
LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR

FINITE MARKOV CHAINS

We will work with a continuous time reversible Markov chain Xt on a finite
connected state space, with generator Lf(x) =

∑
y qx,yf(y). (Recall that qx,x =

−
∑
y 6=x qx,y.) We will be interested in the local time process of Xt (defined below)

and its relation with certain Gaussian fields.

1. Preliminaries - Ito’s formula

We begin with a couple of preparatory lemmas.

Lemma 1.1 (Ito’s formula). Notation as above. For any function f ,

f(Xt) = f(X0) +

∫ t

0

Lf(Xs)ds+Mt

where Mt is a martingale.

Proof. Fix u > t. Let Ft be the cannonical filtration. Note that for δ small,

E[f(Xu+δ)|Fu] = f(Xu) + δ
∑
y

qXu,yf(y) +O(δ2)

where the O(δ2) comes from the possibility of having two or more jumps and is
uniform. Therefore, we have

E[f(Xu+δ)|Ft] = E[E[f(Xu+δ)|Fu]|Ft]
= E[f(Xu)|Ft] + δE[Lf(Xu)|Ft] +O(δ2).

(The term O(δ2) is uniform and deterministic.)
On the other hand,

E[

∫ u+δ

0

Lf(Xs)ds|Ft] = E[

∫ u

0

Lf(Xs)ds|Ft] + δE[Lf(Xu)|Ft] +O(δ2).

Define Zu = E[f(Xu) −
∫ u

0
Lf(Xs)ds|Ft]. Then, from the above, Zu+δ = Zu +

O(δ2), i.e. dZu/du = 0 for all u ≥ t. Hence, Zu = Zt, for u ≥ t, which proves the
claim. �

Lemma 1.2 (Exponential Ito’s formula). Notation as above. For any function f
with Lf = g and min |f | > 0,

f(Xt) exp

(
−
∫ t

0

g(Xs)

f(Xs)
ds

)
is a martingale.
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Proof. Write

Zt+δ = f(Xt+δ) exp

(
−
∫ t

0

g(Xs)

f(Xs)
ds

)
exp

(
−
∫ t+δ

t

g(Xs)

f(Xs)
ds

)

= Zt exp

(
−
∫ t+δ

t

g(Xs)

f(Xs)
ds

)

+[f(Xt+δ)− f(Xt)] exp

(
−
∫ t

0

g(Xs)

f(Xs)
ds

)
+O(δ2)

= Zt − Zt
∫ t+δ

t

Lf(Xs)

f(Xs)
ds

+[f(Xt+δ)− f(Xt)] exp

(
−
∫ t

0

Lf(Xs)

f(Xs)
ds

)
+O(δ2).

Taking conditional (on Ft) expectation, we get

E[Zt+δ|Ft] = Zt − δZt
Lf(Xt)

f(Xt)

+δLf(Xt) exp

(
−
∫ t

0

g(Xs)

f(Xs)
ds

)
+O(δ2)

= Zt − δZt
Lf(Xt)

f(Xt)
+ δZt

Lf(Xt)

f(Xt)
+O(δ2)

= Zt +O(δ2).

From here, proceed as in the proof of Ito’s lemma. �

Exercise 1. Show that the same proof works if instead of Xt we consider the

Markov process (Xt, Yt) where Yt = Y0 +
∫ t

0
h(Xs)ds, replacing the generator L by

L̃f(x, z) = Lf(x, z) + h(x)∂f∂z (x, z). This remark will be important in what follows.

2. Green functions

We now consider our Markov chains on graphs G = (V,E) with no self loops.
We interpret the qxy with x 6= y as conductances Wx,y > 0 on the edges, and set
λx =

∑
y 6=xWx,y. Thus qx,x = −λx. Introduce the Dirichlet form

E(f, f) =
1

2

∑
x,y∈V

Wx,y(f(y)− f(x))2.

Fix x0 ∈ V and set U = V \ x0. Let τ0 = inf{t : Xt = x0}. We consider the
chain killed at time τ0, and introduce the Green function

g(x, y) = Ex
∫ τ0

0

1Xt=ydt =: Ex`y(τ0)

where `y(t) =
∫ t

0
1Xs=yds is the local time of the Markov chain at y.

