Exercise 1. Let \(f \) be a nonnegative measurable function. Show that

\[
\int f = \sup \int \varphi,
\]

where \(\varphi \) is taken over all simple functions with \(\varphi \leq f \).

Answer:

For each \(n \in \mathbb{N} \) we divide \([0,n)\) to disjoint intervals

\[
I_k = \left[\frac{k-1}{2^n}, \frac{k}{2^n} \right),
\]

where \(k = 1, \ldots, n2^n \). We then define \(f_n \) for all \(n \in \mathbb{N} \) so that \(f_n(x) = \frac{k-1}{2^n} \) when \(x \in f^{-1}(I_k) \) and \(f_n(x) = n \) when \(x \in f^{-1}[n,\infty] \). In other words,

\[
f_n(x) = \sum_{k=1}^{2^n} k \cdot \chi_{f^{-1}(I_k)} + n \chi_{f^{-1}[n,\infty]}.
\]

Since \(f \) was measurable then \(f_n \) is a simple function. Now \(f_n \leq f_{n+1} \) by construction and \(f_n(x) \to f(x) \) for all \(x \). Indeed if \(x \) is so that \(f(x) < \infty \) then there exists \(m \in \mathbb{N} \) so that \(f(x) < m \). When \(n \geq m \) then \(\frac{k-1}{2^n} \leq f(x) < \frac{k}{2^n} \) for some \(k = 1, \ldots, n2^n \). Thus

\[
f_n(x) = \frac{k-1}{2^n} \leq f(x) < \frac{k}{2^n} = f_n(x) + \frac{1}{2^n},
\]

which implies that \(f(x) - \frac{1}{2^n} < f_n(x) \leq f(x) \). Letting \(n \to \infty \) it follows that \(\lim_{n \to \infty} f_n(x) = f(x) \). If on the other hand \(x \) is such that \(f(x) = \infty \) then \(f_n(x) = n \) for all \(n \in \mathbb{N} \) and thus \(f_n(x) \to \infty = f(x) \). We have thus constructed a nondecreasing sequence of bounded simple functions \(\{f_n\}_{n=1}^{\infty} \) so that \(f_n \to f \). To truncate the supports, we define \(\varphi_n = f_n \chi_{B(0,n)} \) for all \(n \in \mathbb{N} \), where \(B(0,n) \) is the open \(n \)-radius ball around 0. Note that \(\{\varphi_n\}_{n=1}^{\infty} \) is still a nondecreasing sequence of bounded simple functions converging pointwise to \(f \). In addition
\[m(\{x : \varphi_n(x) \neq 0\}) \leq m(B(0, n)) = 2n < \infty \text{ for all } n \in \mathbb{N}. \]

Now using the monotone convergence theorem we conclude that
\[\sup \int \varphi \geq \lim_{n \to \infty} \int \varphi_n = \int \lim_{n \to \infty} \varphi_n = \int f. \]

And the converse inequality \(\sup \int \varphi \leq \int f \) holds by assumptions since the supremum is taken over all simple functions with \(\varphi \leq f \). So the claim follows.

Exercise 2. Let \((f_n)_{n=1}^\infty\) be a sequence of nonnegative measurable functions on \((-\infty, \infty)\) such that \(f_n \to f\) almost everywhere, and suppose \(\int f_n \to \int f < \infty\). Then for each measurable set \(E\) we have \(\int_E f_n \to \int_E f\).

Answer:

Let \(E\) be a measurable set. Note that since \(f_n \to f\) almost everywhere then \(f_n \chi_E \to f \chi_E\) almost everywhere. Thus by Fatou’s lemma
\[\int_E f = \int_{-\infty}^\infty f \chi_E = \int_{-\infty}^\infty \liminf_{n \to \infty} f_n \chi_E \leq \liminf_{n \to \infty} \int_{-\infty}^\infty f_n \chi_E = \liminf_{n \to \infty} \int_{E} f_n. \]

Similarly
\[\int_{E^c} f \leq \liminf_{n \to \infty} \int_{E^c} f_n. \]

