
LECTURE 5: LOOPS

We continues in the setup where V is finite. The material in this lecture is again
borrowed, essentially verbatim, from Sznitman’s lecture notes.

1. Rooted loops

We introduce the space of rooted loops, which are trajectories with finite lifetime
that, instead of going to the cemetery at the lifetime, are then at the starting point.
More precisely, let Lr,t denote the space of right continuous trajectories {γ(s)}s≤t
with finitely many jumps, satisfying γ(t) = γ(0). As long as we keep the information
t, we can also think of γ ∈ Lr,t as an infinite path by extending it periodically, and
then we can define in a natural way the shift θs, s ∈ R.

Let Lr = ∪tLr,t, noting that the spaces Lr,t are pairwise disjoint. We refer to
a γ ∈ Lr as a rooted loop of length ξ(γ). For γ ∈ Lr, there is a unique t so that
γ ∈ Lr,t, and we set ξ(γ) = t as the lifetime of the process. The product σ-algebra
on Lr is obtained after linearly stretching all paths to be of length 1; measurability
issues are in general never a serious issue in this context and we will simply ignore
them.

Let n(γ) denote the total number of jumps. Since γ(ξ(γ)) = γ(0), we have
n(γ) ∈ {0, 2, . . .}. We thus set N(γ) = n(γ) ∨ 1, and let Ti denote the successive
jump times of the path (no such Ti exist if N(γ) = 1). We call a loop trivial if
N(γ) = 1, and pointed if N(γ) > 1 and TN = ξ(γ), i.e. if the last jump occurs at
ξ(γ), which by periodicity could be thought of as occuring at time 0. (Due to right
continuity, there can’t be a jump at time 0.)

Recall the measures P tx,y that we introduced in the last lecture. We only need

now the measures P tx,x, and define

µr(B) =
∑
x∈V

∫ ∞
0

P tx,x(B)λx
dt

t
=
∑
x∈V

∫ ∞
0

P x({X̃t = x} ∩B)
dt

t
.

(We will see later the reason for the division by t; in a nutshell, this reflects the
uniform choice of the root of the loop.)

The following facts are simple consequences of the definitions.

(1) The lifetime under µr has a finite distribution. Indeed, since the total mass
of P tx,x is rt(x, x), we have

µr(ξ(X̃) ≥ s) =
∑
x∈V

∫ ∞
s

rt(x, x)λx
dt

t
≤ 1

s

∑
x∈V

λxg(x, x) ≤ 1

s
C,

for some constant C.
Note that the same argument shows that µr is not a finite measure, only

a σ-finite one.
(2) For k > 1,

µr(X̃t1 = x1, . . . , X̃tk=xk , ξ ∈ (t, t+dt) = rt2−t1(x1, x2)λx2
. . . rt+t1−tk(xk, x1)λx1

dt

t
.
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We bring a proof: for t > tk,

P tx,x(X̃t1 = x1, . . . , X̃tk=xk)λx = rt1(x, x1)λx1
rt2−t1(x1, x2)λx2

. . . rtk−tk−1
(xk−1, xk)λxkrt−tk(xk, x)λx.

Summing over x ∈ V , since
∑
x∈V rt−tk(xk, x)λxrt1(x, x1) = rt+t1−tk(xk, x1),

we obtain
(1)∑
x∈V

P tx,x(X̃t1 = x1, . . . , X̃tk=xk)λx = rt2−t1(x1, x2)λx2
. . . rtk−tk−1

(xk−1, xk)λxkrt−tk(xk, x1)λx1
.

From the definition of µr, this gives the claim.
(3) For k = 1,

µr(X̃t1 = x1, ξ(X̃) ∈ (t, t+ dt) = rt(x1, x1)λx1

dt

t
.