Lemma 2.1. g is a symmetric, positive definite matrix.

Proof. Consider the discrete time process Yn = Xτn where τn are the jump times.
This is of course a Markov chain with jump probabilities Px,y = Wx,y/λx. Let
N0 = min{n : Yn = x0}. Let τ+

y denote a jump time from y (i.e., exponential with
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parameter λy). Let U(n, x, y) denote the collection of paths (z0 = x, . . . , zn = y)
entirely inside U . Then, by the strong Markov property,

Ex
∫ τ0

0

1Xt=y =

∞∑
n=0

P x(Yn = y, n < N0)Ey(τ+
y ) =

1

λy

∞∑
n=0

P x(Yn = y, n < N0)

=
1

λy

∞∑
n=0

∑
z̄∈U(n,x,y)

W (x, z1)

λx

W (z1, z2)

λz1
· W (zn−1, y)

λzn−1

Reversing the steps (using that Wx,y is symmetric), we obtain that this equals
Ey
∫ τ0

0
1Xt=x, proving that g(x, y) = g(y, x).

To see that g is positive definite, note that the computation above shows that
the Green function is related to the discrete Green function

GD(x, y) =
1

λy

∞∑
n=0

P (Yn = y, n < N0) =
1

λy

∞∑
n=0

P̂n(x, y),

where P̂ is the transition matrix of the discrete chain restricted to U . Since G
is connected, P̂ is sub-stochastic and its top eigenvalue is strictly less than 1.
Therefore, GD(x, y) = 1

λy
(I − P̂ )−1. It follows that all eigenvalues are strictly

positive. �

We note that if L̂ is the generator restricted to U then GD = (−L)−1. Indeed,

let Λ be the diagonal matrix with Λxx = λx, note that −L = Λ(I−P̂ ) and therefore

(−L)−1 = (I − P̂ )−1Λ−1 and therefore

(−L)−1(x, y) = (I + P̂ + P̂ 2 + · · · )(x, y) · 1

λy
= GD(x, y).

Exercise 2. Show that E(f, f) = 〈f, Lf〉 where the inner product is in `2(V ).

3. The Gaussian free field associated on G

Since g is symmetric and positive definite, we can associate to it a centered
Gaussian field {φx}x∈V by setting φx0 = 0 and Eφxφy = g(x, y) for x, y ∈ U . Since
g = (−L)−1, we see from Exercise 2 that the Gaussian density is proportional to
exp(− 1

2E(φ, φ)) (with φx0
= 0).

4. The generalized second Ray-Knight theorem

Set θu = inf{t ≥ 0 : `x0
(t) > u}, the inverse local time at x0.

Theorem 4.1. Let {Xt} and {φx} be independent, as above.(
`x(θu) +

1

2
φ2
x

)
x∈V

d
=

(
1

2
(φx +

√
2u)2

)
x∈V

.

The theorem has a long history, going back to Ray and to Knight (in the Brown-
ian motion case), passing through some results of Dynkin that we will describe later,
hopefully, and of Eisenbaum. This version is due to Eisenbaum, Kaspi, Marcus,
Rosen and Shi.

Proof. The proof we present is due to Sabot and Tarres. Throughout, we write Ex

for expectation with respect to the Markov chain started at x and Ex for expectation
with respect to both the Markov chain and the Gaussian field.
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Fix h > 0 a positive bounded measurable function (on RV ). Introduce the
notation

dϕ = δϕx0

∏
x∈U

dϕx, C = (2π)−|U |/2(det g)−1/2.

We write

Ex0

(
h((`x(θu) +

1

2
φ2
x)x∈V

)
= CEx0

∫
RV

h(`x(θu)) +
1

2
ϕ2
x)x∈V )e−

1
2E(ϕ,ϕ)dϕ

= CEx0

∑
σ∈ΣV

∫
RU

+

h(`x(θu)) +
1

2
ϕ2
x)x∈V )e−

1
2E(σϕ,σϕ)dϕ(1)

where ΣV = {σ ∈ {−1, 1}V : σx0 = 1}.
Define (with obvious vector notation) Φ =

√
2`(θu) + ϕ2 and set

Du = {Φ ∈ RV+ : Φx0 =
√

2u,Φ2
x/2 ≥ `x(θu),∀x ∈ U.}

Then Φ : RV+ ∩ {ϕx0
= 0} → Du has inverse given by ϕx =

√
Φ2
x − 2`x(θu). This is

a diagonal transformation with Jacobian of the inverse given by

J =
∏
x∈U

Φx
ϕx

.

