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1 Introduction

These lecture notes were designed to accompany a mini-course on extrema
of branching random walks (BRW) and Gaussian fields. The first half of this
sentence, extrema of branching random walks, is of course a classical topic.
The “modern” part of the theory, which can be traced back to the work of
Mckean and of Bramson, is already quite old, and it is not unreasonable to
wonder why would anybody be presenting a topics course based on this the-
ory in 2012. My excuse for revisiting this topic is twofold. First, the methods
developed for studying branching random walks have recently become rel-
evant in seemingly unrelated problems, such as the study of the maximum
of certain Gaussian fields (we will discuss in some detail such an applica-
tion, to the study of the so called Gaussian Free Field in two dimensions,
the 2DGFF); there are conjectured (and some proved) relations with other
problems, like the cover time of graphs by simple random walk. Second, new
results and questions have recently emerged even in the context of branch-
ing random walks. One can mention in particular the recent study of the
point process generated by branching Brownian motion [ABBS11, ABK11],
the construction of the limit law of the maximum of BRW [Ai11] (see also
[BDZ14]) or the study of BRW in some critical models [BDMM07, BBS10].
While these are not discussed in these notes, my hope that the latter serve
as a quick introduction to the area which is a good enough basis on which
one can explore these recent exciting developments. As a teaser toward some
of these “new” topics, I did include some material related to time inhomo-
geneous branching random walks and the surprising phase transitions that
they exhibit.
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Of course, the presentation is skewed toward my second main goal, namely
an explanation of recent results concerning the maximum of the 2DGFF. As
it turns out, with the right point of view one can relate this a-priori hard
question to a question concerning a class of (modified) branching random
walks, which can be analysed using the tools presented in the first part. Many
questions in this setup were still open at the time that the course was given:
study of the law of the maximum of the 2DGFF, structure of the process
of near maxima, extensions to non Gaussian Ginzburg-Landau fields, tight
relations with covering problems, etc. Since these notes were written, some
of these questions have been resolved, see [BDZ13, BL13, BL14, BK14], but
many other questions remain open. I hope that the exposition will convince
some of the readers to look closer into these questions. I have decided not to
update the notes to cover more material than was covered in the 2012 course,
however I did in some places provide references to some of the results that
have been obtained since 2012.

Finally, a caveat is in order: my goal was not to present the sharpest
results, nor to strive for full generality. While I do sometimes point out to
relevant extensions and generalizations in suitable remarks, these notes are
not an encyclopedic treatment, and by necessity I have kept the bibliography
rather limited. This should not be interpreted as a statement on the value
of results that are not described or works that are not cited, but rather as a
compromise reflecting what I hope can be reasonably covered in 7-10 hours.

I thank Amine Asselah, Ming Fang, Nicolas Flammarion, Xaver Kriech-
baum, Pascal Maillard, Eliran Subag, Oren Yakir and Olivier Zindy for their
comments on earlier versions of these notes.

2 Branching Random Walks

Branching random walks (BRWs), and their continuous time counterparts,
branching Brownian motions (BBMs), form a natural model that describe
the evolution of a population of particles where spatial motion is present.
Groundbreaking work on this, motivated by biological applications, was done
in the 1930’s by Kolmogorov-Petrovsky-Piskounov and by Fisher. The model
itself exhibit a rich mathematical structures; for example, rescaled limits of
such processes lead to the study of superprocesses, and allowing interactions
between particles creates many challenges when one wants to study scaling
limits.

Our focus is slightly different: we consider only particles in R, and are
mostly interested in the atypical particles that “lead the pack”. Surprisingly,
this innocent looking question turns out to show up in unrelated problems,
and in particular techniques developed to handle it show up in the study of
the two dimensional Gaussian Free Field, through an appropriate underlying
tree structure.
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2.2 Definitions and models

We begin by fixing notation. Let T be a tree rooted at a vertex o, with
vertex set V and edge set E. We denote by |v| the distance of a vertex
v from the root, i.e. the length of the geodesic (=shortest path, which is
unique) connecting v to o, and we write o ↔ v for the collection of vertices
on that geodesic (including o and v). With some abuse of notation, we also
write o ↔ v for the collection of edges on the geodesic connecting o and v.
Similarly, for v, w ∈ V , we write ρ(v, w) for the length of the unique geodesic
connecting v and w, and define v ↔ w similarly. The nth generation of the
tree is the collection Dn := {v ∈ V : |v| = n}, while for v ∈ Dm and n > m,
we denote by

Dv
n = {w ∈ Dn : ρ(w, v) = n−m}

the collection of descendants of v in Dn. Finally, the degree of the vertex v
is denoted dv.

Let {Xe}e∈E denote a family of independent (real valued throughout this
course) random variables attached to the edges of the tree T . For v ∈ V ,
set Sv =

∑
e∈o↔vXe. The Branching Random Walk (BRW) is simply the

collection of random variables {Sv}v∈V . We will be interested in the maximal
displacement of the BRW, defined as

Mn = max
v∈Dn

Sv .

Subsets of the following assumptions will be made throughout.
– [A1] The variables {Xe}e∈E are i.i.d., of common law µ.
– [A2] µ possesses super-exponential tails:

Eµ(eλXe) =: eΛ(λ) <∞, λ ∈ R. (2.1.1)

– [A3] The tree T is a k-ary tree, with k ≥ 2: do = k and dv = k + 1 for
v 6= o.

Whenever assumptions A1-A3 hold, introduce the large deviations rate
function associated with Λ:

I(x) = sup
λ∈R

(λx− Λ(λ)) , (2.1.2)

which is strictly convex and has compact level sets. Set x∗ to be the unique
point so that x∗ > Eµ(Xe) and I(x∗) = log k. (We assume that log k is in
the interior of the domain of the rate function I, which assures that such
x∗ exists.) We then have I(x∗) = λ∗x∗ − Λ(λ∗) where x∗ = Λ′(λ∗) and
I ′(x∗) = λ∗.
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2.2 Warm up: getting rid of dependence

We begin with a warm-up computation. Note that Mn is the maximum over
a collection of kn variables, that are not independent. Before tackling com-
putations related to Mn, we first consider the same question when those kn

variables are independent. That is, let {S̃v}v∈Dn be a collection of i.i.d. ran-
dom variables, with S̃v distributed like Sv, and let M̃n = maxv∈Dn S̃v. We
then have the following, which we state for simplicity only in the non-lattice
case.

Theorem 1. With notation as above, and non-lattice assumption of the dis-
tribution of Xe, there exists a constant C so that

P (M̃n ≤ m̃n + x)→ exp(−Ce−I
′(x∗)x) , (2.2.1)

where

m̃n = nx∗ − 1

2I ′(x∗)
log n. (2.2.2)

In what follows, we write A ∼ B if A/B is bounded above and below by two
universal positive constants (that do not depend on n).

Proof. The key is the estimate, valid for an = o(
√
n),

P (S̃v > nx∗ − an) ∼ C√
n

exp(−nI(x∗ − an/n)) , (2.2.3)

which can be proved, following Bahadur and Rao, by a change of measure
(tilting) and the (local) CLT, see [DZ98, Proof of Theorem 3.7.4] for a similar
argument (here, we use the non-lattice assumption). With our assumptions,
I is smooth at x∗ (since x∗ is in the interior of the domain of I), and hence

nI(x∗ − an/n) = nI(x∗)− I ′(x∗)an + o(1) .

Therefore, recalling that I(x∗) = log k,

P (M̃n ≤ nx∗ − an) ∼
(

1− C

kn
√
n
eI
′(x∗)an+o(1)

)kn
∼ exp(−CeI

′(x∗)an+o(1)/
√
n) .

Choosing now an = log n/2I ′(x∗)− x, one obtains

P (M̃n ≤ m̃n + x) ∼ exp(−Ce−I
′(x∗)x + o(1)) .

The claim follows. ut
Remark 1. With some effort, the constant C can also be evaluated, but this
will not be of interest to us. On the other hand, the constant in front of the
log n term will play an important role in what follows.

Remark 2. Note the very different asymptotics of the right and left tails: the
right tail decays exponentially while the left tail is doubly exponential. This
is an example of extreme distribution of the Gumbel type.
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2.3 BRW: the law of large numbers

As a further warm up, we will attempt to obtain a law of large numbers for
Mn. Recall, from the results of Section 2.2, that M̃n/n→ x∗. Our goal is to
show that the same result holds for Mn.

Theorem 2 (Law of Large Numbers). Under assumptions A1-A3, we
have that

Mn

n
→n→∞ x∗ , almost surely (2.3.1)

Proof. While we do not really need in what follows, we remark that the al-
most sure convergence can be deduced from the subadditive ergodic theorem.
Indeed, note that each vertex in Dn can be associated with a word a1 . . . an
where ai ∈ {1, . . . , k}. Introduce an arbitrary (e.g., lexicographic) order on
the vertices of Dn, and define

v∗m = min{v ∈ Dm : Sv ≥ max
w∈Dm

Sw} .

For n > m, write
Mm
n = max

w∈Dv
∗
m
n

Sw − Sv∗m .

We then have, from the definitions, that Mn ≥Mm+Mm
n , and it is not hard

to check that Mn possesses all moments (see the first and second moment
arguments below). One thus concludes, by applying the subadditive ergodic
theorem (check the stationarity and ergodicity assumptions, which here follow
from independence!), that Mn/n→ c, almost surely, for some constant c. Our
goal is now to identify c.

The upper bound Let Z̄n =
∑
v∈Dn 1Sv>(1+ε)x∗n count how many parti-

cles, at the nth generation, are at location greater than (1 + ε)nx∗. We apply
a first moment method: we have, for any v ∈ Dn, that

EZ̄n = knP (Sv > n(1 + ε)x∗) ≤ kne−nI((1+ε)x
∗) ,

where we applied Chebychev’s inequality in the last inequality. By the strict
monotonicity of I at x∗, we get that EZ̄n ≤ e−nc(ε), for some c(ε) > 0. Thus,

P (Mn > (1 + ε)nx∗) ≤ EZ̄n ≤ e−c(ε)n .

It follows that

lim sup
n→∞

Mn

n
≤ x∗ , almost surely .
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The lower bound A natural way to proceed would have been to define

Zn =
∑
v∈Dn

1Sv>(1−ε)x∗n

and to show that with high probability, Zn ≥ 1. Often, one handles this via
the second moment method: recall that for any nonegative, integer valued
random variable Z,

EZ = E(Z1Z≥1) ≤ (EZ2)1/2(P (Z ≥ 1))1/2

and hence

P (Z ≥ 1) ≥ (EZ)2

E(Z2)
. (2.3.2)

In the case of independent summands, we obtain by this method that

P (M̃n ≥ (1−ε)x∗n) ≥ k2nP (S̃v ≥ (1− ε)x∗n)2

kn(kn − 1)P (S̃v ≥ (1− ε)x∗n)2 + knP (S̃v ≥ (1− ε)x∗n)
.

Since (e.g., by Cramer’s theorem of large deviations theory),

αn := knP (S̃v ≥ (1− ε)x∗n)→∞ , exponentially fast

one obtains that

P (M̃n ≥ (1− ε)x∗n) ≥ 1
kn−1
kn + 1/αn

≥ 1− e−c
′(ε)n ,

implying that

lim inf
M̃n

n
≥ x∗ , almost surely.