(4) Let Z0 = γ(0) and Zi = γ(Ti), i = 1, . . . , N(γ). (Recall that ZN = γ(0)
under µr.) Then, for n > 1,

µr(N = n,Zi = xi, i = 0, . . . , n− 1, Ti ∈ ti + dti, i = 1, . . . , n, ξ(γ) ∈ t+ dt))

= P (x0, x1) · · ·P (xn−1, x0)1{0<t1<...<tn<t}
e−t

t

n∏
i=1

dti · dt.

and, for n = 1,

(2) µr(N = 1, Z0 = x0, ξ(γ) ∈ t+ dt) =
e−t

t
dt.

We skip the proof.

An important property of µr is its stationarity, which is summarized in the next
lemma.

Lemma 1.1. With notation as above, with n > 1, recalling that xn = x0,

(3) µr(N = n,Zi = xi, i = 0, . . . , n− 1) =
1

n

n∏
i=1

P (xi−1, xi).

(Recall that P (xi−1, xi) = ωxi−1,xi/λxi , and may sum to less than 1.)

Further, µr(N = n) = 1
nTr(Pn) (therefore, µr(N > 1) = − log(det(I − P ))),

and (recall that we extended path to infinite paths by periodicity), for any k ∈ Z,

(4) µr(N > 1, {Zk+m}m∈Z ∈ ·) = µr(N > 1, {Zm}m∈Z ∈ ·).

Finally, µrθ
−1
v = µr, for any v ∈ R.

Proof. The equality (3) follows from point (4) above by integration. Summing over
{x} gives the trace formula. From invariance of the right side of (3) with respect
to cyclic shifts of the sequence (x0, x1, . . . , xn−1), we obtain (4). So it only remains
to prove the continuous-time stationarity. This follows in turn from the following
stationarity: Consider P tx,x as a measure on infinite path (extended by periodicity

from [0, t] since X̃0 = X̃t under this measure). We claim that
∑
x∈V λxP

t
x,x · θ−1v =∑

x∈V λxP
t
x,x. It is enough to consider v ≤ t since the general case reduces to it by

periodicity. But for v < t, the claim follows at once from the right side of (1).
Now, recalling that µr(·) =

∫∞
0

∑
x∈V P

t
x,x(·)λx dtt , the claimed stationarity fol-

lows. �
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Similar computations lead to invariance under time reversal, as follows. For
γ ∈ Lr, let γ̌ ∈ Lr be such that ξ(γ̌) = ξ(γ) and γ̌(s) = γ(−s) (where we recall
that we extended γ by periodicity.)

Lemma 1.2.

µr[N > 1, {Z−m}Nm=1 ∈ ·) = µr[N > 1, {Zm}Nm=1 ∈ ·).
Further, µr · (̌·)−1 = µr.

2. Pointed loops

Recall that a rooted loop is pointed if it jumps at its lifetime. We extend the
definition of pointed loops by declaring all trivial loops to be pointed. Let Lp ⊂ Lr
denote the space of pointed loops. Set, for γ ∈ Lr with N = n,

σ0(γ) = T1(γ) + ξ(γ)− Tn(γ), σi(γ) = Ti+1 − Ti, i = 1, . . . , n− 1,

the time epoch between jumps; note that σ0 = T1 for γ ∈ Lp.
Introduce the measure µp on Lp in a way similar to µr, by

µp(N = 1, Z0 = x0, ζ ∈ t+ dt) = e−t
dt

t
,

µp(N = n,Zi = xi, σi ∈ si + dsi, i = 0, . . . , n− 1)

=
1

n
P (x0, x1) · · ·P (xn−1, x0)e−

∑n−1
i=0 si

n−1∏
i=1

dsi,

. There are natural maps from Lr to Lp given by θTm(γ)γ, for m = 1, . . . , n. It
maps naturally 1{N=n}µr to a measure on Lp. As in the case of palm measures,
there is a relation between stationary measures in the continuum and (size bias
versions of) stationary measures on the discrete, as follows.