Making now the change of variables, we get that the right side of (1) equals

(2) CEx0

∑
σ∈ΣV

∫
RU

+

h((
Φ2
x

2
)x∈V )e−

1
2E(σϕ,σϕ)

∏
x∈U

Φx
ϕx

1Φ∈Du
dΦ.

(In the last display, we abused notation by disregarding the value of Φx0
, since it

equals
√

2u under the integration.)

Fix now Φ ∈ RV+ ∩ {Φx0 =
√

2u}, and define the stopping time

T = inf{t ≥ 0 : `x(t) =
1

2
Φ2
x, some x ∈ V }.

Set, for t ≤ T , Φx(t) =
√

Φ2
x − 2`x(t). This is a means to introduce dynamics (in

reverse time!). Note that

Φ ∈ Du ⇔ XT = x0 ⇔ T = θu,

and that in that case, ϕ = Φ(θu).
Now we exploit the dynamics: set

MσΦ
t = e−

1
2E(σΦ(t),σΦ(t))

∏
x 6=x0

σxΦx(0)∏
x6=Xt

σxΦx(t)
.

Note that the product in the right side, at time T , could be written as∏
x 6=x0

σxΦx/
∏
y 6=Xt

σyϕy,

which resembles the Jacobian of the change of variables.
The heart of the proof is the following lemma, whose proof we postpone.

Lemma 4.2. The process (MσΦ
t∧T )t≥0 is a uniformly integrable martingale.

We will also need the following easy lemma. Set NΦ
t =

∑
σ∈ΣV

MσΦ
t .

Lemma 4.3. For all x 6= x0, NΦ
T 1{XT =x} = 0.
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Proof. Let σx equal σ except that the spin in the x location is flipped. Note that
Φx(T ) = 0 if XT = x, by definition. On the latter event we therefore have that
σxΦ(T ) = σΦ(T ). On the other hand, (σxϕ)x = σxΦx(0) = −σΦx(0). Hence,
MσxΦ
T = −MσΦ

T on the event XT = x. Since

NΦ
T =

∑
σ∈ΣV

MσΦ
T =

∑
σ∈ΣV

MσxΦ
T ,

we obtain that

NΦ
T 1{XT =x} =

1

2

∑
σ∈ΣV

(MσΦ
T +MσxΦ

T )1{XT =x} = 0.

�

We can now complete the proof. Note that the expression in (2) equals

C

∫
RU

+

h((
Φ2
x

2
)x∈V )Ex0 [NΦ

T 1XT =x0
]dΦ = C

∫
RU

+

h((
Φ2
x

2
)x∈V )Ex0 [NΦ

T ]dΦ

= C

∫
RU

+

h((
Φ2
x

2
)x∈V )NΦ

0 dΦ,

where the first equality is due to Lemma 4.3 and the second to Lemma 4.2. The
last expression then equals

C

∫
RU

+

h((
Φ2
x

2
)x∈V )

∑
σ∈ΣV

e−
1
2E(σΦ,σΦ)dΦ = C

∫
RU

h((
Φ2
x

2
)x∈V )e−

1
2E(Φ,Φ)dΦ.

Since Φx0 =
√

2u, we see that Φ under the last measure is distributed like φ+
√

2u.
This completes the proof. �

It remains to prove Lemma 4.2.

Proof of Lemma 4.2. We introduce the process X̃t = (Xt, `t) with generator L̃ =
(L+ ∂

∂`x
). Set

f(x, `) =
∏
y 6=x

1

σy
√

Φ2
y − 2`y

.

Recall that

(3) MσΦ
t = e−

1
2E(σΦ(t),σΦ(t))

∏
x 6=x0

σxΦx(0)∏
x6=Xt

σxΦx(t)
.

