
LECTURE 6: LOOP SOUPS

We continues in the setup where V is finite. The material in this lecture is again
borrowed, essentially verbatim, from Sznitman’s lecture notes.

1. Poisson process of loops

We consider the base space L∗ with its natural σ-algebra and measure µ∗. We
introduce the Poisson measure with speed measure αµ∗, with α > 0 a parameter,
and denote it Pα. The base space is Ω = {pure point measures on L∗}, which can
be identified with countable configurations of loops.

A slight complication is that the measure µ∗ is infinite, but we have already seen
that it is σ-finite and finite on the event N > 1, and that it is finite on loops with
ξ(γ) > s, so under the Poisson measure there will be only finitely many such loops,
almost surely. So a sample point under the measure µ∗ is of the form ν =

∑∞
i=1 δγ∗i

where γ∗i are loops (which, e.g., can be ordered in terms of decreasing lifetime).
An impportant remark is that while µ∗ is a σ-finite measure, Pα is a probability
measure.

A word on measurability issues: we equip Ω with the σ algebra generated by
the evaluation maps ω(A), with A measurable subsets of L∗. Note that ω(A) ∈
Z+ ∪ {∞}.

A characterization of the Poisson measure is via its Laplace functional: let Φ :
L∗ → R+ be measurable. Then,

(1) Eα(e−
∫

Φdν) = Eα(e−
∑
i Φ(γ∗i )) = e−α

∫
L∗ (1−e−Φ)dµ∗.

The formula (1) cannot be extended to a Fourier transform (i.e., replacing Φ by
iΦ) because µ∗ is not finite; However, if Φ vanishes on loops with short lifetime,
then the formula extends naturally.

We can now introduce the occupation field {Lx}x∈V as

Lx(ω) =

∫
Lx(γ)dω(γ) =

∑
i

Lx(γ∗i ),

recalling that Lx is an invariant function and thus well defined on γ∗. It is a-
priori not clear that Lx is finite, since µ∗ is σ-finite. However, we already saw that
Eµ∗(ξ(γ)) <∞, and hence

Eα(
∑
x

Lx) = αEµ∗(ξ(γ)) <∞,

which makes Lx well defined. In fact, we can compute its Laplace transform.

Lemma 1.1. Let F : V → R+. Then,

(2) Eα(e−
∑
x∈V F (x)Lx) = det(I +GF )−α =

(
detGF
detG

)α
.

Proof. By (1), the left hand side in (2) equals

e−α
∫

(1−e−
∑
x∈V F (x)Lx(γ))dµr(γ).

1
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The result then follows from Lemma 3.1 in Lecture 5, as the integral can be repre-
sented as the logarithm of determinants. �

One important remark is in order: we see that α = 1/2 is special, because that
case leads to square-roots of determinants, which is consistent with expressions
involving Gaussian processes. We state this important consequence as a theorem.

Theorem 1.2. The field (Lx)x∈V under P1/2 has the same law as ( 1
2φ

2
x) under the

free field with covariance G.

Proof. From Lemma 1.1 we compute the Laplace transform of the left side (i.e.,
Eαe−

∑
F (x)Lx) to be det(I +GF )−1/2. On the other hand, the Laplace transform

of the right side is, by a Gaussian computation, the same expression. �

Remark 1.3. In the same way that we did when dealing with cover times, we can
use Lupu’s coupling (involving metric graphs) to couple the field of occupation
measures too the GFF in such a way that the clusters of loops (i.e., those clusters
of points belonging to the same loops in the loop soup) are precisely the clusters of
same sign in the GFF on the metric graph.

We will explore representation formulas based on Theorem 1.2 in the next section.
For the moment, mention only that by taking F (z) = 1x, one gets that

Eα(e−ηLx) = (1 + ηg(x, x))−α,

i.e. Lx has a Gamma(α, g(x, x)) distribution. More explicitely, density Cαy
α−1e−y/g(x,x)dy

with Cα = 1/(Γ(α)g(x, x)α). In particular, we obtain that Eα(Lx) <∞, as we al-
ready know.

