MATH-GA2120 Linear Algebra II
 Unitary Basis
 Adjoint of Linear Map
 Unitary Maps and Matrices
 Schur Representation

Deane Yang

Courant Institute of Mathematical Sciences
New York University
March 25, 2024

Hermitian Inner Product on Complex Vector Space

- If V is a complex vector space then a Hermitian inner product on V is a function of two vectors v_{1}, v_{2}, written

$$
\left\langle v_{1}, v_{2}\right\rangle \in \mathbb{C}
$$

that satisfies the following properties

$$
\begin{aligned}
\left\langle a^{1} v_{1}+a^{2} v_{2}, w\right\rangle & =a^{1}\left\langle v_{1}, w\right\rangle+a^{2}\left\langle v_{2}, w\right\rangle \\
\left\langle v, b^{1} w_{1}+b^{2} w_{2}\right\rangle & =\bar{b}^{1}\left\langle v, w_{1}\right\rangle+\bar{b}^{2}\left\langle v, w_{2}\right\rangle \\
\langle v, w\rangle & =\overline{\langle w, v\rangle} \\
\langle v, v\rangle & >0 \text { if } v \neq 0
\end{aligned}
$$

- A complex vector space with a Hermitian inner product is called a Hermitian vector space

Hermitian Inner Product With Respect To Basis

- Let V be a complex vector space and let $\left(b_{1}, \ldots, b_{n}\right)$ be a basis of V
- Any inner product on V is uniquely determined by the matrix A, where

$$
A_{i j}=\left\langle b_{i}, b_{j}\right\rangle
$$

- The matrix A satisfies the following properties
- Hermitian:

$$
A_{i j}=\left\langle b_{i}, b_{j}\right\rangle=\overline{\left\langle b_{j}, b_{i}\right\rangle}=\bar{A}_{j i}
$$

(In particular, since $A_{i i}=\bar{A}_{i i}$, it follows that $A_{i j} \in \mathbb{R}$)

- Positive definite: For any nonzero $v=a^{k} b_{k}=B a \in V$,

$$
0<\langle v, v\rangle=\left\langle a^{j} b_{j}, a^{k} b_{k}\right\rangle=a^{j} \bar{a}^{k}\left\langle b_{j}, b_{k}\right\rangle=a^{T} A \bar{a}
$$

- Conversely, given the basis $\left(b_{1}, \ldots, b_{n}\right)$ of V, any positive definite Hermitian matrix A defines an inner product where

$$
\left\langle b_{i}, b_{j}\right\rangle=A_{i j}
$$

Standard Hermitian Inner Product on \mathbb{C}^{n}

- Let $\left(e_{1}, \ldots, e_{n}\right)$ be the standard basis of \mathbb{C}^{n}
- Define the standard hermitian inner product of $v=v^{i} e_{i}, w=w^{i} e_{i}$ to be

$$
\langle v, w\rangle=v \cdot \bar{w}=v^{1} \bar{w}^{1}+\cdots+v^{n} \bar{w}^{n}
$$

Orthogonality and Orthogonal Projection

- Two vectors $v, w \in V$ are orthogonal if

$$
\langle v, w\rangle=0
$$

- If v is a unit vector and w is any vector, then

$$
\begin{aligned}
\langle w-\langle w, v\rangle v, v\rangle & =\langle w, v\rangle-\langle\langle w, v\rangle v, v\rangle \\
& =\langle w, v\rangle-\langle w, v\rangle\|v\|^{2} \\
& =0
\end{aligned}
$$

- But order matters

$$
\begin{aligned}
\langle w-\langle v, w\rangle v, v\rangle & =\langle w, v\rangle-\langle\langle v, w\rangle v, v\rangle \\
& =\langle w, v\rangle-\langle v, w\rangle\|v\|^{2} \\
& =\langle w, v\rangle-\overline{\langle v, w\rangle}
\end{aligned}
$$

Unitary Set

- A set $\left(e_{1}, \ldots, e_{k}\right)$ is called unitary if

$$
\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j}, 1 \leq i, j \leq k
$$