Any attempt to repeat this computation with Mn, however, fails, because
the correlation between the events {Sv > nx∗(1− ε)} and {Sw > nx∗(1− ε)}
with v 6= w is too large (check this!). Instead, we will consider different
events, whose probability is similar but whose correlation is much smaller.
Toward this end, we keep track of the trajectory of the ancestors of particles
at generation n. Namely, for v ∈ Dn and t ∈ {0, . . . , n}, we define the ancestor
of v at levet t as vt := {w ∈ Dt : ρ(v, w) = n− t}. We then set Sv(t) = Svt ,
noting that Sv = Sv(n) for v ∈ Dn. We will later analyze in more detail
events involving Sv(t), but our current goal is only to prove a law of large
numbers. Toward this end, define, for v ∈ Dn, the event

Bεv = {|Sv(t)− x∗t| ≤ εn, t = 1, . . . , n} .

We now recall a basic large deviations result.

Theorem 3 (Varadhan, Mogulskii). Under Assumption A2,

lim
ε→0

lim sup
n→∞

1

n
logP (Bεv) = lim

ε→0
lim inf
n→∞

1

n
logP (Bεv) = −I(x∗) .
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Define now
Zn =

∑
v∈Dn

1Bεv .

By theorem 3, we have that

EZn ≥ e−c(ε)n . (2.3.3)

To obtain an upper bound requires a bit more work. Fix a pair of vertices
v, w ∈ Dn with ρ(v, w) = 2r. Note that the number of such (ordered) pairs is
kn+r−1(k−1). Now, using independence in the first equality, and homogenuity
in the first inequality,

P (Bεv ∩Bεw) = E
(

1{|Sv(t)−x∗t|≤εn,t=1,...,n−r}

· (P (|Sv(t)− x∗t| ≤ εn, t = n− r + 1, . . . , n|Sv(n− r))2
)

≤ P (|Sv(t)− x∗t| ≤ εn, t = 1, . . . , n− r)
·P (|Sv(t)− x∗t| ≤ 2εn, t = 1, . . . , r)2 .

Using Theorem 3, we then get that for all n large enough,

P (Bεv ∩Bεw) ≤ e−(n−r)I(x
∗)−2rI(x∗)+c(ε)n ,

where c(ε)→ε→0 0. Therefore,

EZ2
n ≤

n∑
r=0

kn+re−(n+r)I(x
∗)+c(ε)n = ec(ε)n .

It follows from (2.3.2), (2.3.3) and the last display that, for any δ > 0,

P (∃v ∈ Dn : Sv ≥ (1− δ)x∗n) ≥ e−o(n) . (2.3.4)

It seems that (2.3.4) is not quite enough to conclude. However, that turns out
not to be the case. Indeed, fix ε > 0, pick a value x so that P (Xe > x) > 1/k,
and consider the tree Tε of depth εn which corresponds to independent bond
percolation on T in levels 1, . . . , εn, keeping only those edges e with Xe > x.
Because the percolation is supercritical (due to kP (Xe > x) > 1), there exists
a constant C independent of ε such that the event Cε := {|Tε ∩Dnε| > eεCn}
has probability at least Cx > 0, with Cx →x→−∞ 1. By independence, we
then conclude that

P (Mn ≥ n(1− ε)x∗ + nεx) ≥ Cx[1− (1− e−o(n))e
εCn

]→n→∞ Cx .

Taking now n→∞ followed by ε→ 0 and finally x→ −∞ yields (exercise!)
that

lim inf
n→∞

Mn

n
≥ x∗ , almost surely. ut
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Remark 3. In the Gaussian case, the argument below (2.3.4) above is not
needed, as was pointed out to me by Eliran Subag. Indeed, Borel’s inequal-
ity, see (3.3.1) below, implies that the probability that |Mn − EMn| ≥ δn
decays exponentially in n. Together with (2.3.4), this implies immediately
that EMn ≥ (1− 2δ)n for all n large enough.

Exercise 1. Complete the proof that EMn/n→ x∗.

2.4 A prelude to tightness: the Dekking-Host argument

The law of large number in Theorem 2 is weaker than the statement in The-
orem 1 in two respects: first, no information is given in the latter concerning
corrections from linear behavior, and second, no information is given, e.g.,
on the tightness of Mn − EMn, let alone on its convergence in distribution.
In this short section, we describe an argument, whose origin can be traced
to [DH91], that will allow us to address the second point, once the first has
been settled.

The starting point is the following recursion:

Mn+1
d
=

k
max
i=1

(Mn,i +Xi), (2.4.1)

where
d
= denotes equality in distribution, Mn,i are independent copies of

Mn, and Xi are independent copies of Xe which are also independent of the
collection {Mn,i}ki=1. Because of the independence and the fact that EXi = 0,
we have that

E
(

k
max
i=1

(Mn,i +Xi)
)
≥ E

(
k

max
i=1

(Mn,i)
)
.

Therefore,

EMn+1 ≥ E
(

k
max
i=1

(Mn,i)
)
≥ E

(
2

max
i=1

(Mn,i)
)
.

Using the identity max(a, b) = (a+ b+ |a− b|)/2, we conclude that

E(Mn+1 −Mn) ≥ 1

2
E|Mn −M ′n| , (2.4.2)

where M ′n is an independent copy of Mn.
The importance of (2.4.2) cannot be over-estimated. First, suppose that

there exists K <∞ such that Xe < K, almost surely (this was the setup for
which Dekking and Host invented this argument). In that case, we have that
EMn+1 − EMn ≤ K, and therefore, using (2.4.2), we immediately see that
the sequence {Mn−EMn}n≥1 is tight (try to prove this directly to appreciate
the power of (2.4.2)). In making this assertion, we used the easy

Exercise 2. Prove that for every C > 0 there exists a function f = fC on R
with f(K) →K→∞ 0, such that if X,Y are i.i.d. with E|X − Y | < C < ∞,
then P (|X − EX| > K) ≤ f(K).
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(See also Exercise 6 below.)
However, (2.4.2) has implications even when one does not assume that

Xe < K almost surely for some K. First, it reduces the question of tightness
to the question of computing an upper bound on EMn+1 − EMn (we will
provide such a bound, of order 1, in the next section). Second, even without
the work involved in proving such a bound, we have the following observation,
due to [BDZ11].

Corollary 1. For any δ > 0 there exists a deterministic sequence {nδj}j≥1
with lim sup(nδj/j) ≤ (1+δ), so that the sequence {Mnδj

−EMnδj
}j≥1 is tight.

Proof. Fix δ ∈ (0, 1). By Exercise 1, EMn/n → x∗. By (2.4.2), EMn+1 −
EMn ≥ 0. Define nδ0 = 0 and nδj+1 = min{n ≥ nδj : EMn+1−EMn ≤ 2x∗/δ}.
We have that nδj+1 <∞ because otherwise we would have lim supEMn/n ≥
2x∗/δ. Further, let Kn = |{` < n : ` 6∈ {nδj}}|. Then, EMn ≥ 2Knx

∗/δ,
hence lim supKn/n ≤ δ/2, from which the conclusion follows. ut

2.5 Tightness of the centered maximum

We continue to refine results for the BRW, in the spirit of Theorem 1; we will
not deal with convergence in law, rather, we will deal with finer estimates on
EMn, as follows.

Theorem 4. Under Assumptions A1-A3, we have

EMn = nx∗ − 3

2I ′(x∗)
log n+O(1) . (2.5.1)

Remark 4. It is instructive to compare the logarithmic correction term in
(2.5.1) to the independent case, see (2.2.2): the constant 1/2 coming from
the Bahadur-Rao estimate (2.2.3) is replaced by 3/2. As we will see, this
change is due to extra constraints imposed by the tree structure, and ballot
theorems that are close to estimates on Brownian bridges conditioned to stay
positive.

Theorem 4 was first proved by Bramson [Br78] in the context of Branch-
ing Brownian Motions. The branching random walk case was discussed in
[ABR09], who stressed the importance of certain ballot theorems. Recently,
Roberts [Ro11] significantly simplified Bramson’s original proof. The proof
we present combines ideas from these sources. To reduce technicalities, we
often consider only the case of Gaussian increments in the proofs; when we do
so, we explicitely mention it. The reader interested in seeing a full argument
in the non-Gaussian case is referred to [BDZ14].

Proof. We begin with a general ballot theorem; this version can be found in
[ABR08, Theorem 1]. For simplicity, we assume throughout that µ (−1/2, 1/2)) >
0.
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Theorem 5 (Ballot theorem). Let Xi be iid random variables of zero
mean, finite variance, with P (X1 ∈ (−1/2, 1/2)) > 0. Define Sn =

∑n
i=1Xi.

Then, for 0 ≤ k ≤
√
n,

P (k ≤ Sn ≤ k + 1, Si > 0, 0 < i < n) = Θ

(
k + 1

n3/2

)
, (2.5.2)

and the upper bound in (2.5.2) holds for any k ≥ 0.

Here, we write that an = Θ(bn) if there exist constanst c1, c2 > 0 so that

c1 ≤ lim inf
n→∞

an
bn
≤ lim sup

n→∞

an
bn
≤ c2 .

Theorem 5 is plausible in that its continuous limit is easily proved by using
Brownian motion and the reflection principle, see [Br78], or Bessel processes,
see [Ro11].

An easy corollary is the following.

Corollary 2. Continue with the assumptions and notation of Theorem 5.
For y > 0, define Syn = Sn + y. Then there exists a constant C independent
of y so that, for 0 ≤ y ≤ k <

√
n/2,

P (k ≤ Syn ≤ k + 1, Syi > 0, 0 < i < n) ≤ C
(

(k + 1)(y + 1)2

n3/2

)
. (2.5.3)

Remark 5. At the cost of a more complicated proof, the estimate on the right
side can be improved to C(k + 1)(y + 1)n−3/2, which is the expression one
obtains from the reflection principle. One can also obtain on the right side
an expression that decays exponentially in k/

√
n. We do not address these

refinements.

Proof. For simplicity, we assume throughout the proof that X1 is Gaussian of
zero mean and variance 1. Denote by ρ its density. The modification needed
for the general case is routine. Note that

k + 1

n3/2
≥ P (k ≤ Sn+y2 ≤ k + 1, Si > 0, 0 < i < n+ y2)

≥ P (0 < Sj , j = 1, . . . , y2, Sy2 ∈ (y, y + 1]) (2.5.4)

× min
θ∈[0,1]

∫ ∞
0

ρ(x− θ)P (x+ Syi > 0, 1 ≤ i ≤ n− 1, x+ Syn−1 ∈ [k, k + 1])dx

≥ c

(y + 1)2
·

min
θ∈[0,1]

∫ ∞
0

ρ(x− θ)P (x+ Syi > 0, 1 ≤ i ≤ n− 1, x+ Syn−1 ∈ [k, k + 1])dx ,

where in the second inequality we applied the lower bound in the ballot
theorem for n = y2 and k =

√
n = y. (Again, a direct computation is also

possible by the reflection principle.) We further have that
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P (Syi > 0, i = 1, . . . , n, Syn ∈ [k, k + 1])

=

∫ ∞
0

ρ(x)P (x+ Syi > 0, i = 1, . . . , n− 1, x+ Syn−1 ∈ [k, k + 1])dx

≤ c min
θ∈[0,1]

∫ ∞
0

ρ(x− θ)P (x+ Syi > 0, i = 1, . . . , n− 1, x+ Syn−1 ∈ [k, k + 1])dx .