Now by assumption and the above inequalities we have
\[\int_{-\infty}^\infty f = \int_E f + \int_{E^c} f \leq \liminf_{n \to \infty} \int_E f_n + \liminf_{n \to \infty} \int_{E^c} f_n \leq \lim_{n \to \infty} \left(\int_E f_n + \int_{E^c} f_n \right) \]
\[= \lim_{n \to \infty} \int_{-\infty}^\infty f_n = \int_{-\infty}^\infty f, \]

so there in fact holds an equality everywhere. Since \(\int_{-\infty}^\infty f < \infty\) then it follows that
\[\liminf_{n \to \infty} \int_E f_n + \liminf_{n \to \infty} \int_{E^c} f_n - \int_{-\infty}^\infty f = 0. \]

In other words, by writing \(\int_{-\infty}^\infty f = \int_E f + \int_{E^c} f\), we have
\[\left(\liminf_{n \to \infty} \int_E f_n - \int_E f \right) + \left(\liminf_{n \to \infty} \int_{E^c} f_n - \int_{E^c} f \right) = 0. \]
Since both terms are non-negative and their sum is equal to zero, they must both be zero. In other words
\[
\liminf_{n \to \infty} \int_E f_n - \int_E f = 0
\]
and
\[
\liminf_{n \to \infty} \int_{E^c} f_n - \int_{E^c} f = 0
\]
Now the first equation gives
\[
\liminf_{n \to \infty} \int_E f_n = \int_E f
\]
and using the second equation we obtain
\[
\int_{E^c} f = \liminf_{n \to \infty} \int_{E^c} f_n = \liminf_{n \to \infty} \left(\int_{-\infty}^\infty f_n - \int_E f_n \right) \\
= \liminf_{n \to \infty} \int_{-\infty}^\infty f_n - \limsup_{n \to \infty} \int_E f_n \\
= \int_{-\infty}^\infty f - \limsup_{n \to \infty} \int_E f_n.
\]
Above we used the fact that \(\liminf_{n \to \infty} (a_n + b_n) = a + \liminf_{n \to \infty} b_n\) for sequences \((a_n)_{n=1}^\infty\) and \((b_n)_{n=1}^\infty\) for which \(\lim a_n\) exists and \(a_n \to a\). Thus
\[
\limsup_{n \to \infty} \int_E f_n = \int_{-\infty}^\infty f - \int_{E^c} f = \int_E f.
\]
So we conclude that
\[
\limsup_{n \to \infty} \int_E f_n = \int_E f = \liminf_{n \to \infty} \int_E f_n,
\]
which finally implies that the sequence \((\int_E f_n)_{n=1}^\infty\) converges and its limit is \(\int_E f\). In other words, \(\int_E f_n \to \int_E f\).

Exercise 3. Let \((f_n)_{n=1}^\infty\) be a sequence of integrable functions such that \(f_n \to f\) almost everywhere and \(f\) is integrable. Show that \(\int |f_n - f| \to 0\) if and only if \(\int |f_n| \to \int |f|\).
Answer:

"⇒": Assume first that \(\int |f_n - f| \to 0 \). Note that by the reverse triangle inequality we have
\[
\left| \int |f_n| - \int |f| \right| \leq \int ||f_n| - |f|| \leq \int |f_n - f|.
\]
Letting \(n \to \infty \) it follows that \(\int |f_n| \to \int |f| \).

"⇐": Assume then the converse that \(\int |f_n| \to \int |f| \) holds. Define \(g_n = |f| + |f_n| - |f - f_n| \) for all \(n \in \mathbb{N} \), which is non-negative by the triangle inequality. Note that \(g_n \to 2|f| \) almost everywhere. Thus by Fatou's lemma
\[
2 \int |f| = \int 2|f| = \int \liminf_{n \to \infty} g_n \leq \liminf_{n \to \infty} \int g_n = \liminf_{n \to \infty} \int |f| + \liminf_{n \to \infty} \int |f_n| - \limsup_{n \to \infty} \int |f - f_n| = 2 \int |f| - \limsup_{n \to \infty} \int |f - f_n|.
\]
Above we used the fact that \(\liminf_{n \to \infty} (a_n + b_n) = a + \liminf_{n \to \infty} b_n \) for sequences \((a_n)_{n=1}^\infty\) and \((b_n)_{n=1}^\infty\) for which \(\lim a_n \) exists and \(a_n \to a \). Since \(f \) is integrable then this implies that
\[
0 \leq \liminf_{n \to \infty} \int |f - f_n| \leq \limsup_{n \to \infty} \int |f - f_n| \leq 0,
\]
so there in fact holds an equality everywhere and in particular
\[
\lim_{n \to \infty} \int |f - f_n| = 0.
\]