Exercise 1. Let L̂x(ω) =
∑
i 1{Ni>1}Lx(γi), where as before ω =

∑
i δγi . Prove

that

Eα(e−
∑
F (x)L̂x) =

(
det(I − P )

det(I − PF )

)α
,

where PF is obtained from P by changing λx to λx + F (x). This looks at the
occupation time of the non-trivial loops in the loop soup. For details, see Sznitman,
Page 90.

2. Szymanzik’s formula

We recall that for a centered Gaussian field φx with covariance R(·, ·), one has
the Feynman moment formula, as follows. Let Pk denote the collection of pairings
of {1, . . . , 2k}, that is of disjoint unions of the form {1, . . . , 2k} = ∪ki=1{(xi, yi)}.
Then,

E
2k∏
i=1

φxi =
∑

Π∈Pk

k∏
i=1

R(xi, xπ(i)).

The proof goes by differentiating the characteristic function.
Szymanzik’s formula gives a similar formula, for a perturbation of the Gaussian

measure. Let ν be a probability measure on R+ and consider its Laplace transform

h(u) =

∫ ∞
0

e−uydν(y).
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We are interested in the measure on {ϕx}x∈V with density

P̄h =
1

Zh
e−

1
2E(ϕ,ϕ)

∏
x∈V

h(
ϕ2
x

2
).

To describe the analogue of Feynman’s formula with respect to P̄h, we need to
consider the Poisson loop measure with parameter 1/2, as well as additional k
paths w1, . . . , wk, as follows. Write Pz

k for the pair partitions of (z1, . . . , z2k).

Let η(x) be i.i.d. random variables with law ν, denote their joint law by P̃.

Theorem 2.1. With notation as above, we have

Eh
2k∏
i=1

φzi

=
∑

Π=∪ki=1{xi,yi}∈Pz
k

Ex1,y1
⊗ · · · ⊗ Exk,yk ⊗ Ẽ⊗ E1/2(e−

∑
x∈V ηx(Lx+Lx(w1)+...+Lx(wk)))

Ẽ ⊗ E1/2(e−
∑
x∈V ηxLx)

.

Proof. Let S = S(φz1 , . . . , φz2k) be an arbitrary test function. By the definition of
the ηx we have that

(3) Eh(S) =
Ẽ
∫
Se−

1
2 (E(ϕ,ϕ)+

∑
ηxϕ

2
x)
∏
dϕx

Ẽ
∫
e−

1
2 (E(ϕ,ϕ)+

∑
ηxϕ2

x)
∏
dϕx

=:
(S)h
(1)h

.

Note next that, with Eη denoting the Gaussian measure with quadratic form
E(ϕ,ϕ) +

∑
x ηxϕ

2
x,

(4) (S)h = CẼ ⊗ Eη(S det(Gη)1/2)

where C = (2π)|V |/2 does not depend on S and therefore will disappear in the ratio
computation.

Now, by the isomorphism result in Lemma 1.1, we get that

Ẽ ⊗ Eη(S detGη
1/2) = (detG)1/2Ẽ ⊗ E1/2 ⊗ Eη(Se−

∑
ηxLx).

Again, the (detG) term is an immaterial constant that will disappear in the ratio.
Note that now the Gaussian field {φx} only appears as argument of S. Using now
the Feynman formula, we can write EηS in terms of Gη.

We next recall that by formula (8) in Lecture 4,

Ex,y(e−
∑
x ηxLx) = (I −Gη)−1G(x, y) = Gη(x, y).

