
LECTURE 2: LOCAL TIME FOR BROWNIAN MOTION

We will define local time for one-dimensional Brownian motion, and deduce some
of its properties. We will then use the generalized Ray-Knight theorem proved in
Lecture 1 in order to obtain the classical result (proved originally and separately
by Ray and Knight).

1. Construction of local time

Throughout, we let Bt denote a standard one dimensional Brownian motion,
which may start at B0 = a with a arbitrary. The occupation measure associated

with it is the collection of random measures µt(A) =
∫ t
0
1{Bs∈A}ds.

Lemma 1.1. For each t, µt << Leb.

Proof. By regularity of Leb, it is enough to show that a.s., for µt-a.e. x,

lim inf
r→0

µt(B(x, r))

|B(x, r)|
<∞.

A sufficient condition for the latter is that

(1) E

∫
dµt(x) lim inf

r→0

µt(B(x, r))

|B(x, r)|
<∞.

By Fatou, we have that the left side in (1) is bounded above by

lim inf
r→0

1

2r
E

∫
µt(B(x, r))dµt(x) = lim inf

r→0

1

2r
E

∫
dµt(x)

∫ t

0

1{x−r≤Bs≤x+r}ds

= lim inf
r→0

1

2r
E

∫ t

0

du

∫ t

0

1{B(u)−r≤Bs≤B(u)+r}ds

= lim inf
r→0

1

2r
E

∫ t

0

du

∫ t

0

1{|B(u)−B(s)|≤r}ds

= lim inf
r→0

1

2r

∫ t

0

du

∫ t

0

P (|B(u)−B(s)| ≤ r)ds

≤
∫ t

0

∫ t

0

duds
C√
|s− u|

<∞.

�

Note that this proof does not work for d ≥ 2. For d = 2, a renormalization
procedure will be needed in order to define local time. No such procedure is possible
for d ≥ 3.

By Lemma 1.1, the occupation measure µt has a density on R. To get access to
it, we begin by introducing a related quantity, the number of downcrossings of an
interval around 0.
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2 LECTURE 2: LOCAL TIME FOR BROWNIAN MOTION

Definition by picture:

.

1

Let D(a, b, t) = max{i : τi ≤ t} denote the number of downcrossings of (a, b) by
time t.

Theorem 1.2. There exists a stochastic process L(t) so that, for any sequence
an ↗ 0 and bn ↘ 0 with an < 0 < bn, we have

(2) 2(bn − an)D(an, bn, t)→n→∞ L(t), a.s.

Further, L(t) is a.s. Hölder ( 1
2

−
).

We call L(t) = LB(t) the local time at 0 of the Brownian motion B.
The next theorem gives an alternative representation of L(t).

Theorem 1.3. For any sequence an ↗ 0 and bn ↘ 0 with an < 0 < bn,

(3)
1

bn − an

∫ t

0

1{an≤Bs≤bn}ds = L(t), a.s.

Note that Theorem 1.3 represents the local time at 0 as the Lebesgue derivative
of µt at 0.

We postpone the proof of Theorems 1.2 and 1.3 until after we derive the Ray-
Knight theorem.

Since Theorem 1.2 is stated with arbitrary starting point a, we may define the
local time at a by La(t) = LB−a(t). We call the pair (a, ω) good if the conclusions
of Theorems 1.2 and 1.3 hold. Note that since the construction works for any a,
we have that

P × Leb({(ω, a) : La(t) not good} = 0).

In particular, it follows by Fubini that the conclusions of these theorems holds
a.s. for Lebesgue almost every a. This observation, together with the Lebesgue
differentiation theorem, immediately give the following.
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Corollary 1.4. For any bounded measurable function g,∫
g(a)dµt(a) =

∫ t

0

g(B(s))ds =

∫
R
g(a)La(t)da, a.s.

2. Brownian local times and random walk - a dictionary

Fix R, N and set GR,N := Z ∩ [−RN,RN ]. Set weights Wi,i+1 = 1, i =
−RN, . . . , RN − 1. Consider both the discrete and continuous time random walks
on GR,N . Note that DRW can be coupled with the Brownian motion Bs (started
at 0 and reflected at R) in a natural way, using lattice spacing 1/N . Note also
that the DRW and CRW are naturally coupled, but we never couple the triple
(Bs, DRW,CRW ).