Exercise 4. Prove the Riemann-Lebesgue Theorem: If \(f \) is integrable on \(\mathbb{R} \) then
\[
\int_{-\infty}^{\infty} f(x) \cos(nx) \, dx \to 0 \quad \text{as} \quad n \to \infty.
\]

Answer:

The general idea is to approximate \(f \) by step functions with bounded support so we prove the statement in multiple steps:

(a) Assume first that \(f = \chi_{I_k} \) is an indicator function of some bounded interval \(I_k \) with endpoints \(a_k \) and \(b_k \). Then
\[
\left| \int_{-\infty}^{\infty} f(x) \cos(nx) \, dx \right| = \left| \int_{-\infty}^{\infty} \chi_{I_k} \cos(nx) \, dx \right| = \left| \int_{a_k}^{b_k} \cos(nx) \, dx \right| = \frac{1}{n} |\sin(nb_k) - \sin(na_k)| \leq \frac{2}{n} \to 0
\]
as \(n \to \infty \). So the claim holds for indicator functions of bounded intervals.

(b) Assume then that \(f \) is a step function with bounded support. In other words,

\[
 f = \sum_{i=1}^{k} a_i \chi_{A_i}
\]

for some real \(a_i \) and bounded intervals \(A_i \). By part (a) and linearity of the integral we have

\[
 \int_{-\infty}^\infty f(x) \cos(nx) \, dx = \int_{-\infty}^\infty \left(\sum_{i=1}^{k} a_i \chi_{A_i} \right) \cos(nx) \, dx
 = \sum_{i=1}^{k} a_i \int_{-\infty}^\infty \chi_{A_i} \cos(nx) \, dx \to 0
\]

as \(n \to \infty \), as each of the terms in the sum go to zero. Hence the statement holds for all step functions with bounded support.

(c) We then assume that \(f \) is integrable and nonnegative, and let \(\varepsilon > 0 \) be fixed. By Exercises 1. and 3. of this problem set we find a simple function \(\varphi \leq f \) with bounded support so that \(\int_{-\infty}^\infty |f - \varphi| < \varepsilon \). Let \(p \) be the measure of a compact interval \(K \) containing the support of \(\varphi \). We may assume that \(p \geq 1 \) by bounding the support of \(\varphi \) by a larger interval if necessary. Since \(\varphi \) is a simple function with bounded support then \(M := \sup |\varphi| < \infty \). Again, we can assume that \(M \geq 1 \) by replacing \(M \) by \(\max\{1, \sup |\varphi|\} \) if necessary. We then use Exercise 4 of problem set 1 to find a step function \(g \) so that \(|\varphi - g| < \frac{\varepsilon}{pM} \) except on a set of measure less than \(\frac{\varepsilon}{pM} \), and \(0 \leq g \leq M \). Call the set where the bound fails by \(E \). Now by triangle inequality, the fact that \(|\cos(nx)| \leq 1 \) for all \(n \in \mathbb{N} \) and \(x \in \mathbb{R} \), and the above estimates,
we have

\[
\left| \int_{-\infty}^{\infty} f(x) \cos(nx) \, dx \right|
\]

\[
= \left| \int_{-\infty}^{\infty} (f(x) + \varphi(x) - \varphi(x) + g(x) - g(x)) \cos(nx) \, dx \right|
\]

\[
\leq \int_{-\infty}^{\infty} |f - \varphi| + \int_{-\infty}^{\infty} |\varphi - g| + \int_{-\infty}^{\infty} g(x) \cos(nx) \, dx
\]

\[
\leq \varepsilon + \frac{\varepsilon}{pM} \int_{E} |\varphi - g| + \int_{-\infty}^{\infty} g(x) \cos(nx) \, dx
\]

\[
\leq \varepsilon + \frac{\varepsilon}{M} + \frac{\varepsilon (\sup |\varphi| + \sup |g|)}{pM} + \int_{-\infty}^{\infty} g(x) \cos(nx) \, dx
\]

\[
\leq \varepsilon + \frac{\varepsilon}{M} + \frac{2M}{pM} + \int_{-\infty}^{\infty} g(x) \cos(nx) \, dx
\]

\[
\leq 4\varepsilon + \int_{-\infty}^{\infty} g(x) \cos(nx) \, dx.
\]