Note that, since Φx(t) =
√

Φ2
x − 2`x(t), we have dΦx(t)/dt = −1{Xt=x}/Φx(t) and

therefore

d

dt
E(σΦ(t), σΦ(t)) =

1

2

d

dt

∑
x,y

Wx,y(σxΦx(t)− σyΦy(t))2

=
2

(σΦ(t))Xt

L(σΦ(t))(Xt).
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On the other hand,

Lf(Xt, `t)

f(Xt, `t)
=

∑
y 6=Xt

WXt,y(f(y, `t)− f(Xt, `t))

f(Xt, `t)

=
∑
y 6=Xt

WXt,y

(
f(y, `t)

f(Xt, `t)
− 1

)
=
∑
y 6=Xt

WXt,y

(
(σΦ(t))y

(σΦ(t))Xt

− 1

)
=
L(σΦ(t))(Xt)

(σΦ(t))(Xt)
.

Combining the last two displays we get that

d

dt
E(σΦ(t), σΦ(t)) = 2

Lf(Xt, `t)

f(Xt, `t)
= 2

L̃f(Xt, `t)

f(Xt, `t)
,

where the second equality is due to the fact that f(x, `) does not depend on `x.
Substituting in (3), we conclude that

MσΦ
t

MσΦ
0

=
f(Xt, `t)

f(x0, 0)
e−

∫ t
0

L̃f
f (Xs,`s)ds.

Applying Lemma 1.2, we conclude that MσΦ
t∧Tn

is a martingale, where Tn = inf{t :

`x(t) ≥ 1
2Φ2

x − 1
n for some x ∈ V }. Clearly, Tn → T . We will prove that Mt∧Tn

is uniformly (in n and t) integrable, which then implies that Mt∧T is a uniformly
integrable martingale.

Toward the latter, a direct computation similar to the above gives that∣∣∣∣∣ L̃ff (x, `)

∣∣∣∣∣ =

∣∣∣∣∣∣
∑
y 6=x

Wx,y

σy
√

Φ2
y − 2`y − σx

√
Φ2
x − 2`x

σx
√

Φ2
x − 2`x

∣∣∣∣∣∣ .
Therefore, ∣∣∣∣∣ L̃ff

∣∣∣∣∣ (Xt, `t) ≤
C(W,Φ)

ΦXt(t)
.

Thus,∣∣∣∣∣
∫ t

0

L̃f

f
(Xs, `s)ds

∣∣∣∣∣ ≤ C(W,Φ)

∫ t

0

1

ΦXs
(s)

ds

=
∑
x∈V

C(W,Φ)

∫ `x(t)

0

1√
Φ2
x − 2`

d`

=
∑
x∈V

C(W,Φ)

∫ Φ2
x(t)

Φ2
x

1√
`
d`

= 2
∑
x∈V

C(W,Φ)(
√

Φ2
x −

√
Φ2
x(t)) ≤ C(W,Φ, |V |).

Another observation is that since |V | < ∞ and
∑
x∈V `x(t) = t, we have that

T ≤ C(Φ, |V |). In particular, combined with the last display we conclude that, for
t ≤ T ,

(4) MσΦ
t ≤ C(Φ, |V |,W )|f(Xt, `t)|.

So it only remains to show that f(Xt∧T , `t∧T ) is uniformly integrable. Toward
this end, run the chain Xt until time S at which `x(S) ≥ Φ2

x/2 for all x. Clearly,
S < ∞ since V is connected. Let Tx = inf{t : `x(t) = Φ2

x2/2} and let sx denote
the time accumulated in the last visit to x before t. Note that if x 6= Xt then
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Φ2
x − 2`x(t ∧ T ) ≥ 2sx. On the other hand, the variables sx are independent,

exponentially distributed with parameter λx. We then get that

|f(Xt, `t)| ≤
∏
x 6=Xt

1√
2sx
≤
∏
x

1√
2sx ∧ 1

=: Q.

Combined with (4) we conclude that

MσΦ
t ≤ C(Φ, |V |,W )Q.

Note that Q does not depend on t or T . On the other hand, by the independence
of the sx’s, and the square-root together with the positive density of sx at 0, we
obtain that

EQ ≤
(
C(W )

∫ ∞
0

e−C(W )r

√
2r ∧ 1

)|V |
<∞,

completing the proof. �


