Quiz #2

Problems:

1. Let G be the matrix group $GL(n, \mathbb{C})$ of all $n \times n$ matrices A with complex entries and $\det(A) \neq 0$. This is a group under matrix multiplication, and so is the subgroup $N = SL(n, \mathbb{C})$ of matrices with determinant $+1$.

 (a) Prove that $SL(n, \mathbb{C})$ is a normal subgroup of $GL(n, \mathbb{C})$. What does this implies for the quotient $GL(n, \mathbb{C})/SL(n, \mathbb{C})$?

 (b) Let

 $$\tilde{\det} : \frac{GL(n, \mathbb{C})}{SL(n, \mathbb{C})} \rightarrow \mathbb{C}^\times$$

 Prove that $\tilde{\det}$ is a well defined isomorphism of groups. (Be careful you have to prove several properties here.)

2. (a) Give the center of S_3. What can you deduce about S_3?

 (b) Give the order of $(1, 3, 2)$ in S_3 and the group generated by $(1, 3, 2)$, to which well know group is it isomorphic to?

3. For each the following pair of groups, decide whether they are isomorphic or not. In each case, give a brief reason why.

 (a) U_5 and U_{10}.

 (b) U_8 and $\mathbb{Z}/4\mathbb{Z}$.

 (c) U_{10} and $\mathbb{Z}/4\mathbb{Z}$.

 (d) S_3 and $\mathbb{Z}/6\mathbb{Z}$.

4. Give the order of $[2]$ in the group $\mathbb{Z}/6\mathbb{Z}$, give the subgroup of $\mathbb{Z}/6\mathbb{Z}$ generated by $[2]$. To which well-know group is it isomorphic to?

5. Give the order of $[5]$ in U_6, give the subgroup of U_6, generated by $[3]$. To which well-know group is it isomorphic to?