Proposition 2.1. For 1 ≤ m ≤ n,

1{N=n}µr ◦ θ−1Tm(Zi = xi, σi ∈ si + dsi, i = 0, . . . , n− 1)

=
sn−m∑

si
P (x0, x1) · · ·P (xn−1, x0)e−

∑n−1
i=0 si

n−1∏
i=1

dsi,(5)

and therefore

1{N=n}µr ◦ θ−1Tm = n
σn−m∑

σi
1{N=n}µp.

Further, if F : Lr → R is a shift invariant bounded measurable function, i.e.
F · θv = F , then

(6)

∫
1{N=n}Fdµr =

∫
1{N=n}Fdµp.

Proof. The proof of (5) involves a change of variables. Recall that

µr(Zi = xi, Ti ∈ ti + dti, ξ(γ) ∈ t+ dt) =

n∏
i=1

P (xi−1, xi)10<t1<...<tn<t
e−t

t
dt
∏

dti.

Now, make the change of variables

(t1, . . . , tn, t) 7→ (t1, s1 = t2 − t1, . . . , sn−1 = tn − t1 −
n−2∑
i=1

si, s0 = t−
n−1∑
i=1

si).
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The new variables satisfy 0 < t1 < s0, si ≥ 0, i = 1, . . . , n − 1. The Jacobian of
the transformation is 1, and the si are precisely the definition of the σi. So, in the
original variables, the new density is

n∏
i=1

P (xi−1, xi)1{0<t1<s0}
e−

∑
si∑
si

dt1

n−1∏
i=1

dsi

Integrating over t1 one picks up a factor s0. Since the expresions in the density
except for this factor are invariant under cyclic transformations of the indices, the
shift Tm simply replaces s0 by sn−m. This proves (5).

To see (6), use the fact that F is invariant to write that F (γ) = 1
n

∑n
i=1 F (θTiγ),

and use the above expression. Using (5), one picks the factor

1

n

∑
σi∑
σi

=
1

n
,

as needed. �

The measures µr and µp possess also good restriction properties. Let A ⊂ V .
Let Lr,A and Lp,A denote the sets of rooted (pointed) loops that stay in A up to
their lifetimes. It is not hard to check that

(7) 1{Lr,A}µr = µr,A, 1{Lp,A}µr = µp,A

where µr,A and µp,A are defined as mur, µp on the restricted graph A with weights
λAx = λx +

∑
y 6∈A ωx,y.

Exercise 1. Prove (7).

3. Local times for loops

The definition of local times for loops is analogous to that for paths, we simply
set

Lx = Lx(γ) =
1

λx

∫ ξ(γ)

0

1{γs=x}ds.

By definition, the local time is invariant under time shifts, and under time reversals,
and therefore has the same “law” under µr or µp.

The next lemma gives a Laplace trasform for the law of the local time. We saw
similar computations in the context of Dynkin’s isomorphism.

Lemma 3.1. For any η > 0,

(8)

∫
(1− e−ηLx)1{N=1}dµr = log

(
1 +

η

λx

)
,

and more generally, for F ≥ 0,

(9)

∫
(1− e−

∑
x F (x)Lx)dµr = log det(I +GF ) = − log

(
detGF

detG

)
.

Proof. If N = 1 then the loop is a trivial loop and Lx = ξ/λx on the event that
γ0 = x. By (2) it then follows that∫

(1− e−ηLx)1{N=1}dµr =

∫ ∞
0

(1− e−ηt/λx)
e−t

t
dt,
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from which the conclusion (8) follows after using the trick

1

t
dt =

∫ ∞
0

e−tsds

and Fubini.
To see (9), we use the definitions for P tx,x, and recall that

Etx,x(1− e−
∑
y∈V F (y)Ly ) = Px(X̃t = x)/λx − Ex(1{X̃t=x}e

−
∫ t
0
(F/λ)(X̃s)ds)

=
1

λx

(
et(P−I)1x − et(P−I−F/λ)1x

)
where the Feynman-Kac formula was used in the last step. Summing over x and
integrating with respect to the weight dt/t we obtain that

(10)

∫
(1− e−

∑
y∈V F (y)Ly(γ))dµr =

∫ ∞
0

Tr(et(P−I) − et(P−I−F/λ))dt
t
.