Combining the last display with (2.5.4) completes the proof of the corollary.
ut

A lower bound on the right tail of Mn Fix y > 0 independent of n and
set

an = an(y) = x∗n− 3

2I ′(x∗)
log n.

For v ∈ Dn, define the event

Av = {Sv ∈ [y + an − 1, y + an], Sv(t) ≤ ant/n+ y, t = 1, 2, . . . , n},

and set
Zn =

∑
v∈Dn

1Av .

In deriving a lower bound on EMn, we first derive a lower bound on the
right tail of the distribution of Mn, using a second moment method. For this,
we need to compute P (Av). Recall that we have I(x∗) = λ∗x∗−Λ(λ∗) = log k,
with λ∗ = I ′(x∗). Introduce the new parameter λ∗n so that

λ∗n
an
n
− Λ(λ∗n) = I(an/n) .

Since I ′(an/n) = λ∗n, it is easy to check that λ∗n = λ∗−3I ′′(x∗) log n/(2nI ′(x∗))+
O(1/n). (In the Gaussian case, λ∗n = an/n.)

Define a new probability measure Q on R by

dµ

dQ
(x) = e−λ

∗
nx+Λ(λ

∗
n) ,

and with a slight abuse of notation continue to use Q when discussing a
random walk whose iid increments are distributed according to Q. Note that
in the Gaussian case, Q only modifies the mean of P , not the variance.

We can now write

P (Av) = EQ(e−λ
∗
nSv+nΛ(λ

∗
n)1Av )

≥ e−n[λ
∗
nan/n−Λ(λ

∗
n)]EQ(Av) (2.5.5)

= e−nI(an/n)PQ(S̃v ∈ [0, 1], S̃v(t) ≥ 0, t = 1, 2, . . . , n) .

where S̃v(t) = ant/n−Sv(t) is a random walk with iid increments whose mean
vanishes under Q. Again, in the Gaussian case, the law of the increments is
Gaussian and does not depend on n.
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Applying Theorem 5, we get that

P (Av) ≥ C
(y + 1)

n3/2
e−nI(((an+y)/n) . (2.5.6)

Since

I((an + y)/n) = I(x∗)− I ′(x∗)
(

3

2I ′(x∗)
· log n

n
− y

n

)
+O

((
log n

n

)2
)
,

we conclude that
P (Av) ≥ C(y + 1)k−ne−I

′(x∗)y ,

and therefore
EZn = knP (Av) ≥ c1(y + 1)e−I

′(x∗)y . (2.5.7)

We next need to provide an upper bound on

EZ2
n = knP (Av) +

∑
v 6=w∈Dn

P (Av ∩Aw) = EZn + kn
n∑
s=1

ksP (Av ∩Avs) ,

(2.5.8)
where vs ∈ Dn and ρ(v, vs) = 2s.

The strategy in computing P (Av ∩ Avs) is to condition on the value of
Sv(n − s). More precisely, with a slight abuse of notation, writing Ij,s =
an(n− s)/n+ [−j,−j + 1] + y, we have that

P (Av ∩Avs) (2.5.9)

≤
∞∑
j=1

P (Sv(t) ≤ ant/n+ y, t = 1, 2, . . . , n− s, Sv(n− s) ∈ Ij,s)

× max
z∈Ij,s

(P (Sv(s) ∈ [y + an − 1, y + an],

Sv(t) ≤ an(n− s+ t)/n+ y, 1 ≤ t ≤ s|Sv(0) = z))2 .

Repeating the computations leading to (2.5.6) (using time reversability of
the random walk) we conclude that

P (Av ∩Avs) ≤
∞∑
j=1

j5(y + 1)2

s3(n− s)3/2
e−jλ

∗
n3(n+s)/2nk−(n+s)e−(n+s)I

′(x∗)y/n .

(2.5.10)
Substituting in (2.5.8) and (2.5.9), and performing the summation over j first
and then over s, we conclude that EZ2

n ≤ c(y + 1)EZn, and therefore, using
again (2.3.2),

P (Mn ≥ an − 1) ≥ P (Zn ≥ 1) ≥ cEZn/(y + 1) ≥ c0e−I
′(x∗)y . (2.5.11)

This completes the evaluation of a lower bound on the right tail of the law
of Mn.

Remark 6. Using the improved estimate as in remark 5, one can improve the
right side of (2.5.11) to c0(y+1)e−I

′(x∗)y, which matches (up to a multiplica-
tive constant) the precise tail estimates.



Branching random walks and GFF 13

An upper bound on the right tail of Mn A subtle point in obtaining
upper bounds is that the first moment method does not work directly - in
the first moment one cannot distinguish between the BRW and independent
random walks, and the displacement for these has a different logarithmic
corrections (the maximum of kn independent particles is larger).

To overcome this, note the following: a difference between the two scenar-
ios is that at intermediate times 0 < t < n, there are only kt particles in the
BRW setup while there are kn particles in the independent case treated in
Section 2.2. Applying the first moment argument at time t shows that there
cannot be any BRW particle at time t which is larger than x∗t + C log n,
while this constraint disappears in the independent case. One thus expect
that imposing this constraint in the BRW setup (and thus, pick up an extra
1/n factor from the ballot theorem 5) will modify the correction term.

Carrying out this program thus involves two steps: in the first, we consider
an upper bound on the number of particles that never cross a barrier reflecting
the above mentioned constraint. In the second step, we show that with high
probability, no particle crosses the barrier. The approach we take combines
arguments from [Ro11] and [ABR09]; both papers build on Bramson’s original
argument.

Turning to the actual proof, fix a large constant κ > 0, fix y > 0, and
define the function

h(t) =

{
κ log t, 1 ≤ t ≤ n/2
κ log(n− t+ 1), n/2 < t ≤ n . (2.5.12)

Recall the definition an = an(y) = x∗n− 3
2I′(x∗) log n+ y and let

τ(v) = min{t > 0 : Sv(t) ≥ (ant/n+ h(t) + y − 1} ∧ n ,

and τ = minv∈Dn τ(v). (In words, τ is the first time in which there is a
particle that goes above the line ant/n+ h(t) + y.)

Introduce the events

Bv = {Sv(t) ≤ ant/n+ h(t) + y, 0 < t < n, Sv ∈ [an − 1 + y, an + y]}

and define Yn =
∑
v∈Dn 1Bv . We will prove the following.

Lemma 1. There exists a constant c2 independent of y so that

P (Bv) ≤ c2(y + 1)3e−I
′(x∗)yk−n . (2.5.13)

Remark 7. The estimate in Lemma 1 is not optimal (in particular, using the
improved estimate mentioned in Remark 5 would reduce the power of (y+ 1)
to 1), however it is sufficient for our needs.

Proof of Lemma 1 (Gaussian case). Let βi = h(i)− h(i− 1) (note that βi is
of order 1/i and therefore the sequence β2

i is summable). Define parameters
λ̃∗n(i) so that
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λ̃∗n(i)
(an
n

+ βi

)
− Λ(λ̃∗n(i)) = I

(an
n

+ βi

)
.

Using that I ′(an/n+ βi) = λ̃∗n(i), one has that

λ̃∗n(i) = λ∗n + I ′′(an/n)βi +O
(
β2
i

)
.

Define the new probability measures Qi on R by

dP

dQi
(x) = e−λ̃

∗
n(i)x+Λ(λ̃

∗
n(i)) ,

and use Q̃ to denote the measure where Xi are independent of law Qi. We
have, similarly to (2.5.5),

P (Bv) = EQ̃(e−
∑n
i=1 λ̃

∗
n(i)Xi+

∑n
i=1 Λ(λ̃

∗
n(i))1Bv ) . (2.5.14)

Expanding around λ∗n and using that
∑n
i=1 βi = 0, one gets that on the event

Sn ∈ [an − 1, an],

n∑
i=1

λ̃∗n(i)Xi−
n∑
i=1

Λ(λ̃∗n(i)) = nI(an/n)+I ′′(an/n)

n∑
i=1

βiXi+

n∑
i=1

O(β2
i )Xi+O(1) .

(2.5.15)
Substituting in (2.5.14), and using again that

∑n
i=1 βi = 0, one gets

P (Bv) ≤ Cn3/2k−ne−I
′(x∗)yEQ̃(e−I

′′(an/n)
∑n
i=1 βi(Xi−an/n−βi)+

∑n
i=1 δiXi1Bv ) ,

(2.5.16)
where δi = O(β2

i ). (The addition of the term an/n + βi is done because
EQ̃(Xi) = an/n + βi.) Using again that

∑n
i=1 βi = 0, integration by parts

yields
∑
βi(Xi − an/n− βi) = −

∑
S̃(i)γ̃i, where under Q̃, S̃(i) is a random

walk with standard Gaussian increments, and γ̃i = βi+1−βi. We thus obtain
that with θi = δi+1 − δi,

P (Bv) ≤ Cn3/2k−ne−I
′(x∗)yEQ̃(eI

′′(an/n)
∑n
i=1 S̃(i)γ̃i+

∑n
i=1 θiS̃(i)1Bv )

≤ Cn3/2k−ne−I
′(x∗)yEQ̃(eI

′′(an/n)
∑n
i=1 S̃(i)γi1Bv ) , (2.5.17)

where γi = O(1/i2). In terms of S̃i, we can write

Bv = {S̃(t) ≤ y, S̃(n) ∈ [−1, 0]} .

Without the exponential term, we have, by Corollary 2, that

Q̃(Bv) ≤ c(y + 1)3n−3/2 .

Our goal is to show that the exponential does not destroy this upper bound.
Let
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C− = {∃t ∈ [(log n)4, n/2] : S̃(t) < −t2/3},

C+ = {∃t ∈ [n/2, (n− (log n)4] : S̃(n− t) < −(n− t)2/3}.

Then,

Q̃(C− ∪ C+) ≤ 2

n/2∑
t=(logn)4

e−ct
1/3

≤ 2e−c(logn)
4/3

.

Since γi ∼ 1/i2, one has
∑n−(logn)4

(logn)4 γi →n→∞ 0 and further on (C− ∪ C+)c,∑
S̃(i)γi is bounded. We thus obtain

EQ̃(eI
′′(an/n)

∑n
i=1 S̃(i)γi1Bv )

≤ 1

n2
+ EQ̃(eI

′′(an/n)
∑(logn)4

i=1 (S̃(i)γi+S̃(n−i)γn−i)1Bv∩Cc−∩Cc+) .

Denote by

B(z, z′, t) = {S̃(i) ≤ z + y, i = 1, . . . , n− t, S̃(n− t) ∈ [z′ − 1, z′] .

We have, for 0 ≤ z, z′, t < (log n)4, by Corollary 2,

EQ̃(B(z, z′, t)) ≤ C 1 + (z + z′)3 + y3

n3/2
.

We then get

EQ̃(eI
′′(an/n)

∑(logn)4

i=1 (S̃(i)γi+S̃(n−i)γn−i)1Bv∩Cc−∩Cc+)

≤
(logn)4∑
z−,z+=0

(logn)4∑
t−,t+=1

ec(z−+z+)I′′(an/n)e−cz
2
−t

1/3
− /2e−cz

2
+t

1/3
+ /2

× max
u,u′∈[0,1]

EQ̃(B(u+ z−, u
′ + z+ + y, t− + t+))

≤ C
(y + 1)3

n3/2
.