Since the choice of \(\varepsilon > 0 \) was independent of \(n \in \mathbb{N} \), we can let \(n \to \infty \) in the above inequality and note that part (b) implies

\[
\limsup_{n \to \infty} \left| \int_{-\infty}^{\infty} f(x) \cos(nx) \, dx \right| \leq 4\varepsilon
\]

since \(g \) was a step function with bounded support. Since the choice of \(\varepsilon > 0 \) was arbitrary then

\[
\limsup_{n \to \infty} \left| \int_{-\infty}^{\infty} f(x) \cos(nx) \, dx \right| = 0,
\]

which implies that

\[
\lim_{n \to \infty} \int_{-\infty}^{\infty} f(x) \cos(nx) \, dx = 0.
\]

Hence the statement is true for any nonnegative integrable function.

(d) To lastly verify the statement for the most general case, assume that \(f \) is an integrable function. Compose \(f \) to its positive and negative parts, i.e. \(f = f^+ - f^- \), where \(f^+ \) and \(f^- \) are integrable
and nonnegative. Now by part (c) we have

\[
\int_{-\infty}^{\infty} f(x) \cos(nx) \, dx = \int_{-\infty}^{\infty} (f^+(x) - f^-(x)) \cos(nx) \, dx
\]

\[
= \int_{-\infty}^{\infty} f^+(x) \cos(nx) \, dx - \int_{-\infty}^{\infty} f^-(x) \cos(nx) \, dx
\]

\[
\to 0
\]

as \(n \to \infty \) since \(f^+ \) and \(f^- \) were integrable and nonnegative. So

\[
\lim_{n \to \infty} \int_{-\infty}^{\infty} f(x) \cos(nx) \, dx = 0.
\]

Hence the statement is true for all integrable functions \(f \).

Exercise 5. Let \(g \) be a bounded measurable function and let \(f \) be integrable on \(\mathbb{R} \). Show that

\[
\lim_{t \to 0} \int_{-\infty}^{\infty} g(x)(f(x) - f(x + t)) \, dx = 0.
\]

Answer:
We first establish the following lemma:

Lemma (a) Let \(f \) be integrable. Then for any \(\varepsilon > 0 \) there exists a continuous function \(h \) with compact support so that \(\int_{-\infty}^{\infty} |f - h| \leq \varepsilon \).

Proof:
The proof follows the same pattern as the proof of the previous exercise. Assume first that \(f \) is nonnegative. Then by Exercises 1. and 3. of this problem set we find a simple function \(\phi \leq f \) with bounded support so that \(\int_{-\infty}^{\infty} |f - \phi| < \frac{\varepsilon}{4} \). Let \(p \) be the measure of a compact interval \(K \) containing the support of \(\phi \). We may assume that \(p \geq 1 \) by bounding the support of \(\phi \) by a larger interval if necessary. Since \(\phi \) is a simple function then \(M := \sup |\phi| < \infty \). Again, we can assume that \(M \geq 1 \) by replacing \(M \) by \(\max\{1, \sup |\phi|\} \) if necessary. We then use Exercise 4 of problem set 1 to find a continuous function \(h \) on \(K \) so that \(|\phi - h| < \frac{\varepsilon}{4pM} \) except on a set of measure less than \(\frac{\varepsilon}{4pM} \), and \(0 \leq h \leq M \). Call the set where the bound fails by \(E \). Technically the given \(h \) is only continuous in \(K \). This does not however pose any problems as we can choose one such \(h \) and extend it continuously to the whole real line by truncating it by \(h\chi_{[a+\delta,b-\delta]} \) for small \(\delta > 0 \), where \(K = [a,b] \), and then
linearly interpolating the endpoints to zero and making it zero outside of K. The original h can be chosen so that the new h obtained by this truncation satisfies the bounds that we want. Since h and φ vanish outside K, then by triangle inequality and the above bounds we have

$$\int_{-\infty}^{\infty} |f - h| \leq \int_{-\infty}^{\infty} |f - \varphi| + \int_{-\infty}^{\infty} |\varphi - h|$$

$$= \int_{-\infty}^{\infty} |f - \varphi| + \int_{K\setminus E} |\varphi - h| + \int_{K \cap E} |\varphi - h|$$

$$\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{2M\varepsilon}{4pM} = \frac{\varepsilon}{4} + \frac{\varepsilon}{4M} + \frac{\varepsilon}{2p}$$