(We had proved it for small η, but the extension to general positive η follows the
argument we used in lecture 5, see the proof of Lemma 3.1 there. This gives the
desired formula. �

3. Avoidance probabilities

Fix a subset A ⊂ V . We can define LAx as the field of occupation measure of
those (unrooted) loops that remain in A. We write K = V \A for the complement
of A in V . Let GA = G1A and, for any function F : V → R, GF,A = GF ·1A .
Further, for any matrix C with index set V , write CK for the restriction of C to
K. Note that CK is a |K| × |K| matrix. It will be particularly useful when K is a
singleton.
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Theorem 3.1. Let F : V → R+. Then,

(5) Eα(e−
∑
x∈V F (x)(Lx−LAx )) =

(
detGF · detGA
detG · detGF,A

)α
=

(
det(GF )K

detGK

)α
.

Further, if K1 ∩K2 = ∅ then
(6)

Pα(no loop intersects both K1 and K2) =

(
detG · detG(K1∪K2)c

detGKc
1
· detGKc

2

)−α
=

(
det(GKc

2
)K1

detGK1

)α
.

Proof. We begin with (5). Since LAx involves loops fully contained in A and Lx−LAx
involves only loops that are not fully contained in A, these sets are disjoint. By the
Poisson property, these fields are therefore independent. By Lemma 1.1 we have
that

Eα(e−
∑
F (x)Lx) =

(
detGF
detG

)α
.

On the other hand, the restriction property tells us that

Eα(e−
∑
F (x)LAx ) =

(
detGF,A
detGA

)α
.

Together with the stated independence, this gives the first equality in (5). To see
the second equality there, recall Schur’s complement formula: if

M =

[
A B
C D

]
then M−1

11 = (A−BD−1C)−1 and detM = detD/detM−1
11 . In particular, setting

M = −L, M−1 = G and D = −LA, we get from this formula (using that K = Ac)
that (detG)−1 = (detGA)−1(det(GK)−1, i.e.

det(GK) =
detG

detGA
.

Similarly,

det(GKF ) =
detGF

detGF,A
.

This gives the second equality in (5).
Turning to the proof of (6), note first that trivial loops cannot intersect both K1

and K2. In particular, the event in the RHS of (6) implies that for any loop γ in
the Poisson ensemble,

1N>1

∑
x∈K1

Lx
∑
y∈K2

Ly = 0.

By the Poisson property, the probability of the last event is simply

e−αµ
∗({γ∗:N(γ∗)>1,

∑
x∈K1

Lx(γ∗)>0,
∑
x∈K2

Lx(γ∗)>0}) =: e−αQ.

We evaluate Q. By inclusion-exclusion,

Q = QK1
+QK2

−QK1∪K2

where, for any set M ⊂ V , QM = µ∗({γ∗ : N(γ∗) > 1,
∑
x∈M Lx(γ∗) > 0}). We

now claim that

(7) QM = log(detGM ) +
∑
x∈M

log λx.
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Thus,

Q = log(detGK1) + log(detGK2)− log(detGK1∪K2).

Recall that det(GM ) = detG
detGMc

. Hence,

Q = log(det(G) · det(G(K1∪K2)c))− log(det(GKc
1
) · det(GKc

2
)).

Another application of Schur’s complement gives

det(GK1

Kc
2
) =

det(GKc
2
)

det(GKc
1∩Kc

2
)

=
det(GKc

2
)

det(G)/det(GK1∪K2)
.

This completes the proof.
It only remains to prove (7). Using the Poisson nature of Pα, we have that

QM = − 1

α
logPα({ω =

∑
δγi :

∑
x∈M

∑
i

1N(γi)>1Lx(γi) = 0}).

In the notation of Exercise 1, we need to evaluate

Pα(
∑
x∈M
L̂x = 0).

Using this exercise with F (x) = ρ1x∈M and taking ρ→∞, we obtain that

Pα(
∑
x∈M
L̂x = 0)1/α = lim

ρ→∞
(Eα(e−ρ

∑
x∈M L̂x))1/α = lim

ρ→∞

det(I − P )

det(I − P ρ)

where P ρ = P ρ1M . By the definition,

P ρ(x, y)→ρ→∞ 1x∈McP (x, y) =: P̄M .