(The first inequality requires some work. To see it, use a union bound on

the value z− = [
∑(logn)4

i=1 (S̃(i)γi]− and z+ = [
∑(logn)4

i=1 S̃(n− i)γn−i)]−. On

these values, there exists a t−, t+ so that S̃(t−) ≤ −cz−t2/3− and S̃(n− t+) ≤
−cz+t2/3+ . Now use a union bound on the latter values, the Markov prop-
erty, and the exponential estimate mentioned in Remark 5.) Combined with
(2.5.17), this completes the proof of Lemma 1. ut

We need to consider next the possibility that τ = t < n. Assuming that
κ is large enough (κ > 3/2I ′(x∗) will do), an application of the lower bound
(2.5.11) to the descendants of the parent of the particle v with τv < n reveals
that for some constant c3 independent of y,
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E[Yn|τ < n] ≥ c3 .

We conclude that

P (τ < n) ≤ E(Yn)P (τ < n)

E(Yn1τ<n)
=

EYn
E(Yn|τ < n)

≤ cEYn . (2.5.18)

One concludes from this and Lemma 1 that

P (Mn ∈ [an − 1, an]) ≤ P (τ < n) + EYn ≤ c5(y + 1)3e−I
′(x∗)y . (2.5.19)

In particular, this also implies that

EMn ≤ x∗n−
3

2I ′(x∗)
log n+O(1) . (2.5.20)

Remark 8. Using the improved estimate of Remark 5, one can eliminate the
exponent 3 of (y + 1) in the right side of (2.5.19), and thus match (up to
multiplicative constants) the lower bound on the right tail of Mn mentioned
in Remark 6 to the upper bound.

Remark 9. An alternative approach to the argument in (2.5.18), which is more
in line with Bramson’s original proof, is as follows. Note that

P (τ ≤ n− nκ
′
) ≤

n−nκ
′∑

i=1

kiP (Sn(i) ≥ ani/n+ h(i) + y) ≤ Ce−I
′(x∗)y ,

where κ′ can be taken so that κ′ →κ→∞ 0, and in particular for κ large we can
have κ′ < 1. Assume now κ large enough so that κ′ ≤ 1/2. For t ≥ n− n1/2,
one repeats the steps in Lemma 1 as follows. Let Nt be the number of vertices
w ∈ Dt (out of kt) whose path Sw(s) crosses the barrier (ans/n+h(s)+y−1)
at time s = t. We have

P (τ = t) ≤ ENt ≤ c(y + 1)3e−I
′(x∗)yt/n 1

(n− t)c1κ−c2

for appropriate constants c1, c2. Taking κ large enough ensures that

n∑
t=n−n1/2

ENt ≤ c(y + 1)3e−I
′(x∗)y .

Combining the last two displays leads to the same estimate as in the right
side of (2.5.19), and hence to (2.5.20).

We finally prove a complementary lower bound on the expectation. Recall,
see (2.5.11), that for any y > 0,

P (Mn ≥ an(y)) ≥ ce−I
′(x∗)y .
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In order to have a lower bound on EMn that complements (2.5.20), we need
only show that

lim
y→−∞

lim sup
n→∞

∫ y

−∞
P (Mn ≤ an(y)) = 0 . (2.5.21)

Toward this end, fix ` > 0 integer, and note that by the first moment argu-
ment used in the proof of the LLN (Theorem 2 applied to maxw∈D`(−Sw)),
there exist positive constants c, c′ so that

P ( min
w∈D`

(Sw) ≤ −c`) ≤ e−c
′` .

On the other hand, for each v ∈ Dn, let w(v) ∈ D` be the ancestor of v in
generation `. We then have, by independence,

P (Mn ≤ −c`+ (n− `)x∗ − 3

2I ′(x∗)
log(n− `)) ≤ (1− c0)k

`

+ e−c
′` ,

where c0 is as in (2.5.11). This implies (2.5.21). Together with (2.5.20), this
completes the proof of Theorem 4. ut

2.6 Time-varying profiles

Before dropping the study of BRW, we discuss some interesting phase tran-
sitions that occur when the increments are allowed to depend on time. In
doing so, we follow closely [FZ11], to which we refer for more details on the
proof than in the sketch that we provide below. We also refer to [BK04] for
a closely related model in the context of the Derrida’s GREM model.

For simplicity, we continue to consider BRW with deterministic binary
branching and Gaussian increments. The twist here is that the variance is
a function of time and of the time-horizon. More precisely, for σ > 0, let
N(0, σ2) denote the normal distribution with mean zero and variance σ2.
Let n be an integer, and let σ2

1 , σ
2
2 > 0 be given. We start the system with

one particle at location 0 at time 0. Suppose that v is a particle at location
Sv at time k. Then v dies at time k + 1 and gives birth to two particles v1
and v2, and each of the two offspring ({vi, i = 1, 2}) moves independently
to a new location Svi with the increment Svi − Sv independent of Sv and
distributed as N(0, σ2

1) if k < n/2 and as N(0, σ2
2) if n/2 ≤ k < n. As before,

let Mn = maxv∈Dn Sv denote the maximal displacement of the walk.
General tightness results, using recursions, establish the tightness of

{Mn−EMn} [BZ09, Fa10]. We will however be more interested in the asymp-
totics of Mn. That is, we will show that

Mn = (
√

2 log 2σeff)n− β
σeff√
2 log 2

log n+O(1) a.s. (2.6.22)

were σeff, β depend not only on the value of σ1, σ2 but more important, on
their order. That is, we have the following.
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Theorem 6. In the setup above, the relation (2.6.22) holds, where

σeff =


√

(σ2
1 + σ2

2)/2, σ2
1 < σ2

2 ,
(σ1 + σ2)/2, σ2

1 > σ2
2 ,

σ1, σ2
1 = σ2

2 ,
β =

1/2, σ2
1 < σ2

2 ,
3, σ2

1 > σ2
2 ,

3/2, σ2
1 = σ2

2 .
(2.6.23)

Note that the function σeff is continuous in its arguments, whereas β exhibits
a phase transition.
Proof of Theorem 6 (sketch) The first step consists of finding the typical
behavior, that is, at the level of large deviations, the path followed by the
maximal path. Indeed, the probability for a random walk (with variance
profile as above) to follow a path nφ(nr), r ∈ [0, 1], decays exponentially (in
n) at rate I(φ, 1), where

I(φ, t) =

∫ 1/2∧t

0

φ′(s)2

2σ2
1

+

∫ 1∧t

1/2∧t

φ′(s)2

2σ2
2

.

A first moment computation (using that at time k ≤ n, there are only 2k

particles) yields the constraint

I(φ, t) ≤ t log 2, t ∈ [0, 1] .

Of course, one aims at maximizing φ(1), subject to φ(0) = 0 and the con-
straints.

The solution of this variational problem differs according to whether σ2
1 <

σ2
2 or σ2

1 > σ2
2 : in either case, by convexity, the maximizing function φ̄ is

piecewise linear, and we only need to compute φ̄(1/2) and φ̄(1). If σ2
1 < σ2

2 ,
one obtains

φ̄(s) =


2σ2

1

√
log 2√

(σ2
1 + σ2

2)
s, 0 ≤ s ≤ 1

2
;

2σ2
1

√
log 2√

(σ2
1 + σ2

2)

1

2
+

2σ2
2

√
log 2√

(σ2
1 + σ2

2)
(s− 1

2
),

1

2
≤ s ≤ 1,

(2.6.24)

whereas in case σ2
1 > σ2

2 one has

φ̄(s) =


σ1
√

2 log 2s, 0 ≤ s ≤ 1

2
;

σ1
√

log 2/2 + (s− 1/2)σ2
√

2 log 2,
1

2
≤ s ≤ 1,

(2.6.25)

In particular, the optimal curve φ̄(t) satisfies at all times the constraint with
strict inequality (when σ2

1 < σ2
2) and equality (if σ2

1 ≥ σ2
2). The computation

of the LLN, that is of σeff, now follows the recipe described in Section 2.3,
and yields the value for σeff.

In order to evaluate the logarithmic correction term, when σ2
1 < σ2

2 , for an
upper bound one applies directly the first moment method, without worrying
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about the walk straying above the path φ̄(t); one thus replaces the Ballot
Theorem 5 with a local CLT. A similar phenomenon occurs for the lower
bound, leading to β = 1/2.

When σ2
1 > σ2

2 , the lower bound is very simple: one just consider the max-
imal descendant of the leading particle at generation n/2. The upper bound
requires more work, but essentially, the constraint to consider is not just for
a random walk to be below a (slightly curved bounday) for time 1, . . . , n.
Instead, the random walk has to satisfy this and be in a small neighborhood
of the path at time n/2; this results in two Brownian bridge factors, leading
to β = 3. ut

We remark that by considering a decreasing variance profile with k dis-
tinct values, a repeat of the above argument leads to a logarithmic correction
term with β = 3k/2. This immediately leads to the following natural ques-
tion: what is the maximal slowdown (with respect to the LLN behavior) that
can be achieved? Specifically, we conjecture the following.

Conjecture 1. Consider a strictly decreasing smooth function σ : [0, 1] →
[1, 2], and consider binary BRW with increments, at generation k, which are
normal of mean 0 and variance σ(k/n). Then, that for large n,

EMn = cσn− gσ(n) ,

where gσ(n) = O(n1/3).

In the rest of this section, we provide some evidence toward Conjecture 1.
To avoid unimportant technical issues, we do so in the context of Branching
Brownian Motions (BBM), with continuous binary branching. Translating
this to the BRW setup requires only minimal, and straightforward, adapta-
tions. Our treatment is borrowed from [FZ12].

Remark 10. The conjecture has been settled, and in fact convergence of the
maximum (properly centered) has been established. See [MZ13] and refer-
ences therein for details.

Thus, consider the BBM model where at time t, all particles move inde-
pendently as Brownian motions with variance σ2

T (t) = σ2(t/T ), and branch
independently at rate 1. We consider a smooth strictly decreasing func-
tion σ. Let ξi(t), i = 1, . . . , Nt denote the set of particles at time t, let
Mt = maxi ξi(t) denote the maximal displacement of the BBM. We are in-
terested in MT .

Theorem 7. With σ(·) as above, we have that

Med(MT ) = vσT − gσ(T ) , (2.6.26)

where vσ is defined in (2.6.30), and

0 < lim inf
T→∞

gσ(T )

T 1/3
≤ lim sup

T→∞

gσ(T )

T 1/3
<∞ (2.6.27)
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We emphasize that it is already known a-priori that {MT −EMT } is a tight
sequence, so (2.6.26) would hold with Med(MT ) replaced by any quantile of
MT or by its mean.

Before bringing the proof of Theorem 7, we collect some preliminary infor-
mation concerning the path of individual particles. With W· and W̃· denoting
standard Brownian motions, let

Xt =

∫ t

0

σT (s)dWs , t ∈ [0, T ].

Let τ(t) =
∫ t
0
σ2
T (s)ds. Clearly, X· has the same law as W̃τ(t). The following

is a standard adaptation of Schilder’s theorem, using the scaling properties
of Brownian motion.

