MATH-GA2120 Linear Algebra II
 Bilinear and Sesquilinear Forms Quadratic Forms

Deane Yang

Courant Institute of Mathematical Sciences
New York University
April 29, 2024

Bilinear Form on Real Vector Space

- A bilinear form on a real vector space V is a bilinear function

$$
B: V \times V \rightarrow \mathbb{R}
$$

- I.e., for any $a^{1}, a^{2} \in \mathbb{R}$ and $v_{1}, v_{2}, v \in V$,

$$
\begin{aligned}
& B\left(a^{1} v_{1}+a^{2} v_{2}, v\right)=a^{1} B\left(v_{1}, v\right)+a^{2} B\left(v_{2}, v\right) \\
& B\left(v, a^{1} v_{1}+a^{2} v_{2}\right)=a^{1} B\left(v, v_{1}\right)+a^{2} B\left(v, v_{2}\right)
\end{aligned}
$$

- An inner product is an example of a bilinear form

Bilinear Form on Inner Product Space

- Given a linear map $L: V \rightarrow V$, the function

$$
\begin{aligned}
B: V \times V & \rightarrow \mathbb{R} \\
\left(v_{1}, v_{2}\right) & \mapsto\left(L\left(v_{1}\right), v_{2}\right)
\end{aligned}
$$

is a bilinear form

- Conversely, if $B: V \times V \rightarrow \mathbb{R}$ is a bilinear form, then there is a map

$$
\begin{aligned}
\delta_{B}: V & \rightarrow V^{*} \\
w & \mapsto \ell_{w},
\end{aligned}
$$

where for any $v \in V$,

$$
\left\langle\ell_{w}, v\right\rangle=B(v, w)
$$

- If V has an inner product and

$$
L=\left(\delta^{-1} \circ \delta_{B}\right)^{*}: V \rightarrow V
$$

then

$$
\left.B(v, w)=\left\langle\delta_{B}(w), v\right\rangle=\left(v, \delta^{-1}\left(\delta_{B}(w)\right)\right) \equiv(L(\bar{v}), w)\right)
$$

Bilinear Form as Matrix

- If $\left(e_{1}, \ldots, e_{n}\right)$ is a basis of V and

$$
v=e_{j} v^{j} \text { and } w=e_{k} w^{k}
$$

then

$$
\begin{aligned}
B(v, w) & =B\left(e_{j} v^{j}, e_{k} w^{k}\right) \\
& =v^{j} w^{k} B\left(e_{j}, e_{k}\right) \\
& =v^{j} w^{k} M_{j k}
\end{aligned}
$$

- Therefore, given a basis $\left(e_{1}, \ldots, e_{n}\right)$ of V, B is uniquely determined by the n-by- n matrix M, where

$$
M_{j k}=B\left(e_{j}, e_{k}\right)
$$

- Conversely, given any n-by- n matrix M, we can define a bilinear form B, where

$$
B\left(e_{j} v^{j}, e_{k} w^{k}\right)=M_{j k} v^{j} w^{k}
$$

- Two bilinear forms are equal if and only if their matrices (with respect to a basis) are equal

Symmetric Bilinear Forms

- A bilinear form B on a real vector space V is symmetric if for any $v_{1}, v_{2} \in V$,

$$
B\left(v_{2}, v_{1}\right)=B\left(v_{1}, v_{2}\right)
$$

- Given a basis $\left(e_{1}, \ldots, e_{n}\right)$ of V, a bilinear form B is symmetric if and only if

$$
B\left(e_{j} v^{j}, e_{k} w^{k}\right)=M_{j k} v^{j} w^{k} \text { and } M_{k j}=M_{j k}
$$

- An inner product on V is an example of a bilinear form

Quadratic Form on Real Vector Space

- A function $Q: V \rightarrow \mathbb{R}$ is a quadratic form if there exists a symmetric bilinear form $B: V \times V \rightarrow \mathbb{R}$ such that for each $v \in V$,

$$
Q(v)=B(v, v)
$$

- Equivalently, if $\left(e_{1}, \ldots, e_{n}\right)$ is a basis of V, then there exist coefficients $b_{i j}=b_{j i}, 1 \leq i, j \leq n$, such that for any $v=e_{k} v^{k}$,

$$
Q(v, v)=b_{i j} v^{i} v^{j}
$$

- Examples:

$$
\begin{aligned}
& Q\left(e_{1} x^{1}+e_{2} x^{2}+e_{3} x^{3}\right)=\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}-\left(x^{3}\right)^{2} \\
& Q\left(e_{1} x^{1}+e_{2} x^{2}+e_{3} x^{3}\right)=x^{1} x^{2}
\end{aligned}
$$

- The right side is always a homogeneous polynomial of degree 2
- Homogeneous means every term has same degree