Note that

I − P̄M =

[
IM 0
∗ (I − P )M

c

]
.

Hence, det(I − PM ) = det((I − P )M
c

). Recalling that −L = λ(I − P ), we have

det(GMc) = det((−L)M
c

)−1 =
det(I − P )M

c∏
x∈Mc λx

.

Similarly, detG = det(I − P )−1/
∏
x∈V λx. Hence,

det(I − PM ) =
det(GMc)

det(G)
· 1∏

x∈M λx
,

which completes the proof.
�

4. Interlacements

We restrict attention in this section to Zd, d ≥ 3. It is not a finite graph, but
random walk is transient, so we can hope to simply approximate Zd by a sequence
of finite boxes Vn of side n, centered at 0, with the random walk killed when exiting
the box. We take all conductances in Vn to be equal to 1/2d, so that there is no
difference between the variable rate and fixed rate random walk.

Let X̂· denote the (continuous time) random walk on Zd. Define the Green
function

g(x, y) = g(x− y) = Ex
∫ ∞

0

1X̂s=yds.
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It is well known (and easy to check by Fourier analysis, aka local limit theorems)
that

g(x) ∼ cd|x|2−d,
with explicit constant cd.

We next introduce the notion of equilibrium measure. For K ⊂ Zd, let TK =
inf{t : X̂t ∈ K}. Let τK = inf{t : X̂t ∈ K,∃s ∈ (0, t]s.t. X̂s 6= X̂0}. The equilibrium
measure of K, is the measure

(8) eK(y) = P y(τK =∞)1K(y),

i.e. eK(y) is the escape probability from y (recall that the walk is transient!).
Necessarily, eK(y) > 0 only if y lives on the boundary of K. The equilibrium
measure is easily checked to satisfy

(9) P x(TK <∞) =
∑
y∈K

g(x, y)eK(y), x ∈ Zd.

Exercise 2. Check the last display, using that the number of visits to y ∈ ∂K
before escaping is geometric with parameter eK(y).

We define the capacity of K as the total mass of the equilibrium measure eK ,
i.e. Cap(K) =

∑
z∈K eK(z).

We next introduce loops. We take a point x∗ and insist on considering only those
loops that pass through x∗. We will take x∗ →∞ after we take n→∞. Of course,
in order to visit a compact set we need to adjust α. Pick u > 0 and set

α = α(u, x∗) = u
g(0)

c2d
|x∗|2(d−2).

Note that a-priori, when starting from x∗ the probability to hit 0 (say) is roughly
c/|x∗|d−2, but the probability to hit 0 and return to x∗ is only c/|x∗|2(d−2), hence
the scaling. We write Pu,x∗,n = Pα(u,x∗),Vn .

Fix n and x∗ (with x∗ ∈ Vn). Let In,x∗ denote the vertices z ∈ Vn that have been
visited by an (unrooted) loop in Vn that passed through x∗. Under the measure
Pu,x∗,n, this is a random set. We will care about its distribution. We begin with
avoidance probabilities.

Theorem 4.1. For any fixed compact K ⊂ Zd,

(10) lim
x∗→∞

lim
n→∞

Pu,x
∗,n(In,x∗ ∩K = ∅) = e−uCap(K).

Before providing the proof, we recall a consequence of Theorem 3.1.

Lemma 4.2. Fix K ⊂ V and x∗ ∈ V \K. Then,

Pα(All loops through x do not intersect K) =

(
1−

Ex
∗
(1{TK<∞} g(XTK , x

∗)

g(x∗, x∗)
)

)α
.