Theorem 8 (Schilder). Define Zt = 1
TXt/T , t ∈ [0, 1]. Then Zt satisfies a

large deviation principle in C0[0, 1] of speed T and rate function

I(f) =

{∫ 1

0
f ′(s)2

2σ2(s)ds , f ∈ H1[0, 1] ,

∞ , else
.

Here, H0[0, 1] is the space of absolutely continuous function on [0, 1] that van-
ish at 0, whose (almost everywhere defined) derivative is square-integrable.

We now wish to define a barrier for the particle systems that is unlikely
to be crossed. This barrier will also serve as a natural candidate for a change
of measure. Recall that at time t, with overwhelming probability there are
at most et+o(t) particles alive in the system. Thus, it becomes unlikely that
any particle crosses a boundary of the form Tf(·/T ) if, at any time,

Jt(f) :=

∫ t

0

f ′(s)2

2σ2(s)
ds > t .

This motivates the following lemma.

Lemma 2. Assume σ is strictly decreasing. Then the solution of the varia-
tional problem

vσ := sup{f(1) : Jt(f) ≤ t, t ∈ [0, 1]} (2.6.28)

exists, and the unique minimizing path is the function

f̄(t) =
√

2

∫ t

0

σ(s)ds . (2.6.29)

In particular,

vσ =
√

2

∫ 1

0

σ(s)ds . (2.6.30)
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Proof of Lemma 2: We are going to prove that no other functions can do
better than f̄ . That is, if some absolutely continuous function g satisfies
g(0) = 0 and the constraint Jt(g) ≤ t for all 0 ≤ t ≤ 1, then g(1) ≤ f̄(1) = vσ.

In fact, denote φ(t) = Jt(g) ≤ t for 0 ≤ t ≤ 1, and then φ′(t) = g′(t)2

2σ2(t) a.e..

We can write g2(1) as

g2(1) =

(∫ 1

0

g′(t)dt

)2

=

(∫ 1

0

√
2φ′(t)σ(t)dt

)2

.

Using Hölder’s inequality, we have

g2(1) ≤ 2

(∫ 1

0

φ′(t)σ(t)dt

)(∫ 1

0

σ(t)dt

)
=
√

2vσ

(∫ 1

0

φ′(t)σ(t)dt

)
.

Using integration by parts, the above is equal to

√
2vσ

(
φ(1)σ(1)−

∫ 1

0

φ(t)σ′(t)dt

)
.

Since φ(t) ≤ t and σ′(t) ≤ 0 for all 0 ≤ t ≤ 1, the above is less than or equal
to

√
2vσ

(
σ(1)−

∫ 1

0

tσ′(t)dt

)
=
√

2vσ

∫ 1

0

σ(t)dt = v2σ,

where we apply integration by parts in the first equality. This completes the
proof. ut

Proof of Theorem 7: From Lemma 2 one immediately obtains that
Med(MT )/T ≤ vσ(1 + o(1)). To obtain an a-priori lower bound on EMT

(which will also give a weak form of the lower bound in (2.6.26)), we argue
by comparison with a simpler BRW. A crucial role will be played by the
following elementary lemma.

Lemma 3. Let T be a finite set. Let {Xt}t∈T , {Yt}t∈T denote two indepen-
dent collections of zero mean random variables indexed by t ∈ T . Then

Emax
t∈T

(Xt + Yt) ≥ Emax
t∈T

Xt . (2.6.31)

Proof of Lemma 3 Let t∗ be such that maxt∈T Xt = Xt∗ . (If more that one
such t∗ exists, lake the minimal according to some a-priori order on T .) We
have

Emax
t∈T

(Xt + Yt) ≥ E(Xt∗ + Yt∗) = EXt∗ = Emax
t∈T

Xt ,

where the first equality used the independence of {Xt} and {Yt}, and the
fact that EYt = 0. ut

The promised (weak) lower bound on EMT is obtained as follows. Divide
the interval [0, T ] into T 1/3 intervals Ij = [(j− 1)T 2/3, jT 2/3] of length T 2/3.



22 Ofer Zeitouni

In the interval Ij , fix σj = σ(jT−1/3), noting that σj ≤ σ(x) for x ∈ Ij . Let

M̃T denote the maximum of BBM where the variance of particles at time
t ∈ Ij is σ2

j . By lemma 3, EMT ≥ EM̃T . On the other hand,

EM̃T ≥
T 1/3∑
j=1

EM̃ j
T 2/3 ,

where M̃ j
T 2/3 is the maximum, at time T 2/3, of BBM with particle variance σ2

j .
Applying Bramson’s theorem for BBM (the continuous analogue of Theorem
4) we thus get

EMT ≥
T 1/3∑
j=1

(T 2/3
√

2σj − C log T ) ,

with the constant C independent of j (here we use that σj ∈ [1, 2]). Since
σj = σ(jT−1/3) and the function σ is smooth, one has that

|T 2/3
T 1/3∑
j=1

σj − T
∫ 1

0

σ(s)ds|

is uniformly bounded by a multiple of T 2/3, and therefore

EMT ≥ Tvσ − CT 2/3 ,

yielding a weaker form of the lower bound in (2.6.26).
Improving the lower bound to the form in (2.6.26) requires more work.

Full details are provided in [FZ12]. We will sketch the proof of slightly weaker
result, with a logarithmic correction. The key is to follow the strategy outlined
above (dividing the interval [0, T ] to intervals of length T 2/3), but instead
of comparison with a BBM with increments constant in time, we use the
original BBM with variance that is (very slowly) varying in time. The key
is the following lemma, where we set σ̄j(t) = σT

(
t+ (j − 1)T 2/3

)
and σ̄j =∫ T 2/3

0
σ̄j(s)ds.

Lemma 4. Consider a BBM of binary branching, run over time [0, T 2/3],
with time varying variance σ̄j(t), and let Mj denote its maximum. Then
there exists a constant A so that

EMj ≥
√

2σ̄j −A log T . (2.6.32)

Indeed, given the lemma, we get

EMT ≥ vσT −AT 1/3 log T ,

proving (a weak form of) (2.6.27).
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Before proceeding to the proof of the upper bound in (2.6.26), we provide
the following.
Proof of Lemma 4 (sketch)
The proof uses the second moment method. Note that the path of a single
particle can be represented as Wτ(t), where W· is a Brownian motion and

τ(t) =
∫ t
0
σj(s)

2ds. Note also that

τ(T 2/3) = T 2/3(σ̄j/T
2/3)2 +O(1) =: T 2/3ηj/

√
2 +O(1) .

Consider the path of particles, denoted xi(t), where i = 1, . . . , N(T 2/3).
Fix a constant C and call a particle good if

xi(t) ≤ ηjt, t ≤ T 2/3, xi(T
2/3) ≥ ηjT 2/3 − C log T .

Set

Aj =

N(T 2/3)∑
i=1

1i is a good particle .

Using the time change τ(t) and standard computations for Brownian motion
and Brownian bridge, one checks that for some C large enough, EAj ≥ 1
and E((Aj)2) ≤ eB(C) log T . Hence, with this value of C,

P (there exists a good particle) ≥ T−C
′
.

By truncating the tree of particles at depth 2C ′ log T and using independence,
one conclude that

P (there exists i ∈ N(T 2/3) with xi(T
2/3) > ηjT

2/3 − C ′′ log T ) >
1

2
.

Using the tightness ofMj one concludes that EMj ≥ ηjT 2/3−C ′′ log T−O(1).
This completes the proof of Lemma 4. ut

It remains to provide a proof of the upper bound in (2.6.26). The first step
is to show that in fact, no particle will be found significantly above T f̄(t/T ).

Lemma 5. There exists C large enough such that, with

A = {∃t ∈ [0, T ], i ∈ {1, . . . , Nt}ξi(t) > Tf̄(t/T ) + C log T} ,

it holds that
P (A)→T→∞ 0 . (2.6.33)

Proof of Lemma 5: Recall the process X· in C0[0, T ], whose law we denote
by P0. Consider the change of measure with Radon–Nykodim derivative

dP1

dP0
|Ft = exp

(
−
∫ t

0

f̄ ′(s/T )

σ2(s/T )
dXs −

1

2

∫ t

0

(f̄ ′(s/T ))2

σ2(s/T )
ds

)
= exp

(
−
∫ t

0

√
2

σ(s/T )
dXs − t

)
. (2.6.34)
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The process X· under P0 is the same as the process X· + T f̄(·/T ) under P1.
Note that for any t ≤ T ,∫ t

0

√
2

σ(s/T )
dXs =

√
2Xt

σ(t/T )
+

√
2

T

∫ t

0

Xs
σ′(s/T )

σ2(s/T )
ds . (2.6.35)

We then have, with τ = inf{t ≤ T : Xt ≥ C log T}, on the event τ ≤ T ,∫ τ

0

(f̄ ′(s/T ))

σ2(s/T )
dXs ≥

√
2C log T

σ(t/T )
+

√
2C log T

T

∫ t

0

σ′(s/T )

σ2(s/T )
ds

=

√
2C log T

σ(0)
,

and therefore, with τ ′ = inf{t ≤ T : Xt ≥ T f̄(t/T ) + C log T}, we have, for
k ≤ T ,

P0(τ ′ ∈ [k − 1, k)) = P1(τ ∈ [k − 1, k)) = EP0

(
dP1

dP0
1τ∈[k−1,k)

)
≤ EP0

(
1τ∈[k−1,k) exp

(
−
√

2C log T

σ(0)
− τ

))
.

Define

θ = inf{t ≤ T : there is v ∈ NT so that xv(t) ≥ T f̄(t/T ) + C log T} ,

and Zk to be the number of particles z ∈ Nk such that xv(t) ≤ T f̄(t/T ) +
C log T for all t ≤ k−1 and xv(t) ≥ T f̄(t/T )+C log T for some k−1 ≤ t ≤ k.
Then,

P (θ ≤ T ) ≤
T∑
k=1

P (θ ∈ [k − 1, k)) ≤ P (Zk ≥ 1) ,

and, using a first moment computation, we obtain

P (Zk ≥ 1) ≤ EZk ≤ ekP0(τ ′ ∈ [k − 1, k)) ≤ exp

(
−
√

2C log T

σ(0)
+ 1

)
.

Therefore,

P (θ ≤ T ) ≤ T exp

(
−
√

2C log T

σ(0)
+ 1

)
.

This completes the proof of Lemma 5. ut
We need one more technical estimate.

Lemma 6. With X· and C as in Lemma 5, there exists a constant C ′ ∈ (0, 1)
so that

eTP0(Xt ≤ T f̄(t/T ) + C log T, t ∈ [0, T ], XT ≥ T f̄(1)− C ′T 1/3)→T→∞ 0 .
(2.6.36)
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Proof of Lemma 6: Fix C ′ ∈ (0, 1). We apply a change of measure similar to
the one used in Lemma 5, whose notation we continue to use. We deduce the
existence of positive constants c1, c2 (independent of T ) such that

P0(Xt ≤ T f̄(t/T ) + C log T, t ∈ [0, T ], XT ≥ T f̄(1)− C ′T 1/3)

≤ e−T ec1(C
′T 1/3+log T )

·EP0

(
exp

(
c2
T

∫ T

0

Xsds

)
1XT≥−C′T 1/31Xt≤0,t≤T

)
,

where here we used that −σ′ is bounded below by a positive constant and σ
is bounded above. By representing X· as a time-changed Brownian motion,
the lemma will follows (for a small enough C ′) if we can show that for any
constant c3 there exists a c4 = c4(c3) > 0 independent of C ′ ∈ (0, 1) such
that

D := E

(
exp

(
c3
T

∫ T

0

Bsds

)
1BT≥−C′T 1/31Bt≤0,t≤T

)
≤ e−c4T

1/3

, (2.6.37)

where {Bt}t≥0 is a Brownian motion started at −C log T . Note however that

D ≤ E

(
exp

(
−c3
T

∫ T

0

|Bs|ds

)
1|BT |≤T 1/3

)
ec5 log T ≤ e−c4T

1/3

,

where here B· is a Brownian motion started at 0 and the last inequality
is a consequence of known estimates for Brownian motion, see e.g. [BS96,
Formula 1.1.8.7, pg. 141]. ut

We have completed all steps required for the proof of the upper bound in
Theorem 7. Due to the strong tightness result in [Fa10] and Lemma 5, it is
enough to show that

P ({MT ≥ T̄ f(1)− C ′T 1/3} ∩ A{)→ 0 .

