MATH-GA2120 Linear Algebra II

Unitary Basis Adjoint of Linear Map Unitary Maps and Matrices Schur Representation

Deane Yang

Courant Institute of Mathematical Sciences New York University

March 25, 2024

Hermitian Inner Product on Complex Vector Space

If V is a complex vector space then a Hermitian inner product on V is a function of two vectors v₁, v₂, written

$$\langle \mathbf{v}_1, \mathbf{v}_2 \rangle \in \mathbb{C}$$

that satisfies the following properties

$$\langle a^{1}v_{1} + a^{2}v_{2}, w \rangle = a^{1} \langle v_{1}, w \rangle + a^{2} \langle v_{2}, w \rangle$$

$$\langle v, b^{1}w_{1} + b^{2}w_{2} \rangle = \overline{b}^{1} \langle v, w_{1} \rangle + \overline{b}^{2} \langle v, w_{2} \rangle$$

$$\langle v, w \rangle = \overline{\langle w, v \rangle}$$

$$\langle v, v \rangle > 0 \text{ if } v \neq 0$$

A complex vector space with a Hermitian inner product is called a Hermitian vector space Hermitian Inner Product With Respect To Basis

- Let V be a complex vector space and let (b₁,..., b_n) be a basis of V
- Any inner product on V is uniquely determined by the matrix A, where

$$A_{ij} = \langle b_i, b_j \rangle$$

The matrix A satisfies the following properties

Hermitian:

$$A_{ij} = \langle b_i, b_j
angle = \overline{\langle b_j, b_i
angle} = \overline{A}_{ji}$$

(In particular, since $A_{ii} = \overline{A}_{ii}$, it follows that $A_{ii} \in \mathbb{R}$) Positive definite: For any nonzero $v = a^k b_k = Ba \in V$,

$$0 < \langle v, v \rangle = \langle a^{j} b_{j}, a^{k} b_{k} \rangle = a^{j} \bar{a}^{k} \langle b_{j}, b_{k} \rangle = a^{T} A \bar{a}$$

Conversely, given the basis (b₁,..., b_n) of V, any positive definite Hermitian matrix A defines an inner product where

$$\langle b_i, b_j \rangle = A_{ij}$$

3/19

Standard Hermitian Inner Product on \mathbb{C}^n

$$\langle v, w \rangle = v \cdot \bar{w} = v^1 \bar{w}^1 + \dots + v^n \bar{w}^n$$

Orthogonality and Orthogonal Projection

Two vectors $v, w \in V$ are **orthogonal** if

 $\langle v, w \rangle = 0.$

If v is a unit vector and w is any vector, then

$$\langle w - \langle w, v \rangle v, v \rangle = \langle w, v \rangle - \langle \langle w, v \rangle v, v \rangle$$

= $\langle w, v \rangle - \langle w, v \rangle ||v||^2$
= 0

But order matters

5/19

イロン イロン イヨン イヨン 三日

Unitary Set

• A set (e_1, \ldots, e_k) is called **unitary** if

$$\langle e_i, e_j \rangle = \delta_{ij}, 1 \leq i, j \leq k$$

A unitary set is linearly independent
 If a¹e₁ + · · · + a^ke_k = 0, then for each 1 ≤ j ≤ k,
 a^j = ⟨a¹e₁ + · · · + a^ke_k, e_j⟩ = 0

If dim V = n, then a unitary set with n elements is a unitary basis

Gram-Schmidt

Lemma. Any (possibly empty) unitary set can be extended to a unitary basis

- Suppose $S = \{e_1, \ldots, e_k\}$ is a unitary set, where $k < \dim V$
- The span of S is not all of V and therefore there is a nonzero vector v ∈ V such that v ∉ S

• Let
$$\hat{v} = v - \langle v, e_1 \rangle e_1 - \cdots - \langle v, e_k \rangle e_k$$

▶
$$\hat{v} \neq 0$$
, because $v \notin$ the span of *S*

▶ \hat{v} is orthogonal to *S*, because for each $1 \le j \le k$,

$$\langle \hat{\mathbf{v}}, \mathbf{e}_j \rangle = \langle \mathbf{v} - \langle \mathbf{v}, \mathbf{e}_1 \rangle \mathbf{e}_1 - \dots - \langle \mathbf{v}, \mathbf{e}_k \rangle \mathbf{e}_k, \mathbf{e}_j \rangle = \langle \mathbf{v}, \mathbf{e}_j \rangle - \langle \mathbf{v}, \mathbf{e}_j \rangle = 0$$