Proof. We take in (6) of Theorem 3.1 K2 = K and K1 = {x∗}. Then,

Pα(All loops through x do not intersect K)1/α

= Pα(No loop intersects both K1 and K2)1/α

=
gKc(x∗, x∗)

g(x∗, x∗)
=
g(x∗, x∗)− Ex∗(1{TK<∞} g(XTK , x

∗))

g(x∗, x∗)
,

where the last equality is due to a first time decomposition. �
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Proof of Theorem 4.1. From Lemma 4.2 we have that, with g(n) denoting the Green
function of the random walk killed at exiting Vn,

(11) Pu,x
∗,n(In,x∗ ∩K = ∅) =

g(n)(x∗, x∗)− Ex∗(1{TK<TV cn } g
(n)(XTK , x

∗))

g(n)(x∗, x∗)
.

By transience, g(n)(x, y)→n→∞ g(x, y), uniformly in compact subsets of Zd. Thus,
taking the limit as n→∞ in (11) one gets g(n)(x∗, x∗)→ g(0) and thus

lim
n→∞

Pu,x
∗,n(In,x∗ ∩K = ∅) =

(
1−

Ex
∗
(1{TK<∞} g(XTK , x

∗))

g(0)

)α
.

As x∗ →∞ we have that g(xTK , x
∗) ∼ g(x∗) ∼ cd|x∗|2−d. Hence,

(12)

lim
x∗→∞

lim
n→∞

Pu,x
∗,n(In,x∗∩K = ∅) = lim

x∗→∞

(
1− cd|x∗|2−dP x

∗
(TK <∞)

g(0)

)u g(0)

c2
d

|x∗|2(d−2)

.

We recall (9):

P x(TK <∞) =
∑
y∈K

g(x, y)eK(y), x ∈ Zd.

when x = x∗ →∞, we have that g(x∗, y) ∼ g(x∗) ∼ cd|x∗|2−d and hence P x
∗
(TK <

∞) ∼ cdCap(K)|x∗|2−d. Substituting in (12) we obtain

lim
x∗→∞

lim
n→∞

Pu,x
∗,n(In,x∗ ∩K = ∅) = lim

x∗→∞

(
1− c2d|x∗|2(2−d)Cap(K)

g(0)

)u g(0)

c2
d

|x∗|2(d−2)

= e−uCap(K).

�

While this is not obvious, this computation completely characterizes the limit
process of interlacements. The reason is that by inclusion-exclusion, one can eval-
uate from it the limit of

Pu,x
∗,n(In,x∗ ∩K = ∅,K ′ ∈ In,x∗)

for disjoint K,K ′ and thus characterize the occupied set distribution.

4.1. Another construction. We sketch another construction of interlacements,
which does not use the loop soop but rather works directly with path measures.

Let Vn be as above, but now identify the boundary of Vn with the point x∗. Let

τnu = inf{t ≥ 0 : Ln,x
∗

t > u}.

Proposition 4.3. For d ≥ 3, one has that{
Ln,xτnu

}
x∈Zd

d→n→∞

{
Lint,u
x

}
x∈Zd

,

where Lint,u
x is the local time of the interlacement process defined above, and the

convergence is with respect to cylinder test functions.

A proof can be obtained by computing the Laplace transform E(exp(−
∑
F (x)Ln,xτnu )),

noting that it has a limit as n→∞, and then equating that limit with

E(exp(−
∑

F (x)Lint,u
x )) = exp(−u

∑
x,y

(I +GF )−1(x, y)F (x)).
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One convenient way to compute the limit is by using the GRK2 for Ln,xτnu .

Exercise 3 (*). Prove Proposition 4.3.

Once the limit is obtained, and rrecalling that for d ≥ 3 the GFF in Vn has a
limit {φx} due to transience of the random walk, we obtain the following.

Corollary 4.4. {
Lint,u
x +

1

2
φ2
x

}
x∈Zd

d
=

{
1

2
(φx +

√
2u)2

}
x∈Zd

.