Inner Product on Complex Vector Space

- Inner product on complex vector space V looks different from one on real vector space
- For any $v, v_{1}, v_{2} \in V$ and $c \in \mathbb{C}$,

$$
\begin{aligned}
\left(v_{1}+v_{2}, v\right) & =\left(v_{1}, v\right)+\left(v_{2}, v\right) \\
\left(v, v_{1}+v_{2}\right) & =\left(v, v_{1}\right)+\left(v, v_{2}\right) \\
\left(c v_{1}, v_{2}\right) & =c\left(v_{1}, v_{2}\right) \\
\left(v_{1}, c v_{2}\right) & =\bar{c}\left(v_{1}, v_{2}\right)
\end{aligned}
$$

Sesquilinear Form on Complex Vector Space

- A sesquilinear form is a function

$$
B: V \times V \rightarrow \mathbb{C}
$$

with the following properties, similar to above:

$$
\begin{aligned}
B\left(v_{1}+v_{2}, v\right) & =B\left(v_{1}, v\right)+B\left(v_{2}, v\right) \\
B\left(v, v_{1}+v_{2}\right) & =B\left(v, v_{1}\right)+B\left(v, v_{2}\right) \\
B\left(c v_{1}, v_{2}\right) & =c B\left(v_{1}, v_{2}\right) \\
B\left(v_{1}, c v_{2}\right) & =\bar{c} B\left(v_{1}, v_{2}\right)
\end{aligned}
$$

Space of Linear Maps and Space of Sesquilinear Forms

- Let V be an inner product space
- Let $\mathcal{L}(V)$ be the space of all linear maps $L: V \rightarrow V$
- If $L_{1}, L_{2} \in \mathcal{L}(V)$ and $c^{1}, c^{2} \in \mathbb{F}$, then

$$
c^{1} L_{1}+c^{2} L_{2} \in \mathcal{L}(V)
$$

- Let $\mathcal{B}(V)$ be the space of all sesquilinear forms
$B: V \times V \rightarrow \mathbb{F}$
- If $B_{1}, B_{2} \in \mathcal{L}(V)$ and $c^{1}, c^{2} \in \mathbb{F}$, then

$$
c^{1} B_{1}+c^{2} B_{2} \in \mathcal{B}(V)
$$

Isomorphism between Spaces of Linear Maps and of

 Sesquilinear Forms- There is a linear map $\mathcal{L}(V) \rightarrow \mathcal{B}(V)$, where each $L \in \mathcal{L}(V)$ maps to $B \in \mathcal{V}$ such that for any $v, w \in V$,

$$
B(v, w)=(L(v), w)
$$

- If L lies in the kernel of this map, then for any $v, w \in V$, $B=0$ and therefore

$$
0=B(v, w)=(L(v), w)
$$

- This implies that $L(v)=0$ for any $v \in V$, which implies $L=0$
- Given $B \in \mathcal{B}(V)$ and $w \in V$,

Sesquilinear Form as Matrix

- If $\left(e_{1}, \ldots, e_{n}\right)$ is a basis of V and $v=e_{j} v^{j}, w=e_{k} w^{k}$, then

$$
\begin{aligned}
B(v, w) & =B\left(e_{j} v^{j}, e_{k} w^{k}\right) \\
& =v^{j} \bar{w}^{k} B\left(e_{j}, e_{k}\right) \\
& =v^{j} \bar{w}^{k} M_{j k}
\end{aligned}
$$

- Therefore, given a basis $\left(e_{1}, \ldots, e_{n}\right)$ of V, B is uniquely determined by the n-by- n matrix M, where

$$
M_{j k}=B\left(e_{j}, e_{k}\right)
$$

- Conversely, given any n-by- n matrix M, we can define a bilinear form B, where

$$
B\left(e_{j} v^{j}, e_{k} w^{k}\right)=M_{j k} v^{j} w^{k}
$$

- Two bilinear forms are equal if and only if their matrices (with respect to a basis) are equal
- Sometimes, we write

$$
M_{j \bar{k}}=B\left(e_{j}, e_{k}\right)
$$

Different Notation Conventions

- We are using the following convention:

$$
\begin{aligned}
& B(c v, w)=c B(v, w) \\
& B(v, c w)=\bar{c} B(v, w)
\end{aligned}
$$

- Some use the following convention:

$$
\begin{aligned}
& B(c v, w)=\bar{c} B(v, w) \\
& B(v, c w)=c B(v, w)
\end{aligned}
$$

