1. Show that the rings of integers of \(\mathbb{Q}[\sqrt{-7}] \) and \(\mathbb{Q}[\sqrt{-11}] \) are Euclidean rings with respect to the norm \(N(a + b\sqrt{-d}) = a^2 + b^2d \).

2. Decompose \(33 + 11\sqrt{-7} \) into irreducible elements in the ring of integers of \(\mathbb{Q}[\sqrt{-7}] \).

3. Show that \(\mathbb{Z}[\sqrt{3}, \sqrt{7}] \) is not the ring of integers of \(\mathbb{Q}[\sqrt{3}, \sqrt{7}] \).

4. Let \(A \) be a Dedekind domain. For any nonzero prime ideal \(\mathfrak{p} \) of \(A \), the ring \(A_{\mathfrak{p}} \) is a DVR and each of its nonzero ideals is a unique power of the maximal ideal \(\mathfrak{p}A_{\mathfrak{p}} \). Given a nonzero ideal \(\mathfrak{a} \) of \(A \), its valuation at \(\mathfrak{p} \) is the non-negative integer \(v_\mathfrak{p}(\mathfrak{a}) \) such that \(\mathfrak{a}A_{\mathfrak{p}} = (\mathfrak{p}A_{\mathfrak{p}})^{v_\mathfrak{p}(\mathfrak{a})} \). Show that \(v_\mathfrak{p}(\mathfrak{a}) = 0 \) for all but finitely many \(\mathfrak{p} \), and that

\[
\mathfrak{a} = \prod_\mathfrak{p} \mathfrak{p}^{v_\mathfrak{p}(\mathfrak{a})}
\]

is the decomposition of \(\mathfrak{a} \) into prime ideals (in other words, we can factorize ideals locally and then patch together the factorizations).

5. Show that every ideal of a Dedekind domain is generated by at most two elements.

6. Let \(A \) be an integral domain with fraction field \(K \), let \(\mathfrak{m} \) be a maximal ideal, and let \(\mathfrak{a} \subseteq K \) be a finitely generated fractional ideal. Show that \((\mathfrak{a}^{-1})_{\mathfrak{m}} = (\mathfrak{a}_{\mathfrak{m}})^{-1} \).

7. Let \(\mathfrak{p}_1, \ldots, \mathfrak{p}_k \) be distinct prime ideals in a Dedekind ring. Show that

\[
\mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_k = \mathfrak{p}_1 \cdots \mathfrak{p}_k.
\]

8. Let \(A \) be a Dedekind domain with fraction field \(K \), let \(\overline{K} \) be an algebraic closure of \(K \), and let \(L, L' \subset \overline{K} \) be finite separable extensions of \(K \). Show that if a prime ideal \(\mathfrak{p} \) of \(A \) is split in \(L \) and \(L' \), then it is split in their compositum.