- A unitary set is linearly independent
- If $a^{1} e_{1}+\cdots+a^{k} e_{k}=0$, then for each $1 \leq j \leq k$,

$$
a^{j}=\left\langle a^{1} e_{1}+\cdots+a^{k} e_{k}, e_{j}\right\rangle=0
$$

- If $\operatorname{dim} V=n$, then a unitary set with n elements is a unitary basis

Gram-Schmidt

- Lemma. Any (possibly empty) unitary set can be extended to a unitary basis
- Suppose $S=\left\{e_{1}, \ldots, e_{k}\right\}$ is a unitary set, where $k<\operatorname{dim} V$
- The span of S is not all of V and therefore there is a nonzero vector $v \in V$ such that $v \notin S$
- Let $\hat{v}=v-\left\langle v, e_{1}\right\rangle e_{1}-\cdots-\left\langle v, e_{k}\right\rangle e_{k}$
- $\hat{v} \neq 0$, because $v \notin$ the span of S
- \hat{v} is orthogonal to S, because for each $1 \leq j \leq k$,

$$
\left\langle\hat{v}, e_{j}\right\rangle=\left\langle v-\left\langle v, e_{1}\right\rangle e_{1}-\cdots-\left\langle v, e_{k}\right\rangle e_{k}, e_{j}\right\rangle=\left\langle v, e_{j}\right\rangle-\left\langle v, e_{j}\right\rangle=0
$$

- If

$$
e_{k+1}=\frac{\hat{v}}{\|\hat{v}\|}
$$

then $\left\|e_{k+1}\right\|=1$ and $\left\langle e_{k+1}, e_{j}\right\rangle=0$ for each $1 \leq j \leq k$

- Therefore, $\left\{e_{1}, \ldots, e_{k+1}\right\}$ is a unitary set

Adjoint of a Linear Map

- Let X and Y be Hermitian vector spaces (i.e., complex vector spaces with Hermitian inner products)
- Let $L: X \rightarrow Y$ be a linear map
- The adjoint of L is the operator $L^{*}: Y \rightarrow X$ such that for any $x \in X$ and $y \in Y$,

$$
\langle L(x), y\rangle=\left\langle x, L^{*}(y)\right\rangle
$$

and therefore

$$
\left.\langle y, L(x)\rangle=\overline{\langle L(x), y\rangle}=\overline{\left\langle x, L^{*}(y)\right.}\right\rangle=\overline{\left\langle L^{*}(x), y\right\rangle}
$$

- Observe that if $L^{* *}=\left(L^{*}\right)^{*}: X \rightarrow Y$, then for every $x \in X$ and $y \in Y$,

$$
\left\langle y, L^{* *}(x)\right\rangle=\left\langle L^{*}(y), x\right\rangle=\langle y, L(x)\rangle
$$

and therefore $L^{* *}=L$

Adjoint Map With Respect to Basis

- Let $\left(e_{1}, \ldots, e_{m}\right)$ be a unitary basis of X and $\left(f_{1}, \ldots, f_{n}\right)$ be a unitary basis of Y
- Let M and M^{*} be the matrices such that for every $1 \leq k \leq m$,

$$
L\left(e_{k}\right)=M_{k}^{1} f_{1}+\cdots+M_{k}^{n} f_{n}
$$

and for every $1 \leq a \leq n$,

$$
L^{*}\left(f_{a}\right)=\left(M^{*}\right)_{a}^{1} e_{1}+\cdots+\left(M^{*}\right)_{a}^{m} e_{m}
$$

- It follows that

$$
\left(M^{*}\right)_{a}^{k}=\left\langle L^{*}\left(f_{a}\right), e_{k}\right\rangle=\overline{\left\langle f_{a}, L\left(e_{k}\right)\right\rangle}=\bar{M}_{k}^{a}
$$