Let Vu denote the complement of the interlacement set, i.e. the vacant set. Let
now u∗ be such that Vu percolates for u < u∗ (monotonicity here is clear due to
the Poisson construction of interlacements). Let h∗ be the supremum of the h such
that the set {φx > h} percolates. By applying Lupu’s isomorphism (i.e. moving to

the metric graph of Zd), we see that the connected clusters of −φ+
√

2u∗ < 0 are
dominated by the vacant set. In particular, h∗ ≤

√
2u∗.

Remark 4.5. An interesting question is whether h∗ > 0. This was shown in large
enough dimension for d large enough by Rodriguez and recently in all dimensions
d ≥ 3 by Drewitz, Prevost and Rodriguez (arXiv:1708.03285).

4.2. Yet another construction. This sub-section is devoted to Sznitman’s orig-
inal construction of the interlacement process, which was motivated by certain
disconnection problems, and in particular the claim that the time to disconnect the
cylinder (Z/NZ)d × Z by random walk is of order N2d. This is done in discrete
time, directly on Zd, d ≥ 3, as follows.

Let W+ (W ) denote the space of infinite (doubly infinite) paths, let W ∗ = W/ ∼
and π∗ : W →W ∗ where the equivalence relation is equality modulu time shifts. We
consider the space W ∗×R+, where the second coordinate corresponds to intensity.
Sznitman constructs a Poisson measure P on W ∗ ×R+, with intensity ν̂ = ν ×Leb
(a σ-finite measure), as follows. For a compact K ⊂ Zd, let W 0

K denote the subset
of trajectories entering K for the first time at time 0, i.e. w(0) ∈ K, w(n) 6∈ K for
n < 0. Let W ∗K = π∗W 0

K .

Theorem 4.6 (Sznitman). There exists a unique σ-finite measure ν as above so
that, for any compact K,

1W∗Kν = QK(π∗)−1

and QK satisfies:

(1) QK(w0 = x) = eK(x).
(2) Fix x ∈ ∂K. Conditionally on w0 = x, under QK the paths (wn)n≥0 and
{w−n}n≥0 are independent, of law P x and P x(·|τK =∞).

In particular, under conditioning by w0 = x, QK is a probability measure.
Note that from the existence of the measure ν we obtain that ν̂(W ∗K × [0, u]) =

uCap(K) and hence, with Vu denote the vertices in Zd that have not been visited

by any path of intensity smaller than u, one has P(K ⊂ Vu) = e−uCap(K)). Thus,
we obtain an alternative construction of the interlacement process.

(Sketch). The uniqueness is clear since there exists an increasing sequence Kn ↗
Zd. So the only issue is the construction of ν. For that, it is enough to show that
the measures defining ν are compatible. That is, define νK = QK(π∗)−1. It is
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enough to show that if K ⊂ K ′ then 1W∗KνK′ = νK . This is a computation: let
ΣK,K′ denote the collection of paths of finite length connecting a point in ∂K ′ to a
point in ∂K, entering K only at the endpoint; let L(σ) denote the length of a path
σ ∈ ΣK,K′ . Let Ai ⊂ Zd. Then, we need to compute

Q :=
∑

σ∈ΣK,K′

QK′(wi+L(σ) ∈ Ai, i ∈ Z, wj = σ(j), j ∈ [0, L(σ)])

and compare this to QK(wi ∈ Ai, i ∈ Z). (Picture!).
Relabeling, we have

Q =
∑

σ∈ΣK,K′

QK′(wi ∈ Ai−L(σ), i ∈ Z, wj = σ(j), j ∈ [0, L(σ)]).

