb{Z} \).
 No. \(S_3 \) is not abelian, but \(\mathbb{Z}/6\mathbb{Z} \) is.

4. Give the order of \(r^2 s \) in the group \(\mathbb{Z}/6\mathbb{Z} \), give the subgroup of \(\mathbb{Z}/6\mathbb{Z} \) generated by \([2] \). To which well-known group is it isomorphic to?
 Be careful we are in additive notation here! \(2[2] = [4], 3[2] = [0] \), then \(o([2]) = 3 \) and \(< [2] >= \{[0],[2],[4]\} \cong \mathbb{Z}/3\mathbb{Z} \).

5. Give the order of \([5] \) in \(U_6 \), give the subgroup of \(U_6 \), generated by \([5] \). To which well-known group is it isomorphic to?
 Be careful we are in multiplicative notation here!
 \([5]^2 = [25] = [1] \), then \(o([5]) = 2 \) and \(< [5] > = \{[1],[5]\} \cong \mathbb{Z}/2\mathbb{Z} \).