- In other words, $M^{*}=\bar{M}^{T}$
- Given a complex matrix $M \in \mathcal{M}_{n \times m}$, we define the adjoint matrix of M to be

$$
M^{*}=\bar{M}^{T}
$$

Examples of Adjoint Matrices

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & -i & 1+i \\
1 & i & 1-i
\end{array}\right]^{*}=\left[\begin{array}{cc}
1 & 1 \\
i & -i \\
1-i & 1+i
\end{array}\right]} \\
{\left[\begin{array}{ll}
1 & i \\
i & 1
\end{array}\right]^{*}=\left[\begin{array}{cc}
1 & -i \\
-i & 1
\end{array}\right]}
\end{gathered}
$$

- Self-adjoint matrix

$$
\left[\begin{array}{cc}
1 & -i \\
i & 1
\end{array}\right]^{*}=\left[\begin{array}{cc}
1 & -i \\
i & 1
\end{array}\right]
$$

Unitary Maps

- If V is a Hermitian vector space, a linear map $L: V \rightarrow V$ is unitary, if for any $v, w \in V$, if any of the following equivalent statements hold:

$$
\begin{aligned}
\langle L(v), L(w)\rangle & =\langle v, w\rangle \\
\left\langle L^{*} L(v), w\right\rangle & =\langle v, w\rangle \\
L^{*} \circ L & =1
\end{aligned}
$$

L is invertible and $L^{-1}=L^{*}$

- It also follows that $L \circ L^{*}=I$

Unitary Matrices

- Let $L: V \rightarrow V$ be a unitary map
- If $\left(u_{1}, \ldots, u_{n}\right)$ is a unitary basis of V and $L\left(u_{k}\right)=M_{k}^{j} u_{j}$, then

$$
\begin{aligned}
\delta_{j k} & =\left\langle u_{j}, u_{k}\right\rangle \\
& =\left\langle L\left(u_{j}\right), L\left(u_{k}\right)\right\rangle \\
& =\left\langle u_{j},\left(L^{*} \circ L\right)\left(u_{k}\right)\right\rangle \\
& =\left\langle u_{j},\left(M^{*} M\right)_{k}^{i} u_{i}\right\rangle \\
& =\left(M^{*} M\right)_{k}^{j}
\end{aligned}
$$

$$
M^{*} M=1
$$

- A matrix M is unitary if $M^{*} M=M M^{*}=I$

Properties of unitary maps and matrices

- If L_{1}, L_{2} are unitary maps, then so is $L_{1} \circ L_{2}$
- If M_{1}, M_{2} are unitary matrices, then so is $M_{1} M_{2}$
- If L is unitary, then L is invertible and $L^{-1}=L^{*}$ is unitary
- If M is unitary, then M is invertible and $M^{-1}=M^{*}$ is unitary
- The identity map is unitary
- The identity matrix is unitary

Unitary Group

- Define the unitary group $U(V)$ of a Hermitian vector space V to be the set of all unitary transformations
- Denote

$$
U(n)=U\left(\mathbb{C}^{n}\right)
$$

using the standard Hermitian inner product on \mathbb{C}^{n}

- Both satisfy the properties of an abstract group G
- Any ordered pair $\left(g_{1}, g_{2}\right) \in G \times G$ uniquely determine a third, denoted $g_{1} g_{2} \in G$
- (Associativity) $\left(g_{1} g_{2}\right) g_{3}=g_{1}\left(g_{2} g_{3}\right)$
- (Identity element) There exists an element $e \in G$ such that $g e=e g=g$ for any $g \in G$
- (Inverse of an element) For each $g \in G$, there exists an element $g^{-1} \in G$ such that $g g^{-1}=g^{-1} g=e$
- $U(n)$ is an example of a matrix group
- Both $U(V)$ and $U(n)$ are examples of Lie groups

Schur Representation of a Real Linear Map

- Let V be a finite dimensional real inner product space
- Theorem: Given any linear map $L: V \rightarrow V$ with only real eigenvalues, there exists an orthonormal basis $\left(u_{1}, \ldots, u_{n}\right)$ of V such that for each $1 \leq k \leq n, L\left(u_{k}\right)$ is a linear combination of u_{1}, \ldots, u_{k},

$$
L\left(u_{k}\right)=M_{k}^{k} u_{k}+\cdots+M_{k}^{n} u_{n}
$$

- Corollary: Given any real matrix M with only real eigenvalues, there is an orthogonal matrix O such that the matrix $O^{t} M O$ is triangular