By definition of QK′ , this equals

Q =
∑

σ∈ΣK,K′

∑
x∈∂K′

eK′(x)P x(wi ∈ A−i−L(σ), i ≥ 0|τK′ =∞)

·P x(wj = σi ∈ Aj−L(σ), j ∈ [0, L(σ)])Pσ(L(σ))(wi ∈ Ai−L(σ), i > L(σ))

=
∑

σ∈ΣK,K′

∑
x∈∂K′

P x(wi ∈ A−i−L(σ), i ≥ 0, τK′ =∞)

·P x(wj = σ(j) ∈ Aj−L(σ), j ∈ [0, L(σ)])Pσ(L(σ))(wi ∈ Ai−L(σ), i > L(σ))(13)

=:
∑

σ∈ΣK,K′

∑
x∈∂K′

P x1 P
x
2 P

σ(L(σ))
3 .

Let Σx,yK,K′ denote the paths in ΣK,K′ that start at x ∈ ∂K ′ and end in y ∈ ∂K.

By time reversal (we are dealing with random walk!), we have for σ(·) ∈ Σx,yK,K′ ,

P x2 = P y(wj = σ(L(σ)− j) ∈ A−j , j ∈ [0, L(σ)], τK > L(σ)).

Therefore, for such σ(·),
P x1 P

x
2 = P y(wj ∈ A−j , j ≥ 0;wj = σ(L(σ)− j), j ∈ [0, L(σ)];wL(σ) = x; τK =∞).

Summing the last expression over x and those σ ∈ Σx,yK,K′ with σ(L(σ)) = y, we
obtain that the sum equals

P y(wj ∈ A−j , j ≥ 0; τK =∞).

Substituting in (14), we obtain that

Q =
∑
y∈∂K

P y(wj ∈ A−j , j ≥ 0; τK =∞)P y(wj ∈ Aj , j ≥ 0),

which equals∑
y∈∂K

P y(wj ∈ A−j , j ≥ 0|τK =∞)eK(yyP (wj ∈ Aj , j ≥ 0) = QK(wj ∈ Aj , j ∈ Z),

as claimed. �

It is easy to see from the construction that the measure ν is translation invariant
and invariant under time reversal. It is a bit more delicate, but still true, that
its restriction to W ∗ × [0, u] is ergodic with respect to spatial shifts. From this it
follows that, with Pu(·) := P(· × [0, u]), one has

Pu(Vu contains an infinite cluster ) ∈ {0, 1}.
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With u∗ denoting the supremum of us for which the probability that 0 is in an
infinite cluster is positive, Sznitman showed that u∗ < ∞ (and that u∗ > 0 for
d ≥ 7.) The proof that u∗ < ∞ involves a renormalization scheme, using a small
increase of un → un+1 (and independence coming with it) to overcome the long-
range dependence of the model.

We remark that Teixeira showed that the infinite cluster, when it exists, is
unique.

Let us sketch the main part of Sznitman’s proof of non-percolation for u large. He

starts with a sequence of scales growing fast, Ln = L
(1+a)n

0 , with `n = Ln+1/Ln =
Lan. Tile Zd with Ln-boxes, consider for each such box Vn its neighbors at scale Ln,

let Ṽn denote this bigger box (of side 3Ln) and then consider the event

There exists a vacant crossing from Vn to ∂Ṽn, with intensity ≤ un,
and mark by pn(un) the probability of that event. One now chooses the intensities

un = u0

∏n
i=0(1 + c/`d−2

i )r for some c and r tbd. The main estimate is

pn(un) ≤ C`2(d−1)
n /Ln

which goes to 0 if the constants are chosen right, while un → ū <∞.
To see the main estimate, one goes a level down, and notes that such a vacant

path must connect a point in Vn through a box at scale n − 1 on its boundary to
a box of scale n − 1 at distance 3Ln/2 to ∂Ṽn, while staying inside the “annulus”
between these two. To start with, by an induction hypothesis there are not too
many such boxes in the un−1 intensity level that are crossed by a vacant path. The
union over the number of choices of the intermediate boxes gives the factor (`d−1

n )2,
and now we can fix two such boxes (picture!). Now use the increased intensity to see
that the event of having a crossing path between them is of low probability, about
1/Ln. The actual computation is long and difficult and is beyond these notes.