We introduce the discrete local time

Lzk,R = #visits of DRW to site z by (discrete) time k.

Remark 2.1. Let Tk(z) denote the total time spent by CRW at site z by the time
of the k-th jump from z. If |z| < RN then Tk/k → 1/2 (since the jump rate of
CRW is 2) and in fact, for such z,

(4) P (|Tk(z)

k
− 1

2
| > δ) ≤ e−I(δ)k.

If k ∼ N then one can apply a union bound and see that there exist εN , δN → 0 so
that |Tk(z)/k − 1/2| < εN at once for all |z| < RN and k > δNN , with probability
approaching 1 as N → ∞ with R fixed. (One can also allow R → ∞ with N , but
we will not need that.)

We choose R large and let τR denote the hitting time of {−R,R} by the Brownian
motion. Let DN (x, t) denote the number of downcrossings from ([xN ] + 1)/N to
[xN ] by time t. Let T (N, t) denote the total number of steps of the coupled DRW
by (Brownian) time t. The coupling of the BM to DRW gives that for x which is
not a multiple of 1/N ,

DN (x, t) = #downcrossings of DRW from [xN ] + 1 to [xN ] by time T (N, t)

∼ 1

2
#visits to [xN ] by time T (N, t) =

1

2
L
[xN ]
T (N,t),R(5)

where here and later, ∼ is in the sense of Remark 2.1. Since T (N, t)/N2t ∼ 1, the

last term in the RHS of (5) is ∼ 1
2L

[xN ]
tN2,R =: N2 L̃R,N (x, t).

Note that for a.e. irrational x (which are never multiples of 1/N), we have that

L̃R,N (x, t ∧ τR) → Lx(t ∧ τR), by Theorem 1.2 (at least on a subsequence of N
which guarantees monotonicity).

On the other hand, for CRW, the Green function (with x0 = 0) is, with x, y < R,
GR(xN, yN) = (x ∧ y)N , since for y < x

Ex
τ0∑
i=0

1Xi=y = Ey
τ0∑
i=0

1Xi=y =
1

P y(τ0 < τy)
= 2y

and λx = 2 for |x| < RN . In particular, we have that φ[xN ]/
√
N

d→ Wx where
Wx, |x| < R is a two sided Brownian motion.



4 LECTURE 2: LOCAL TIME FOR BROWNIAN MOTION

3. The classical Ray-Knight theorem

The object in the left side of the generalized discrete Ray-Knight theorem can
be written, in our notation, as

1

2
L
[xN ]
2k,R +

1

2
φ2[xN ] |2k: 12L0

2k,R=u

(The factor 2 arises in translating number of visits to downcrossings.) Take u = sN .
Take R large enough so that, with high probability, the hitting time of R is larger
than the time it takes to accumulate occupation measure of sN at 0. Divide by N
and take limits to get that the above converges (in the sense of finite dimensional
distributions) to

1

2
(Lx(θs) +W 2

x ).

On the other hand, the right side converges to 1
2 (Wx +

√
s)2. This works for any

finite collection of irrational x, and extends by continuity to all x. We thus obtained:

Theorem 3.1 (Generalized Ray-Knight for Brownian motion). Let θu = inf{t :
L0(t) = u}. Then,

(Lx(θu) +W 2
x )

d
= (Wx +

√
u)2.

4. Bessel processes and the classical (second) Ray-Knight theorem

A square bessel process of parameter δ started at z (denoted BESQδ(z)) is the
solution to the stochastic differential equation

(6) dZt = 2
√
ZtdWt + δdt, Z0 = z.

(That a unique strong, positive solution exists is not completely trivial, but in the
cases of interest to us (δ = 0, 1) we show it below.)

The reason for the name is as follows. If Bt is a d-dimensional Brownian motion
then Ito’s lemma implies that

d|Bt|2 = 2

d∑
i=1

BitdB
i
t + d · dt

But
∫ t
0

∑d
i=1B

i
sdB

i
s equals in distribution

∫ t
0
|Bs|2dWs. Thus, the square of the

modulus of d-dimensional Brownian motion is a BESQδ process with δ = d. For
δ = 1, this also gives a strong solution to (6). Weak uniqueness of a positive solution
can then be deduced by taking square-root, and strong uniqueness follows by from
weak uniqueness + strong existence.