This follows from the first moment method and Lemma 6.
ut

Exercise 3. Provide a direct proof of (2.6.37) using the following outline.
a) Divide the time interval [0, T ] to intervals of length T 2/3. Declare an in-
terval good if throughout it, the path B· is above δT 1/3 for at least half the
length of the interval.
b) Note that regardless of the end point of the previous interval, the proba-
bility of an interval to be good is uniformly bounded below.
c) Apply now large deviations for Binomial random variables.
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2.7 Additional remarks

We have of course not covered all that is known concerning branching random
walks. In particular, we have not discussed results concerning fluctuations of
the maximal displacement of BRW over time, where the 3/2 factor becomes
1/2 when lim sups are concerned. More precisely, one has the following result,
due to Hu and Shi [HS09].

Proposition 1. For BRW with increments possessing exponential moments
of high enough order, one has

lim inf
n→∞

Mn − nx∗

log n/I ′(x∗)
= −3

2
, lim sup

n→∞

Mn − nx∗

log n/I ′(x∗)
= −1

2
.

For a modern proof in the case of BBM, see [Ro11]. A discussion of maximal
consistent displacement is contained in [FZ10] and [FHS10].

We have also not discussed the study of the limit law of the maximal
displacement of BRW (and BBM). A recent breakthrough in this direction is
[Ai11]. See [BDZ14] for a proof along the lines of these lecture notes.

3 The Discrete Gaussian Free Field

We discuss in this chapter maxima of certain Gaussian fields, called Gaussian
free fields. As we are about to see, in certain cases these are closely related
to the maxima of BRWs. We will first introduce the GFF on general graphs,
discuss some general tools of Gaussian processes theory, and then specialize
our discussion to the two dimensional GFF. For the initiated reader, we state
our goal, which is the proof of the following theorem.

Theorem 9. Let ΘN denote the maximum of the two dimensional (discrete)
GFF in a box of side N with Dirichlet boundary conditions. Then

EΘN = 2mN +O(1) , (3.1.1)

where
mN = (2

√
2/π) logN − (3/4)

√
2/π log logN , (3.1.2)

and the sequence {ΘN − EΘN}N is tight.

(Warning: Be aware that what we call here the GFF differs by a scaling
factor 2 from the definitions in [BDG01] and [BZ11]; the difference has to
do with the relation between continuous and discrete time random walks. To
be consistent, in the proof below we will follow the conventions in the latter
papers; this is explained in the beginning of Section 3.4.)

Our exposition follows the following steps. We first introduce in Section
3.2 the GFF on arbitrary graphs, and discuss some of its properties. In Section
3.3 we bring, without proof, some basic tools of Gaussian fields theory. Section
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3.4 introduces our main object of study, the two-dimensional (discrete) GFF
(2D-GFF). Section 3.5 is devoted to the proof of a law of large numbers for
the 2D-GFF, thus providing a (simple) proof to the main result of [BDG01].
Section 3.6 introduces an argument, borrowed from [BDZ11] and based on
the Dekking-Host argument, that reduces tightness questions to the precise
evaluation of the expectation of the maximum of the 2D-GFF. The latter
is evaluated in Section 3.7, following [BZ11], and uses yet another Gaussian
field, the modified BRW, that in an appropriate sense interpolates between
the GFF and (Gaussian) BRW.

Remark 11. As mentioned in the introduction, convergence in distribution of
ΘN −mN has recently been proved, see [BDZ13].

3.2 The Gaussian free field on graphs

We introduce first the Gaussian free field on an arbitrary (finite) graph. Let
G = (V,E) be an (undirected, connected) graph with vertex set V and edge
set E. Let o be a specifed vertex in the graph. The Gaussian Free Field on
G is the collection of Gaussian variables (Gaussian field) {Xv}v∈V, indexed
by V, with Xo = 0 and where the p.d.f. of the remaining variables is given
by the formula (with xo = 0)

p({xv}v∈V,v 6=o) =
1

ZG
exp

 ∑
(v,w)∈E

−(xv − xw)2/2

 , (3.2.1)

ZG =

∫
exp

 ∑
(v,w)∈E

−(xv − xw)2/2

 ∏
v∈V,v 6=o

dxv .

As a convenient notation, for any random field {Xv}v∈V, we denote by

RX(v, w) = EXvXw

its covariance function.
A few comments are now in order. First, note that if G is a tree, the

Gaussian free field corresponds to the field obtained by assigning to each
edge e a standard zero mean unit variance gaussian variable Ye, and setting
Xv =

∑
e∈o↔v Ye where o ↔ v denoted the geodesic connecting o and v.

In particular, if G is the binary tree rooted at o with depth n, then the
values of the GFF on G, denoted {XT,n

v }v, at vertices at the nth generation
correspond to the location of particles in a BRW with standard Gaussian
increments. Therefore, the maximum of the GFF on the binary tree of depth
n is distributed like the maximum displacement of all particles. By combining
Theorem 4 with (2.4.2), one easily deduces that in this situation,

max
x

XT,n
v =

√
2 log 2n− 3

2
√

2 log 2
log n+O(1) .
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Second, the GFF is closely related to certain random walks. To see that,
introduce the (rate) matrix

Lv,w :=

 1 , (v, w) ∈ E ,
−dv , v = w 6= o ,

0 , otherwise ,

where dv is the degree of a vertex v. From (3.2.1), the covariance of the GFF
{Xv}v 6=o is given by −L̄−1, where L̄ is the matrix obtained from L by striking
the row and column corresponding to v = o. This coincides with the Green
function of a (continuous time) simple random walk {Bt}t≥0 on G which is
killed at hitting o, that is, with τ = min{t : Bt = o}, we have

RX(v, w) = EXvXw = Ev(

∫ τ

0

1{Bt=w}dt) . (3.2.2)

In the special case where dv = d∗ for all v 6= o, the same reasoning shows that
this also corresponds to the Green function of a discrete time simple random
walk {Sn}n≥0 killed at hitting o:

RX(v, w) = EXvXw = Ev(

τ−1∑
n=0

1{Sn=w})/d
∗ , (3.2.3)

where again τ = min{n : Sn = o} is the killing time for {Sn}. (Here and
throughout, Ev(·) is shorthand for E(·|S0 = v).) The relation between the
GFF and random walks runs deeper, but we postpone for a while a discussion
of that.

The last comment relates to the Markov property of the GFF. From the
definition or the random walk representation, one readily obtains that for
any subsets A ⊂ B ⊂ V and any measurable function F : R|A| → R,

E
(
F ({Xv}v∈A) | σ(Xv, v ∈ B{)

)
= E (F ({Xv}v∈A) | σ(Xv, v ∈ ∂B)) ,

(3.2.4)
where ∂B = {v ∈ B{ : ∃w ∈ B, (v, w) ∈ E}. Further, using the fact that for
a Gaussian variable X and Gaussian vector Y,

E[X|Y] = E(X ·Y)R−1Y Y′ ,

where ′ denotes transpose, and using that the covariance of the GFF is a
Green function, we have that for any w ∈ A,

E (Xw | σ(Xv, v ∈ ∂B)) =
∑
v∈∂B

u(w, v)Xv , (3.2.5)

where u(w, v) = Pw(BτB = v) and τB = min{t ≥ 0 : Bt ∈ B{}.

Exercise 4. Prove (3.2.5).
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3.3 Estimates and comparisons for Gaussian fields

The first tool we introduce shows that for Gaussian fields, some tail estimates
on maxima are available a-priori.

Theorem 10 (Borell’s inequality). Let T be a finite set and let {Xt}t∈T
be a zero mean Gaussian field indexed by T . Let X∗T = maxt∈T Xt. Then

P (|X∗T − EX∗T | > x) ≤ 2e−x
2/2σ2

T , (3.3.1)

where σ2
T = maxt∈T EX

2
t .

The inequality (in a more general form suited to infinite T s) is cited as Borell’s
inequality in the literature, because of [Bo75]. However, it appeared at the
same time in the proceedings [TIS76]. For an accessible and fun discussion,
see [Ad90] (and note the errata for the proof).

Theorem 10 already answers some questions related to maxima of GFFs.
For example, consider the following.

Corollary 3. Assume G is an infinite graph on which (continuous time) ran-
dom walk is transient and possesses a uniformly bounded Green function. Let
{GN}N≥1 denote the sequence of graphs obtained from G by keeping only
those vertices at distance at most N from the root, and glueing all ver-
tices at distance N as a single vertex o. Let X∗N denote the maximum of
the GFF on GN with Dirichlet boundary condition at o. Then, the sequence
{X∗N − EX∗N}N is tight.

Remark 12. Corollary 3 shows that the maximum of the GFF defined on
boxes in Zd and shifted around its mean is tight, when d ≥ 3.

The second tool that we will use extensively is a comparison theorem
concerning the expectation of the maxima of (centered) Gaussian fields.

Theorem 11 (Sudakov–Fernique). Let T be a finite set and let {Xi
t}t∈T ,

i = 1, 2, denote two zero mean Gaussian fields. Set X∗i = maxt∈T X
i
t . If

E(X1
t −X1

s )2 ≥ E(X2
t −X2

s )2 , for all t, s ∈ T , (3.3.2)

then
EX∗1 ≥ EX∗2 . (3.3.3)

For a proof, see [Fe75]. Note that for Gaussian fields, Theorem 11 is a far
reaching generalization of the (trivial) Lemma 3.
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3.4 The two dimensional discrete GFF

Of course, one of the simplest sequence of graphs to consider is the sequence
of boxes in the lattice Zd, that is we take VN = ([0, N − 1] ∩ Z)d. Set V oN =
((0, N − 1) ∩ Z)d and identify all vertices in ∂VN = VN \ V oN , calling the
resulting vertex the root of VN . The collection of vertices thus obtained is
denoted VN , and we take as edge set EN the collection of all the (unordered)
pairs (x, y) where either x, y ∈ V oN and |x − y|1 = 1 or x ∈ V oN , y = o and
there exists z ∈ ∂VN so that |x−z|1 = 1. We thus obtain a sequence of graphs
GN where all vertices, except for the root, have degree d∗ = 2d. The GFF on
GN is then defined as in Section 3.2. Keeping in mind the relation between
(3.2.2) and (3.2.3), we introduce the field {XNz }z∈VN

as the rescaling by
√

2d
of the GFF:

EXNz XNz′ = Ez(

τ−1∑
k=0

1{Sk=z′}) , (3.4.1)

where {Sk} is a simple random walk on GN killed upon hitting o, with killing
time τ . As before we set X ∗N = maxz∈VN

XNz .