If

$$e_{k+1} = \frac{\hat{v}}{\|\hat{v}\|},$$

then $\|e_{k+1}\| = 1$ and $\langle e_{k+1}, e_j \rangle = 0$ for each $1 \leq j \leq k$

► Therefore, $\{e_1, \ldots, e_{k+1}\}$ is a unitary set

7 / 19

Adjoint of a Linear Map

- Let X and Y be Hermitian vector spaces (i.e., complex vector spaces with Hermitian inner products)
- Let $L: X \to Y$ be a linear map
- The adjoint of L is the operator L^{*}: Y → X such that for any x ∈ X and y ∈ Y,

$$\langle L(x), y \rangle = \langle x, L^*(y) \rangle$$

and therefore

$$\langle y, L(x) \rangle = \overline{\langle L(x), y \rangle} = \overline{\langle x, L^*(y) \rangle} = \overline{\langle L^*(x), y \rangle}$$

• Observe that if $L^{**} = (L^*)^* : X \to Y$, then for every $x \in X$ and $y \in Y$,

$$\langle y, L^{**}(x) \rangle = \langle L^{*}(y), x \rangle = \langle y, L(x) \rangle$$

and therefore $L^{**} = L$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のQ() 8/19 Adjoint Map With Respect to Basis

- Let (e₁,..., e_m) be a unitary basis of X and (f₁,..., f_n) be a unitary basis of Y
- Let *M* and *M*^{*} be the matrices such that for every $1 \le k \le m$,

$$L(e_k) = M_k^1 f_1 + \cdots + M_k^n f_n$$

and for every $1 \leq a \leq n$,

$$L^{*}(f_{a}) = (M^{*})^{1}_{a}e_{1} + \dots + (M^{*})^{m}_{a}e_{m}$$

It follows that

$$(M^*)^k_a = \langle L^*(f_a), e_k \rangle = \overline{\langle f_a, L(e_k) \rangle} = \overline{M}^a_k$$

▶ In other words, $M^* = \overline{M}^T$

► Given a complex matrix M ∈ M_{n×m}, we define the adjoint matrix of M to be

$$M^* = \overline{M}^T$$

9/19

イロン 不得 とうほう イロン 二日

Examples of Adjoint Matrices

 $\begin{bmatrix} 1 & -i & 1+i \\ 1 & i & 1-i \end{bmatrix}^* = \begin{bmatrix} 1 & 1 \\ i & -i \\ 1-i & 1+i \end{bmatrix}$ $\begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix}^* = \begin{bmatrix} 1 & -i \\ -i & 1 \end{bmatrix}$ Self-adjoint matrix

$$\begin{bmatrix} 1 & -i \\ i & 1 \end{bmatrix}^* = \begin{bmatrix} 1 & -i \\ i & 1 \end{bmatrix}$$

Unitary Maps

If V is a Hermitian vector space, a linear map L : V → V is unitary, if for any v, w ∈ V, if any of the following equivalent statements hold:

$$\begin{split} \langle L(v), L(w) \rangle &= \langle v, w \rangle \\ \langle L^* L(v), w \rangle &= \langle v, w \rangle \\ L^* \circ L &= I \\ L \text{ is invertible and } L^{-1} &= L^* \end{split}$$

• It also follows that $L \circ L^* = I$

Unitary Matrices

Let L: V → V be a unitary map
 If (u₁,..., u_n) is a unitary basis of V and L(u_k) = M^j_ku_j, then

$$\delta_{jk} = \langle u_j, u_k \rangle$$

= $\langle L(u_j), L(u_k) \rangle$
= $\langle u_j, (L^* \circ L)(u_k) \rangle$
= $\langle u_j, (M^*M)_k^j u_i \rangle$
= $(M^*M)_k^j$