To see a strong solution for δ = 0, note that a strong solution exists up to τ0,
the first hitting time of 0, and then extend it by setting Zt = 0 for all t > τ0.

Lemma 4.1. Let Xt be a BESQδ(y) and let Yt be an independent BESQδ
′
(y′).

Then Zt = Xt + Yt is a BESQδ+δ
′
(y + y′).

Proof. Write dXt = 2
√
XtdWt + δdt, dYt = 2

√
YtdW

′
t + δ′t, where W and W ′ are

independent Brownian motions. From Ito’s lemma we get

dZt = 2(
√
XtdWt +

√
YtdW

′
t ) + (δ + δ′)dt.

The martingale part in the last equation has quadratic variation Xt+Yt = Zt, from
which the conclusion follows. �
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In fact, the following converse also holds.

Lemma 4.2. Let y, y′, δ, δ′ ≥ 0. If Xt is a BESQδ(y) process, Yt ≥ 0 is inde-

pendent of it, and Xt + Yt is a BESQδ
′
(y + y′) process, then Yt is a BESQδ

′
(y′)

process.

Proof. Note first that Yt is necessarily continuous. Hence, its law is characterized by
its finite dimensional distributions. Since it is non-negative, the finite dimensional
distributions are characterized by their Laplace transform. Now, with λi, ti ≥ 0,
and Zt a BESQη(z) process, write

ψη,z(λi, ti, i = 1, . . . , k) = E(e−
∑d

i=1 λiZti ).

Then, from independence,

E(e−
∑k

i=1 λiYti ) =
ψδ+δ

′,y+y′(λi, ti, i = 1, . . . , k)

ψδ,y(λi, ti, i = 1, . . . , k)
.

In particular, the law of Yt is determined. Now apply Lemma 4.1 to identify it as
BESQδ

′
(y′). �

Remark 4.3. By the same reasoning, Lemma 4.1 gives immediately (weak) unique-
ness for the BESQ0 process.

We can now finally prove the classical version of the Ray-Knight theorem.

Theorem 4.4 (Classical second Ray-Knight theorem). Lx(θu) is a BESQ0(
√
u)

process.

Proof. Note that, by Ito’s lemma, (Wx+
√
u)2 is a BESQ1(

√
u) process. It follows

from Theorem 3.1 that Lx(θu) +W 2
x is a BESQ1(

√
u) process. Noting that W 2

x is
a BESQ1(0) process, the conclusion follows from Lemma 4.2. �

5. Proof of Theorem 1.2

We follow the treatment in the Mörters-Peres book. We will sketch some of the
arguments, see Chapter 6 there if you have troubles filling in the details. (Beware
that some of the computations there are not quite right, this will be corrected in
the forthcoming paperback edition.) We begin with a decomposition lemma for
downcrossings.

Lemma 5.1. Fix a < m < b < c. Let Tc = inf{t : Xt = c}. Let D1 = D(a,m, Tc),
Du = D(m, b, Tc), D = D(a, b, Tc). Then there exist independent sequences of inde-
pendent random variables Xi and Yi, independent of D with the following properties:

For i ≥ 1, Xi is Geometric( b−am−a) and Yi is Geometric( (b−a)(c−m)
(b−m)(c−a)) (both starting

at 1), and

D1 = X0 +

D∑
i=1

Xi, Du = Y0 +

D∑
i=1

Yi.
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.

1

Proof. The proof is an exercise in the strong Markov property.
(a) Let X0 = D(a,m;Tdown(a, b)) where Tdown(a, b) is the time of the first down-

crossing of (a, b). Note that it is possible that X0 = 0.
(b) Each downcrossing of (a, b) has exactly one downcrossing of (a,m) (since a

can’t be reached twice).
(c) Each upcrossing of (a, b) has a (Geometric-1) downcrossings of (a,m), with

parameter (b− a)/(m− a) (start at m to see that!).
All these are of course independent of D. Facts (a)–(c) give the statement for

D1.
The claim concerning Du is similar: Take Y0 to be the number of downcrossings

of (m, b) after the last downcrossing of (a, b). Note that there are no downcrossings
of (m, b) during an upcross of (a, b), and that every downcross of (a, b) gives a
geometric number of downcrossings of (m, b). �

We next prove Theorem 1.2 in the special case that t = Tc and c > b1. For that we
need the following lemma.