Remark 13. As alluded to above, many authors, including the present one,
refer to the field XNz as the GFF. I hope that this extra factor of

√
2d will

not cause too much confusion in what follows.

Recall from Remark 12 that for d ≥ 3, the sequence {X ∗N −EX ∗N}N is tight.
On the other hand, for d = 1, the GFF is simply a random walk with standard
Gaussian steps, conditioned to hit 0 at time N . In particular, X ∗N/

√
N scales

like the maximum of a Brownian bridge, and thus X ∗N − EX ∗N fluctuates at

order
√
N . This leads us immediately to the question:

For d = 2, what is the order of X ∗N and are the fluctuations of order O(1)?

The rest of this chapter is devoted to the study of that question. In the rest
of this section, we provide some a-priori comparisons and estimates.

Lemma 7. For any d ≥ 1, the sequence EX ∗N is monotone increasing in N .

Proof. Let N ′ > N . For z ∈ V oN , write

XN
′

z = E[XN
′

z |FN ] +
(
XN

′

z − E[XN
′

z |FN ]
)

:= Az +Bz ,

where FN = σ(X zN ′ : z ∈ VN ′ \ V oN ) and {Az}z∈V oN and {Bz}z∈V oN are in-
dependent zero mean Gaussian fields. By the Markov property (3.2.4), we
have that {Bz}z∈V oN is distributed like {XNz }z∈V oN . Therefore, by Lemma 3,
we conclude that EX ∗N ′ ≥ EX ∗N . ut

The next lemma is an exercise in evaluating hitting probabilities for simple
random walk.
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Lemma 8 (GFF covariance, d = 2). Fix d = 2. For any δ > 0 there exists
a C = C(δ) such that for any v, w ∈ VN with d(v, ∂VN ), d(w, ∂VN ) ≥ δN ,
one has ∣∣∣∣RXN (v, w)− 2

π
(logN − (log ‖v − w‖2)+)

∣∣∣∣ ≤ C . (3.4.2)

Further,
max
x∈VN

RXN (x, x) ≤ (2/π) logN +O(1) . (3.4.3)

The proof of Lemma 8 can be found in [BDG01, Lemma 1] or [BZ11, Lemma
2.2].

Exercise 5. Using hitting estimates for simple random walks, prove Lemma
8.

3.5 The LLN for the 2D-GFF

We prove in this short section the Bolthausen-Deuschel-Giacomin LLN; our
proof is shorter than theirs and involves comparisons with BRW.

Theorem 12. Fix d = 2. Then,

EX ∗N ≤ mN +O(1) , (3.5.1)

and

lim
N→∞

EX ∗N
mN

= 1 , (3.5.2)

where mN is defined in (3.1.2). Further, for any ε > 0 there exists a constant
c∗ = c∗(ε) so that for all large enough N ,

P (|X ∗N −mN | ≥ εmN ) ≤ 2e−c
∗(ε) logN . (3.5.3)

Remark 14. The argument given works equally well for d > 2, with the ap-
propriate changes in the definition of mN .

Proof. We note first that (3.5.3) follows from (3.5.2), (3.4.3) and Borell’s
inequality (Theorem 10). Further, because of the monotonicity statement in
Lemma 7, in the proof of (3.5.1) and (3.5.2) we may and will consider N = 2n

for some integer n.
We begin with the introduction of a BRW that will be useful for compari-

son purposes. For k = 0, 1, . . . , n, let Bk denote the collection of subsets of Z2

consisting of squares of side 2k with corners in Z2, let BDk denote the subset
of Bk consisting of squares of the form ([0, 2k−1]∩Z)2 +(i2k, j2k). Note that
the collection BDk partitions Z2 into disjoint squares. For x ∈ VN , let Bk(x)
denote those elements B ∈ Bk with x ∈ B. Define similarly BDk(x). Note
that the set BDk(x) contains exactly one element, whereas Bk(x) contains
22k elements.
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Let {ak,B}k≥0,B∈BDk denote an i.i.d. family of standard Gaussian random
variables. The BRW {RNz }z∈VN is defined by

RNz =

n∑
k=0

∑
B∈BDk(z)

ak,B .

We again define R∗N = maxz∈VN RNz . Note that RNz is a Branching random
walk (with 4 descendants per particle), see the discussion in Section 3.2.
Further, the covariance structure of RNz respects a hierarchical structure on
V oN : for x, y ∈ V oN , set dH(x, y) = max{k : y 6∈ BDk(x)}. Then,

RRN (x, y) = n− dH(x, y) ≤ n− log2 ‖x− y‖2 . (3.5.4)

We remark first that, as a consequence of the Markov property (see the
computation in Lemma 7),

EX ∗N ≤ E max
x∈(N/2,N/2)+VN

X 2N
x .

Combined with Lemma 8 and the Sudakov-Fernique (Theorem 11), we thus
obtain that for some constant C independent of N ,

EX ∗N ≤
√

2 log 2

π
ER∗N + C .

Together with computations for the BRW (the 4-ary version of Theorem 4),
this proves (3.5.1).

To see (3.5.2), we dilute the GFF by selecting a subset of vertices in VN .

Fix δ > 0. Define V δ,1N = VN and, for k = 2, . . . , n− log2(1− δ)n− 1, set

V δ,kN = {x ∈ V δ,k−1N : |x− y|∞ ≥ δN/2n−k,∀y ∈ ∪B∈BDk∂B} .

Note that |V δ,kN | ∼ (1 − δ)2k|VN |. We can now check that for x, y ∈
V
δ,n(1−log2(1−δ))
N , log2 |x− y|2 is comparable to dH(x, y). Obviously,

EX ∗N ≥ E( max
x∈V δ,n(1−log2(1−δ))

N

XNx ) .

Applying the same comparison as in the upper bound, the right side is
bounded below by the maximum of a diluted version of the BRW, to which
the second moment argument used in obtaining the LLN for the BRW can be
applied. (Unfortunately, a direct comparison with the BRW is not possible,
so one has to repeat the second moment analysis. We omit further details
since in Section 3.7 we will construct a better candidate for comparison, that
will actually allow for comparison up to order 1.) We then get that for some
universal constant C,

EX ∗N ≥ E( max
x∈V δ,n(1−log2(1−δ)

N

XNx ) ≥
√

2 log 2

π
ER∗N(1−δ)n+C/C .

This yields (3.5.2) after taking first N →∞ and then δ → 0. ut
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3.6 A tightness argument: expectation is king

Our goal in this short section is to provide the following prelude to tightness,
based on the Dekking–Host argument. It originally appeared in [BDZ11].

Lemma 9. With X ∗′N an independent copy of X ∗N , one has

E|X ∗
′

N −X ∗N | ≤ 2(EX ∗2N − EX ∗N ) . (3.6.1)

Note that by Lemma 7, the right side of (3.6.1) is positive. The estimate
(3.6.1) reduces the issue of tightness of {X ∗N −EX ∗N}N to a question concern-
ing precise control of EX ∗N , and more specifically, to obtaining a lower bound
on EX ∗2N which differs only by a constant from the upper bound (3.5.1) on
EX ∗N .

Exercise 6. Prove that if An is a sequence of random variables for which
there exists a constant C independent of n so that E|An−A′n| ≤ C, where A′n
is an independent copy of An, then EAn exists and the sequence {An−EAn}n
is tight.

In fact, Lemma 9 already yields a weak form of tightness.

Exercise 7. Combine Lemma 9 with the monotonicity statement (Lemma
7 and the LLN (Theorem 12) to deduce the existence of a deterministic
sequence Nk →∞ so that {XN∗k − EX

∗
Nk
}k is tight.

(We eventually get rid of subsequences, but this requires extra estimates, as
discussed in Lemma 10 below. The point of Exercise 7 is that tightness on
subsequences is really a “soft” property.)
Proof of Lemma 9. By the Markov property of the GFF and arguing as in
the proof of Lemma 7 (dividing the square V2N into four disjoint squares of
side N), we have

EX ∗2N ≥ E
4

max
i=1
X ∗,(i)N ≥ E 2

max
i=1
X ∗,(i)N ,

where X ∗,(i)N , i = 1, . . . , 4 are four independent copies of X ∗N . Using again
that max(a, b) = (a+ b+ |a− b|)/2, we thus obtain

EX ∗2N ≥ EX ∗N + E|X ∗,(1)N −X ∗,(2)N |/2 .

This yields the lemma. ut

3.7 Expectation of the maximum: the modified BRW

We will now prove the following lemma, which is the main result of [BZ11].

Lemma 10. With mN as in (3.1.2), one has

EX ∗N ≥ mN +O(1) . (3.7.1)
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Assuming Lemma 10, we have everything needed in order to prove Theorem
9.
Proof of Theorem 9. Combining Lemma 10 and (3.5.1), we have that EX ∗N =
mN +O(1). Since ΘN = 2X ∗N , this yields (3.1.1). The tightness statement is
now a consequence of Lemma 9, Exercise 6 and the fact that m2N −mN is
uniformly bounded. ut

We turn to the main business of this section.
Proof of Lemma 10 (sketch). The main step is to construct a Gaussian field
that interpolates between the BRW and the GFF, for which the second mo-
ment analysis that worked in the BRW case can still be carried out. Surpris-
ingly, the new field is a very small variant of RNz . We therefore refer to this
field as the modified branching random walk, or in short MBRW.

We continue to consider N = 2n for some positive integer n and again em-
ploy the notation Bk and Bk(x). For x, y ∈ Z2, write x∼N y if x−y ∈ (NZ)2.
Similarly, for B,B′ ⊂ VN , write B ∼N B′ if there exist integers i, j so that
B′ = B + (iN, jN). Let BNk denote the collection of subsets of Z2 consisting
of squares of side 2k with lower left corner in VN . Let {bk,B}k≥0,B∈BNk denote
a family of independent centered Gaussian random variables where bk,B has
variance 2−2k, and define

bNk,B =

{
bk,B , B ∈ BNk ,
bk,B′ , B ∼N B′ ∈ BNk .

The MBRW {SNz }z∈VN is defined by

SNz =

n∑
k=0

∑
B∈Bk(z)

bNk,B .

We will also need a truncated form of the MBRW: for any integer k0 ≥ 0, set

SN,k0z =

n∑
k=k0

∑
B∈Bk(z)

bNk,B .

We again define S∗N = maxz∈VN SNz and S∗N,k0 = maxz∈VN SN,k0z . The corre-
lation structure of S respects a torus structure on VN . More precisely, with
dN (x, y) = minz: z∼N y ‖x − z‖, one easily checks that for some constant C
independent of N ,

|RSN (x, y)− (n− log2 d
N (x, y))| ≤ C . (3.7.2)

In particular, for points x, y ∈ (N/2, N/2) + VN , the covariance of S2N is
comparable to that of X2N . More important, the truncated MBRW has the
following nice properties. Define, for x, y ∈ VN , ρN,k0(x, y) = E((SN,k0x −
SN,k0y )2). The following are basic properties of ρN,k0 ; verification is routine
and omitted.
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Lemma 11. The function ρN,k0 has the following properties.