Schur Representation of a Complex Linear Map

- Let V be a finite dimensional Hermitian vector space
- Theorem: Given any linear map $L: V \rightarrow V$, there exists a unitary basis $\left(u_{1}, \ldots, u_{n}\right)$ of V such that for each $1 \leq k \leq n$, $L\left(u_{k}\right)$ is a linear combination of u_{1}, \ldots, u_{k},

$$
L\left(u_{k}\right)=M_{k}^{k} u_{k}+\cdots+M_{k}^{n} u_{n}
$$

- Corollary: Given any complex matrix M, there is a unitary matrix O such that the matrix $O^{t} M O$ is triangular

Proof (Part 1)

- Proof by induction
- Theorem holds when $\operatorname{dim} V=1$
- Suppose theorem holds when $\operatorname{dim} V=n-1$
- Consider a linear map $L: V \rightarrow V$, where $\operatorname{dim} V=n$ with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$
- Let u_{n} be a unit eigenvector for the eigenvalue λ_{n}, i.e.,

$$
\left\|u_{n}\right\|=1 \text { and } L\left(u_{n}\right)=\lambda_{n} u_{n}
$$

- Let

$$
u_{n}^{\perp}=\left\{v \in V:\left\langle v, u_{n}\right\rangle=0\right\}
$$

- Recall that the orthogonal projection map onto u_{n}^{\perp} is given by

$$
\begin{aligned}
\pi^{\perp}: V & \rightarrow u_{n}^{\perp} \\
v & \rightarrow v-\left\langle v, u_{n}\right\rangle u_{n}
\end{aligned}
$$

Proof (Part 2)

- If $\left(v_{1}, \ldots, v_{n-1}\right)$ is a basis of u_{n}^{\perp}, then $\left(v_{1}, \ldots, v_{n-1}, u_{n}\right)$ is a basis of V
- Let M be the matrix such that

$$
\begin{aligned}
& L\left(v_{k}\right)=M_{k}^{1} v_{1}+\cdots+M_{k}^{n-1} v_{n-1}+M_{k}^{n} u_{n} \\
& L\left(u_{n}\right)=M_{n}^{1} v_{1}+\cdots+M_{n}^{n-1} v_{n-1}+M_{n}^{n} u_{n}
\end{aligned}
$$

- Since $L\left(u_{n}\right)=\lambda_{n} u_{n}$,

$$
M_{n}^{1}=\cdots=M_{n}^{n-1}=0 \text { and } M_{n}^{n}=\lambda_{n}
$$

- Let $L^{\perp}: u_{n}^{\perp} \rightarrow u_{n}^{\perp}$ be the linear map given by

$$
L^{\perp}\left(v_{k}\right)=M_{k}^{1} v_{1}+\cdots+M_{k}^{n-1} v_{n-1}, 1 \leq k \leq n-1
$$

- Since $\operatorname{dim} u_{n}^{\perp}=n-1$, there is a basis $\left(u_{1}, \ldots, u_{n-1}\right)$ such that

$$
L^{\perp}\left(u_{k}\right)=M_{k}^{k} u_{k}+\cdots+M_{k}^{n-1} u_{n-1}, 1 \leq k \leq n-1
$$

Proof (Part 3)

- Since

$$
L^{\perp}\left(u_{k}\right)=M_{k}^{k} u_{k}+\cdots+M_{k} u^{n-1} u_{n-1}, 1 \leq k \leq n-1,
$$

it follows that

$$
L\left(u_{k}\right)=M_{k}^{k} u_{k}+\cdots+M_{k} u^{n-1} u_{n-1}+M_{k}^{n} u_{n}, 1 \leq k \leq n-1
$$

- Also,

$$
L\left(u_{n}\right)=\lambda_{n} u_{n}
$$

- Therefore,

$$
L\left(u_{k}\right)=M_{k}^{k} u_{k}+\cdots+M_{k} u^{n-1} u_{n-1}+M_{k}^{n} u_{n}, 1 \leq k \leq n,
$$

where $M_{n}^{n}=\lambda_{n}$