Lemma 5.2. Let an ↗ 0 and bn ↘ 0 with an < 0 < bn. Then Sn := 2(bn −
an)D(an, bn, Tc)/(c − an) is a submartingale (with respect to its natural filtration
Fn) which is bounded in L2.

Proof. We use the representation of Lemma 5.1. Assume wlog that either an = an+1

or bn = bn+1 (otherwise, augment sequence).
Assume first that an = an+1. Recall that from Lemma 5.1 we have that

D(an, bn+1, Tc) = X0 +

D(an,bn,Tc)∑
i=1

Xi
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where Xi are independent of Fn and D(an, bn, Tc) is measurable on Fn. Note also
that X0 ≥ 0 and that E(Xi|Fn) = EXi = (bn − an)/(bn+1 − an) for i ≥ 1. We get
that

bn+1 − an
c− an

E(D(an, bn+1, Tc)|Fn) ≥ bn − an
c− an

D(an, bn, Tc),

as needed. The proof for bn = bn+1 is similar, using the representation of Du in
Lemma 5.1.

To see the claimed L2 bound, note that D(an, bn, Tc) is a geometric random
variable with parameter (bn− an)/(c− an), and therefore of second moment C(c−
an)2/(bn − an))2. This implies that ES2

n ≤ C ′ and completes the proof. �

It follows from Lemma 5.2 that

L(Tb) = lim
n→∞

2(bn − an)D(an, bn, Tc)

exists almost surely, and does not depend on the chosen sequence (an, bn) (since
one can always interleave sequences and get a contradiction if the limits do not
coincide).

To complete the proof of Theorem 1.2, we need to consider a fixed t > 0. Choose
then c large so that P (Tc < t) is arbitrarily small, and extend the Brownian motion

Bs, s ≤ t by an independent Brownian motion B̃ started at Bt. Let L̃(Tc) be the

local time at 0 of B̃ before Tc, which exists by the first part of the proof, and
let L(Tc) denote the local time at 0 up to time Tc of the Brownian motion B

concatenated with B̃ (both equal a.s. to the limit of downcrossings count). Then,

it follows from the definitions that L(t) = L(Tc) − L̃(Tc), a.s., and Theorem 1.2
follows.

Exercise 1. Use the downcrossing representation to show that, for all γ < 1/2
there exists ε = ε(γ) > 0 so that for h small,

P (L(t+ h)− L(t) > hγ) ≤ exp(−hε).

Using that, extend L(t) to all times (almost surely), and show it is Holder contin-
uous.

Exercise 2. Let T1 = inf{t : Wt = 1}. Use the downcrossing representation to
show that L0(T1) has an exponential distribution.

6. Proof of Theorem 1.3

This is an exercise in law of large numbers, of the type we mentioned in the
main text. First note that if B is a standard Brownian motion starting at 0 and
τ1 = min{t > 0 : Bt = 1}, then

E

∫ τ1

0

1Bs∈[0,1]ds = 1.

This can be shown in several ways: either use that removing the negative excursions
of Brownian motion gives a reflected Brownian motion, and so τ1 has the same law
as the exit time of B from the interval [−1, 1], which by a martingale argument
equals 1. Alternatively, if one sets v(x) = Ex

∫ τ1
0

1Bs∈[0,1] then

(7)
1

2
v′′(x) = 1[0,1](x), x ∈ (−∞, 1], and v(1) = 0.



8 LECTURE 2: LOCAL TIME FOR BROWNIAN MOTION

One can check that

v(x) =

{
(1− x)2, x ≥ 0
1, x < 0

(As pointed out in class, this last argument is not quite OK, since there is no
uniqueness to (7), even if one postulates that v(x) = c for x < 0 and that v(x) is
monotone decreasing. To fix that, one can approximate the indicator by a smooth
function, solve and take limits. A better option is to note that the exit time from
[0, 1] when starting at 1/2 is 1/4, and use that to deduce the condition v(1/2) =
1/4+v(0)/2, which gives the missing boundary condition when solving (7) on [0, 1].)

Note that τ1 has the law of the time spent in [0, 1] during a downcrossing of the
Brownian motion from 1 to 0. Now, embed a random walk in the Brownian motion
and use the downcrossing representation, together with a law of large numbers and
Brownian scaling, to complete the proof. Details are omitted.