Recall that the eigenvalues of P (a self adjoint matrix in L2(dλ)), denoted λPi ,
satisfy

(11) max
i
|λPi | < 1.

By Weyl’s inequalities1, with λ
P−F/λ
i denoting the eigenvalues of P −F/λ, we also

have that maxi |λP−F/λi | < 1 if ‖F‖ is small enough. Therefore, we can expand the
exponential and obtain that

Tr(et(P−I) − et(P−I−F/λ)) = e−t
∑
k≥1

tk

k!
Tr(P k − (P − F/λ)k)

= e−t
∑
i

∑
k≥1

(
(λPi t)

k

k!
− (λ

P−F/λ
i t)k

k!
).

Now, note that for |a| < 1,∫ ∞
0

∑
k≥1

tkak

k!

e−tdt

t
=
∑
k≥1

ak

k!

∫ ∞
0

tk−1e−tdt =
∑
k≥1

ak(k − 1)!

k!
= − log(1− a).

Therefore, from (10) we obtain that∫
(1− e−

∑
y∈V F (y)Ly(γ))dµr = −

∑
i

[log(1− λPi )− log(1− λP−F/λi )]

= log det(I − P + F/λ)− log det(I − P )(12)

= log det(I + (I − P )−1F/λ) = log det(I +GF ),(13)

where in the last equality we used that (I − P )−1λ−1 = G. Recall from Lecture 4
that (I +GF )−1 = (−L+F )−1(−L) if ‖F‖ is small, and that L = λ(P − I). Thus,

(I +GF )−1 = (λ(I − P + F/λ))−1(λ(I − P ))

and therefore

det(I+GF )−1 = det(λ−1) det(λ) det(I−P+F/λ)−1 det(I−P ) = det(GF )/det(G).

1See Remark 3.2 below for an alternative, shorter argument
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It follows from the last display and (13) that

(14)

∫
(1− e−

∑
y∈V F (y)Ly(γ))dµr = log(det(G)/ det(GF )).

To extend the proof from ‖F‖ small to general bounded positive F , we argue by
the general principle that if the formula makes sense, it should extend. To begin,
note that

(15) 0 < β 7→
∫

(1− e−β
∑
y∈V F (y)Ly(γ))dµr

is monotone increasing. It is also bounded for small β > 0 and finite for all β > 0
since 1− e−(a+b) ≤ (1− e−a) + (1− e−b) for a, b > 0 (differentiate in b to see that).

We next claim that the function in (15) is actually analytic on the right half
plane of C. To see that it is enough to show that the integrand is dominated by
an integrable function. Note that the integrand is dominated by 2 (if <β ≥ 0) and,
since µr({N > 1}) < ∞, see Lemma 1.1, we only have to worry about the event
N = 1. But, on this event,

|1− e−β
∑
y F (y)Ly(γ)| = |1− e−βF (γ0)ξ(γ)| ≤ |β|‖F‖∞ξ(γ),

where we uses that <β. Since ξ(γ)1{N=1} is integrable under µr, we obtain the
desired uniform integrability on compact subsets of CR := {z ∈ C : <z > 0}. It
follows that (15) is analytic on CR. On the other hand, taking first F > 0, write
I = F−1/2F 1/2 and use the formula det(AB) = det(BA) to get

det(I + βGF ) = det(I + β
√
FG
√
F ),

noting that the formula remains true even if certain entries of F vanish by continu-
ity. Now,

√
FG
√
F is a symmetric matrix, with nonnegative eigenvalues, and the

analyticity of the log-determinant on CR follows. Thus, the equality (14) extends
from β ∈ (0, β0) to β > 0, and in particular to β = 1. �

Note that substituting in (14) F = 1x gives

(16)

∫
(1− e−ηLx)dµr = log(1 + ηg(x, x)),

since det(I +GF ) = det(I + F 1/2GF 1/2) = 1 + ηg(x, x).