$$\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{2} = \varepsilon.$$

So the claim is true when we assume that f is nonnegative. If f is not nonnegative, then compose f to its positive and negative parts $f = f^+ - f^-$ and apply the previous reasoning to the nonnegative integrable functions f^+ and f^-, i.e. find continuous h_1 and h_2 with compact support so that $\int_{-\infty}^{\infty} |f^+ - h_1| \leq \frac{\varepsilon}{2}$ and $\int_{-\infty}^{\infty} |f^- - h_2| \leq \frac{\varepsilon}{2}$. Now $h_1 - h_2$ is a continuous function with compact support and

$$\int_{-\infty}^{\infty} |f - h_1 + h_2| = \int_{-\infty}^{\infty} |f^+ - f^- - h_1 + h_2|$$

$$\leq \int_{-\infty}^{\infty} |f^+ - h_1| + \int_{-\infty}^{\infty} |f^- - h_2|$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

So the proof of the lemma is done. \qed

We then return to the exercise. Denote $M := \sup |g|$, which is finite since g is bounded. Now since f is integrable then by the above Lemma (a) we find a compactly supported continuous function h so that $\int_{-\infty}^{\infty} |f - h| \leq \frac{\varepsilon}{2M}$. Since h is compactly supported there exists $n \in \mathbb{N}$ so that the support of h is contained in $\overline{B(0, n)}$, where $B(0, n)$ is as usual the open n-radius ball around 0 and the overline denotes closure. Now for all $0 \leq t < 1$ we have

$$h(x) = h(x + t) = 0$$

if $x \in \mathbb{R} \setminus \overline{B(0, n + 1)}$. Thus for all $0 \leq t < 1$ we have by triangle
inequality and the above estimates that
\[
\left| \int_{-\infty}^{\infty} g(x)(f(x) - f(x + t)) \, dx \right| \\
= \left| \int_{-\infty}^{\infty} g(x)(f(x) - f(x + t) - h(x) + h(x) - h(x + t) + h(x + t)) \, dx \right| \\
\leq \int_{-\infty}^{\infty} |g(x)||h(x) - h(x + t)| \, dx + \int_{-\infty}^{\infty} |g(x)||f(x) - h(x)| \, dx \\
+ \int_{-\infty}^{\infty} |g(x)||h(x + t) - f(x + t)| \, dx \\
\leq M \int_{B(0, n+1)} |h(x) - h(x + t)| \, dx + 2M \int_{-\infty}^{\infty} |f - h| \\
\leq M \int_{B(0, n+1)} |h(x) - h(x + t)| \, dx + 2M \frac{\varepsilon}{2M} \\
= M \int_{B(0, n+1)} |h(x) - h(x + t)| \, dx + \varepsilon.
\]

Now as a continuous function, \(h \) is uniformly continuous on the compact set \(B(0, n + 1) \). So it follows that \(|h(x) - h(x + t)| \to 0 \) as \(t \to 0 \) uniformly. Hence by letting \(t \to 0 \) we get that
\[
\lim_{t \to 0} \left| \int_{-\infty}^{\infty} g(x)(f(x) - f(x + t)) \, dx \right| \leq \varepsilon.
\]

Since the choice of \(\varepsilon > 0 \) was arbitrary then
\[
\lim_{t \to 0} \int_{-\infty}^{\infty} g(x)(f(x) - f(x + t)) \, dx = 0.
\]

Exercise 6. Let \(f \) be integrable over a measurable set \(E \). Show that for any \(\varepsilon > 0 \) there is a continuous function \(g \) supported on a finite measure set such that \(\int_{E} |f - g| \leq \varepsilon \).

Answer:

Apply Lemma (a) from Exercise 5. to the integrable function \(f_{\chi_{E}} \) to find a compactly supported continuous function \(g \) so that \(\int_{-\infty}^{\infty} |f_{\chi_{E}} - g| \leq \varepsilon \). Now
\[
\int_{E} |f - g| = \int_{-\infty}^{\infty} |f - g|_{\chi_{E}} = \int_{-\infty}^{\infty} |f_{\chi_{E}} - g_{\chi_{E}}| \leq \int_{-\infty}^{\infty} |f_{\chi_{E}} - g| \leq \varepsilon.
\]

So \(g \) satisfies the desired properties.