- When reading a paper or book, look carefully to see which convention is used

Hermitian Forms

- A sequilinear form B on a complex vector space V is hermitian if for any $v_{1}, v_{2} \in V$,

$$
B\left(v_{2}, v_{1}\right)=\overline{B\left(v_{1}, v_{2}\right)}
$$

- Given a basis $\left(e_{1}, \ldots, e_{n}\right)$ of V, B is hermitian if and only if its matrix $M_{j k}=B\left(e_{j}, e_{k}\right)$ satisfies

$$
M_{k j}=\bar{M}_{j k}
$$

- An inner product on V is an example of a hermitian form

Quadratic Form on Complex Vector Space

- A function $Q: V \rightarrow \mathbb{R}$ is a quadratic form if there exists a hermitian form $B: V \times V \rightarrow \mathbb{C}$ such that for each $v \in V$,

$$
Q(v)=B(v, v)
$$

- Equivalently, if $\left(e_{1}, \ldots, e_{n}\right)$ is a basis of V, then there is a hermitian matrix M such that for any $v=e_{k} v^{k}$,

$$
Q(v, v)=M_{i j} v^{i} \bar{v}^{j}
$$

Example

- If $Q\left(e_{1} v^{1}+e_{2} v^{2}+e_{3} v^{3}\right)=\left|v^{1}\right|^{2}+\left|v^{2}\right|^{2}-\left|v^{3}\right|^{2}$, then $Q(v)=B(v, v)$, where

$$
\begin{aligned}
& B\left(e_{1}, e_{1}\right)=1 \\
& B\left(e_{2}, e_{2}\right)=1 \\
& B\left(e_{3}, e_{3}\right)=-1 \\
& B\left(e_{2}, e_{3}\right)=B\left(e_{3}, e_{1}\right)=B\left(e_{1}, e_{2}\right)=0
\end{aligned}
$$

Example

- If $Q\left(e_{1} v^{1}+e_{2} v^{2}+e_{3} v^{3}\right)=v^{1} \bar{v}^{2}$, then $Q(v)=B(v, v)$, where

$$
\begin{aligned}
& B\left(e_{1}, e_{1}\right)=0 \\
& B\left(e_{2}, e_{2}\right)=0 \\
& B\left(e_{1}, e_{2}\right)=B\left(e_{2}, e_{1}\right)=\frac{1}{2} \\
& B\left(e_{2}, e_{3}\right)=B\left(e_{3}, e_{1}\right)=0
\end{aligned}
$$

Example

- If $Q\left(e_{1} v^{1}+e_{2} v^{2}+e_{3} v^{3}\right)=i v^{1} \bar{v}^{2}$, then $Q(v)=B(v, v)$, where

$$
\begin{aligned}
& B\left(e_{1}, e_{1}\right)=0 \\
& B\left(e_{2}, e_{2}\right)=0 \\
& B\left(e_{1}, e_{2}\right)=\frac{i}{2} \\
& B\left(e_{2}, e_{1}\right)=-\frac{i}{2} \\
& B\left(e_{2}, e_{3}\right)=B\left(e_{3}, e_{1}\right)=0
\end{aligned}
$$

Hermitian Form as $(1,1)$-Polynomial

- Observe that

$$
\begin{aligned}
Q\left(e_{k} x^{k}\right) & =B\left(e_{j} x^{j}, e_{k} x^{k}\right) \\
& =x^{j} \bar{x}^{k} B\left(e_{j}, e_{k}\right) \\
& =M_{j k} x^{j} \bar{x}^{k},
\end{aligned}
$$

- which is called a polynomial of degree $(1,1)$

Change of Basis Formula for Quadratic Form

- On a complex vector space V, let Q be a quadratic form. $E=\left(e_{1}, \ldots, e_{n}\right)$ be a basis of V, and M be the hermitian matrix such that

$$
Q\left(e_{k} v^{k}\right)=v^{j} \bar{v}^{k} M_{j k}
$$

- If $F=\left(f_{1}, \ldots, f_{n}\right)$ is another basis such that

$$
f_{k}=e_{j} A_{k}^{j}
$$

then

$$
\begin{aligned}
Q\left(f_{p} w^{p}\right) & =Q\left(e_{j} A_{p}^{j} w^{p}\right) \\
& =B\left(e_{j} A_{p}^{j} w^{p}, e_{k} A_{q}^{k} w^{q}\right) \\
& =w^{p} A_{p}^{j} B\left(e_{j}, e_{k}\right) \bar{A}_{q}^{k} \bar{w}^{q} \\
& =w^{p} \bar{w}^{q} N_{p q},
\end{aligned}
$$

where

$$
N_{p q}=A_{p}^{j} M_{j k} \bar{A}_{q}^{k} \text {, i.e., } N=A M A^{*}
$$

Diagonalization of a Quadratic Form

- Recall that since M is a hermitian matrix, its eigenvalues are real and there exists a unitary matrix U such that

$$
M=U D U^{*},
$$

where D is a diagonal matrix with the eigenvalues of M along its diagonal

- In particular, if

$$
e_{p}=f_{k} U_{p}^{k}
$$

then

$$
\begin{aligned}
Q\left(f_{j}, f_{k}\right) & =Q\left(e_{p} U_{j}^{p}, e_{q} U_{k}^{q}\right) \\
& =U_{j}^{p} Q\left(e_{p}, e_{q}\right) U_{k}^{q} \\
& =U_{j}^{p} M_{p q} U_{k}^{q} \\
& =\left(U^{*} M U\right)_{j k} \\
& =D_{j k}
\end{aligned}
$$

- Observe that no inner product on V is used here