Remark 3.2. A shorter argument, that avoids the analytic continuation, was sug-
gested by Liying Li and is as follows. From (11) one has that 1−λPi > 0. Similarly,

1− λP−F/λi > 0. Since

Tr(et(P−I) − et(P−I−F/λ)) =
∑
i

(e−(1−λ
P
i )t − e−(1−λ

P−F/λ
i )t.

Since ∫ ∞
0

e−at − e−bt

t
dt = log(b/a),

and the number of eigenvalues is finite, the integrability and hence the conclusion
follow.

Exercise 2. Use the restriction property to show that for A ⊂ V and F as above,∫
γ·∈A

(1− e−
∑
x F (x)Lx)dµr = log det(I +GAF ),
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where GA is the green function of the random walk killed at exiting A.

Exercise 3. (*) Prove the following variant of Lemma 3.1, using (8) of lecture 4:
for F : V → R+,

Ex,y(e−
∑
F (z)Lz ) = (F − L)−1(x, y).

4. Unrooted loops

We have so far considered loops with a distinguish point, the root. Sometimes
it is better to forget that distinguished vertex. We can introduce an equivalence
relation ∼ on Lr by declaring two loops equivalent if their lifetime is equal and
one it a shift of the other. Let L∗ be the space of equivalent classes of loops,
endow it with the σ-algebra induced from Lr vi the map π∗ : Lr → L∗, and define
µ∗ = µr(π

∗)−1. (Since equivalence classes are translation invariant, we can use µr
or µp in the last definition).

We do one calculation with respect to the measures µ∗.

Definition 4.1. A unit weight is a (measurable) function T : Lr → R+ satisfying∫ ξ(γ)

0

T (θvγ)dv = 1.

An example (besides the trivial one T0(γ) = 1/ξ(γ)) is T1(γ) = T0(γ)1γ·∩{x}=∅+
1γ(0)=x/(λxL

x).

Lemma 4.2. If T is a unit weight and F : L∗ → R+ measurable then

(17)

∫
Fdµ∗ =

∑
x∈V

F ◦ π∗(γ)T (γ)dPx,x(γ)λx.

Note first that the choice of unit weight does not affect the left side in (17), and
thus the right side does not depend on the unit weight chose. This can be useful in
computations.

Proof. By definition, the right side in (17) equals∫ ∞
0

∑
x∈V

λxE
t
x,x(F ◦ π∗ · T )dt.

Using stationarity of
∑
x λxP

t
x,x (as in the proof of Lemma 1.1, we have∑

x∈V
λxE

t
x,x(F ◦ π∗ · T ) =

1

t

∫ t

0

dv(
∑
x∈V

λxE
t
x,x(F ◦ π∗ ◦ θv) · (T ◦ θv).

Using that (F ◦ π∗ ◦ θv) = F ◦ π∗, we can perform the integration over v and use
the fact that T is a unit weight (note that under Etx,x, ξ(γ) = t) to obtain that the
expression in the last display equals∫ ∞

0

∑
x∈V

λxE
t
x,x(F ◦ π∗)dt

t
=

∫
Lr

F ◦ π∗dµr =

∫
L∗
Fdµ∗.

�
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Using the weight T1, a consequence of the last lemma is that

1x∈γ∗dµ
∗ =

1

Lx
dPx,x ◦ (π∗)−1,

that is, the meausre µ∗, on the event that a point x was visited, can be obtained from
Px,x by a random rescale (corresponding to local time) together with “forgetting
the root”. By invariance of Lx to shifts, this is the same as the equality

1x∈γ∗Lxdµ
∗ = dPx,x ◦ (π∗)−1,

Integrating, we obtain that
∫
x∈γ∗ Lxdµ

∗ = g(x, x).