ρN,k0(x, y) decreases in k0. (3.7.3)

lim sup
k0→∞

lim sup
N→∞

sup
x,y∈VN :dN (x,y)≤2

√
k0

ρN,k0(x, y) = 0 . (3.7.4)

There is a function g : Z+ → R+ so that g(k0)→k0→∞ ∞
and, for x, y ∈ VN with dN (x, y) ≥ 2

√
k0 , (3.7.5)

ρN,k0(x, y) ≤ ρN,0(x, y)− g(k0) , n > k0.

Equipped with Lemma 11, and using the Sudakov-Fernique comparison (The-
orem 11), we have the following.

Corollary 4. There exists a constant k0 such that, for all N = 2n large,

EX ∗N ≥
√

2 log 2

π
ES∗N/4,k0 . (3.7.6)

Therefore, the proof of Lemma 10 reduces to the derivation of a lower bound
on the expectation of the maximum of the (truncated) MBRW. This is con-
tained in the following proposition, whose proof we sketch below.

Proposition 2. There exists a function f : Z+ → R+ such that, for all
N ≥ 22k0 ,

ES∗N,k0 ≥ (2
√

log 2)n− (3/(4
√

log 2)) log n− f(k0) . (3.7.7)

The proposition completes the proof of Lemma 10. ut
Proof of Proposition 2 (sketch). Set V ′N = VN/2+(N/4, N/4) ⊂ VN and define

S̃∗N,k0 = max
z∈V ′N

SN,k0z , S̃∗N = S̃∗N,0 .

Set
An = mN

√
π/2 log 2 = (2

√
log 2)n− (3/(4

√
log 2)) log n .

An application of the second moment method (similar to what was done for
the BRW, and therefore omitted) yields the following.

Proposition 3. There exists a constant δ0 ∈ (0, 1) such that, for all N ,

P (S̃∗N ≥ An) ≥ δ0 . (3.7.8)

We now explain how to deduce Proposition 2 from Proposition 3. Our plan
is to show that the left tail of S̃∗N is decreasing exponentially fast; together
with the bound (3.7.8), this will imply (3.7.7) with k0 = 0. At the end of
the proof, we show how the bound for k0 > 0 follows from the case k0 = 0.
In order to show the exponential decay, we compare S̃∗N , after appropriate
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truncation, to four independent copies of the maximum over smaller boxes,
and then iterate.

For i = 1, 2, 3, 4, introduce the four sets WN,i = [0, N/32)2 + zi where
z1 = (N/4, N/4), z2 = (23N/32, N/4), z3 = (N/4, 23N/32) and z4 =
(23N/32, 23N/32). (We have used here that 3/4− 1/32 = 23/32.) Note that
∪iWN,i ⊂ VN , and that these sets are N/4-separated, that is, for i 6= j,

min
z∈WN,i,z′∈WN,j

dN∞(x, y) > N/4 .

Recall the definition of SNz and define, for n > 6,

S̄Nz =

n−6∑
k=0

∑
B∈Bk(z)

bNk,B ;

note that

SNz − S̄Nz =

5∑
j=0

∑
B∈Bn−j(z)

bNn−j,B .

Our first task is to bound the probability that maxz∈VN (SNz − S̄Nz ) is
large. This will be achieved by applying Fernique’s criterion in conjunc-
tion with Borell’s inequality (Theorem 10). We introduce some notation.
Let m(·) = mN (·) denote the uniform probability measure on VN (i.e., the
counting measure normalized by |VN |) and let g : (0, 1]→ R+ be the function
defined by

g(t) = (log(1/t))
1/2

.

Set GN
z = SNz − S̄Nz and

B(z, ε) = {z′ ∈ VN : E((GN
z −GN

z′ )
2) ≤ ε2} .

Then, Fernique’s criterion, see [Ad90, Theorem 4.1], implies that, for some
universal constant K ∈ (1,∞),

E(max
z∈VN

GN
z ) ≤ K sup

z∈VN

∫ ∞
0

g(m(B(z, ε)))dε . (3.7.9)

For n ≥ 6, we have, in the notation of Lemma 11,

E((GN
z −GN

z′ )
2) = ρN,n−5(z, z′) .

Therefore, there exists a constant C such that, for ε ≥ 0,

{z′ ∈ VN : dN∞(z, z′) ≤ ε2N/C} ⊂ B(z, ε) .

In particular, for z ∈ VN and ε > 0,

m(B(z, ε)) ≥ ((ε4/C2) ∨ (1/N2)) ∧ 1 .
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Consequently,∫ ∞
0

g(m(B(z, ε)))dε ≤
∫ √C/N
0

√
log(N2)dε+

∫ √C
√
C/N

√
log(C2/ε4)dε < C4 ,

for some constant C4. Applying Fernique’s criterion (3.7.9), we deduce that

E(max
z∈VN

(SNz − S̄Nz )) ≤ C4K .

The expectation E((SNz −S̄Nz )2) is bounded inN . Therefore, using Borell’s
inequality (Theorem 10), it follows that, for some constant C5 and all β > 0,

P (max
z∈VN

(SNz − S̄Nz ) ≥ C4K + β) ≤ 2e−C5β
2

. (3.7.10)

We also note the following bound, which is obtained similarly: there exist
constants C5, C6 such that, for all β > 0,

P ( max
z∈V ′

N/16

(S̄Nz − SN/16z ) ≥ C6 + β) ≤ 2e−C7β
2

. (3.7.11)

The advantage of working with S̄N instead of SN is that the fields
{S̄Nz }z∈WN,i

are independent for i = 1, . . . , 4. For every α, β > 0, we have the
bound

P (S̃∗N ≥ An − α) (3.7.12)

≥ P (max
z∈V ′N

S̄Nz ≥ An + C4 − α+ β)− P (max
z∈V ′N

(SNz − S̄Nz ) ≥ C4 + β)

≥ P (max
z∈V ′N

S̄N ≥ An + C4 − α+ β)− 2e−C5β
2

,

where (3.7.10) was used in the last inequality. On the other hand, for any
γ, γ′ > 0,

P (max
z∈V ′N

S̄Nz ≥ An − γ) ≥ P (
4

max
i=1

max
z∈WN,i

S̄Nz ≥ An − γ)

= 1− (P ( max
z∈WN,1

S̄Nz < An − γ))4

≥ 1−

(
P ( max

z∈V ′
N/16

SN/16z < An − γ + C6 + γ′) + 2e−C7(γ
′)2

)4

,

where (3.7.11) was used in the inequality. Combining this estimate with
(3.7.12), we get that, for any α, β, γ′ > 0,

P (S̃∗N ≥ An − α) (3.7.13)

≥ 1− 2e−C5β
2

−

(
P ( max

z∈V ′
N/16

SN/16z < An + C4 + C6 + β + γ′ − α) + 2e−C7(γ
′)2

)4

.
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We now iterate the last estimate. Let η0 = 1 − δ0 < 1 and, for j ≥ 1,
choose a constant C8 = C8(δ0) > 0 so that, for βj = γ′j = C8

√
log(1/ηj),

ηj+1 = 2e−C5β
2
j + (ηj + 2e−C7(γ

′
j)

2

)4

satisfies ηj+1 < ηj(1 − δ0). (It is not hard to verify that such a choice is
possible.) With this choice of βj and γ′j , set α0 = 0 and αj+1 = αj+C4+C6+

βj + γ′j , noting that αj ≤ C9

√
log(1/ηj) for some C9 = C9(δ0). Substituting

in (3.7.13) and using Proposition 2 to start the recursion, we get that

P (S̃∗N ≥ An − αj+1) ≥ 1− ηj+1 . (3.7.14)

Therefore,

ES̃∗N ≥ An −
∫ ∞
0

P (S̃∗N ≤ An − θ)dθ

≥ An −
∞∑
j=0

αjP (S̃∗N ≤ An − αj)

≥ An − C9

∞∑
j=0

ηj

√
log(1/ηj) .

Since ηj ≤ (1− δ0)j , it follows that there exists a constant C10 > 0 so that

ES∗N ≥ ES̃∗N ≥ An − C10 . (3.7.15)

This completes the proof of Proposition 2 in the case k0 = 0.
To consider the case k0 > 0, define

Ŝ∗N,k0 = max
z∈V ′N∩2k0Z2

SN,k0z .

Then, Ŝ∗N,k0 ≤ S̃
∗
N,k0

. On the other hand, Ŝ∗N,k0 has, by construction, the

same distribution as S̃∗
2−k0N,0

= S̃∗
2−k0N

. Therefore, for any y ∈ R,

P (S̃∗N,k0 ≥ y) ≥ P (Ŝ∗N,k0 ≥ y) ≥ P (S̃∗2−k0N ≥ y) .

We conclude that
ES∗N,k0 ≥ ES̃

∗
N,k0 ≥ ES̃

∗
2−k0N .

Application of (3.7.15) completes the proof of Proposition 2. ut

3.8 Additional remarks.

The ideas presented in this section can be taken further. Some recent devel-
opments are summarized here. This is not intended as an exhaustive review,
rather as a sample.
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Tail estimates J. Ding [Di11a] has improved on the proof of tightness by
providing the following tail estimates.

Proposition 4. The variance of X ∗N is uniformly bounded. Further, there
exist universal constants c, C so that for any x ∈ (0, (log n)2/3), and with
X̄ ∗N = X ∗N − EX ∗N ,

ce−Cx ≤ P (X̄ ∗N ≥ x) ≤ Ce−cx , ce−Ce
Cx

≤ P (X̄ ∗N ≤ −x) ≤ Ce−ce
cx

,

It is interesting to compare these bounds with the case of BRW: while the
bounds on the upper tail are similar, the lower tail exhibits quite different
behavior, since in the case of BRW, just modifying a few variables near the
root of the tree can have a significant effect on the maximum.

Tightness of maxima for other graphs As discussed above, if a se-
quence of graphs GN is obtained from an infinite graph G by truncation to a
bounded box and imposing Dirichlet boundary conditions, the maximum of
the resulting GFF fluctuates within O(1) if the underlying random walk on
G is transient and possesses a uniformly bounded Green function. The recur-
rent case, and especially the null-recurrent case, can have either fluctuations
of the GFF maximum of order O(1) or increasing (with N) fluctuations,
compare the 1D and 2D lattice GFF. It is natural to conjecture that if the
Green function blows up polynomially (in N), then the fluctuations of the
GFF maximum blow up. For certain (random) fractal graphs, this is verified
in [KZ13].

Cover times Gaussian fields on graphs possess close relations with the cover
time of these graphs by random walk, through isomorphism theorems. We do
not discuss these in details but instead refer to [DLP10] and [Di11b] for a
thorough discussion. For cover times of the binary tree, precise estimates are
contained in [DiZ11]; in a recent breakthrough, these have been extended to
the context of the covering of the two dimensional torus by Brownian motion,
see [BK14].

First passage percolation The maximum of BRW can also be seen as
a first passage percolation on trees, and the Dekking–Host argument then
yields control on tightness of fluctuations of first passage percolation on reg-
ular trees or, more generally, on Galton–Watson trees. This can be extended
to a large class of graphs that in some vague sense possess “tree-like” recur-
sive structure, including some tilings of the hyperbolic plane, see [BeZ10] for
details. Recall that proving that the fluctuations of first passage percolation
are bounded for the d-dimensional Euclidean lattice (d ≥ 3, or even d large)
is an open problem, see [NP96, BKS03, PP94] for discussion.
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