 $M^*M = I$

• A matrix *M* is **unitary** if $M^*M = MM^* = I$

Properties of unitary maps and matrices

- If L_1, L_2 are unitary maps, then so is $L_1 \circ L_2$
 - If M_1, M_2 are unitary matrices, then so is M_1M_2
- ▶ If *L* is unitary, then *L* is invertible and $L^{-1} = L^*$ is unitary
 - ▶ If *M* is unitary, then *M* is invertible and $M^{-1} = M^*$ is unitary
- The identity map is unitary
 - The identity matrix is unitary

Unitary Group

Define the unitary group U(V) of a Hermitian vector space V to be the set of all unitary transformations

Denote

$$U(n) = U(\mathbb{C}^n)$$

using the standard Hermitian inner product on \mathbb{C}^n

- Both satisfy the properties of an abstract group G
 - Any ordered pair (g₁, g₂) ∈ G × G uniquely determine a third, denoted g₁g₂ ∈ G
 - (Associativity) $(g_1g_2)g_3 = g_1(g_2g_3)$
 - (Identity element) There exists an element $e \in G$ such that ge = eg = g for any $g \in G$
 - Inverse of an element) For each g ∈ G, there exists an element g⁻¹ ∈ G such that gg⁻¹ = g⁻¹g = e
- U(n) is an example of a matrix group
- Both U(V) and U(n) are examples of Lie groups

イロト 不得 トイヨト イヨト ヨー ろくで

Schur Representation of a Real Linear Map

- Let V be a finite dimensional real inner product space
- ► Theorem: Given any linear map L: V → V with only real eigenvalues, there exists an orthonormal basis (u₁,..., u_n) of V such that for each 1 ≤ k ≤ n, L(u_k) is a linear combination of u₁,..., u_k,

$$L(u_k) = M_k^k u_k + \cdots + M_k^n u_n$$

Corollary: Given any real matrix M with only real eigenvalues, there is an orthogonal matrix O such that the matrix O^tMO is triangular

Schur Representation of a Complex Linear Map

- Let V be a finite dimensional Hermitian vector space
- ► Theorem: Given any linear map L: V → V, there exists a unitary basis (u₁,..., u_n) of V such that for each 1 ≤ k ≤ n, L(u_k) is a linear combination of u₁,..., u_k,

$$L(u_k) = M_k^k u_k + \cdots + M_k^n u_n$$

Corollary: Given any complex matrix *M*, there is a unitary matrix *O* such that the matrix *O^tMO* is triangular

Proof (Part 1)

- Proof by induction
- Theorem holds when dim V = 1
- Suppose theorem holds when dim V = n 1
- Consider a linear map $L: V \to V$, where dim V = n with eigenvalues $\lambda_1, \ldots, \lambda_n$
- Let u_n be a unit eigenvector for the eigenvalue λ_n , i.e.,

$$||u_n|| = 1$$
 and $L(u_n) = \lambda_n u_n$

Let

$$u_n^{\perp} = \{ v \in V : \langle v, u_n \rangle = 0 \}$$

▶ Recall that the orthogonal projection map onto u_n^{\perp} is given by

$$\pi^{\perp}: V \to u_n^{\perp}$$
$$v \to v - \langle v, u_n \rangle u_n$$

<ロト < 回 > < 臣 > < 臣 > 王 の Q (C 17 / 19

Proof (Part 2)

If (v₁,..., v_{n-1}) is a basis of u[⊥]_n, then (v₁,..., v_{n-1}, u_n) is a basis of V

Let M be the matrix such that

$$L(v_k) = M_k^1 v_1 + \dots + M_k^{n-1} v_{n-1} + M_k^n u_n$$

$$L(u_n) = M_n^1 v_1 + \dots + M_n^{n-1} v_{n-1} + M_n^n u_n$$

Proof (Part 3)

Since

$$L^{\perp}(u_k) = M_k^k u_k + \cdots + M_k u^{n-1} u_{n-1}, \ 1 \le k \le n-1,$$

it follows that

$$L(u_k) = M_k^k u_k + \dots + M_k u^{n-1} u_{n-1} + M_k^n u_n, \ 1 \le k \le n-1$$

Also,

$$L(u_n) = \lambda_n u_n$$

► Therefore,

$$L(u_k)=M_k^ku_k+\cdots+M_ku^{n-1}u_{n-1}+M_k^nu_n,\ 1\leq k\leq n,$$
 where $M_n^n=\lambda_n$