MATH-GA2120 Linear Algebra II
 Diagonalizable Linear Maps Inner Product on \mathbb{F}^{n}
 Inner Product on Abstract Vector Space Cauchy-Schwarz Inequality

Deane Yang

Courant Institute of Mathematical Sciences
New York University

February 15, 2024

Diagonal Linear Transformation

- Let $\operatorname{dim} V=n$
- Let $L: V \rightarrow V$ be a linear transformation
- Suppose L has n linearly independent eigenvectors e_{1}, \ldots, e_{n} with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$
- Then with respect to the basis $E=\left(e_{1}, \ldots, e_{n}\right)$,

$$
L\left(e_{k}\right)=e_{k} \lambda_{k}
$$

- Equivalently,

$$
\left[\begin{array}{lll}
L\left(e_{1}\right) & \cdots & L\left(e_{n}\right)
\end{array}\right]=\left[\begin{array}{lll}
e_{1} & \cdots & e_{n}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

Diagonal Linear Transformation

- Conversely, suppose $L: V \rightarrow V$ is a linear transformation and E is a basis such that

$$
L(E)=E D
$$

where D is a diagonal matrix

- Then

$$
L\left(e_{k}\right)=e_{j} D_{k}^{j}=e_{k} D_{k}^{k}
$$

- Therefore, L has eigenvalues $D_{1}^{1}, \ldots, D_{n}^{n}$ with eigenvectors e_{1}, \ldots, e_{n} respectively

Diagonalizable Linear Transformation

- Let $L: V \rightarrow V$ be a diagonal linear transformation
- If E is a basis of eigenvectors, then

$$
L(E)=E D
$$

where D is a diagonal matrix

- Given any basis F, there is an invertible matrix M such that

$$
F=E M
$$

and vice versa

- There is a matrix A such that

$$
L(F)=F A
$$

- Therefore,

$$
E D=L(E)=L\left(F M^{-1}\right)=L(F) M^{-1}=F A M^{-1}=E M A M^{-1}
$$

- I.e., M and D are similar

Diagonalizable Linear Transformation and Matrix

- A linear transformation $L: V \rightarrow V$ is diagonalizable if any of the following equivalent conditions hold:
- There exists a basis of V consisting of eigenvectors
- There exists a basis E such that $L(E)=E D$, where D is a diagonal matrix
- Given any basis F and matrix A such that

$$
L(F)=F A,
$$

A is similar to a diagonal matrix

- A matrix A is diagonalizable if it is similar to a diagonal matrix

Linear Transformation With Distinct Eigenvalues

- Let $\operatorname{dim}(V)=n$ and $L: V \rightarrow V$ be a linear transformation with n distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, i.e.,

$$
j \neq k \Longrightarrow \lambda_{j} \neq \lambda_{k}
$$

- Let v_{1}, \ldots, v_{n} be eigenvectors of $\lambda_{1}, \ldots, \lambda_{n}$ respectively
- Suppose v_{1}, \ldots, v_{k-1} are linearly independent
- If $a^{1} v_{1}+\cdots+a^{k} v_{k} w=0$, then

$$
\begin{aligned}
0 & =\left(L-\lambda_{k} I\right)\left(a^{1} v_{1}+\cdots+a^{k} v_{k}\right) \\
& \left.=a^{1}\left(L v_{1}\right)-\lambda_{k} v_{1}\right)+\cdots+a^{k}\left(L\left(v_{k}\right)-\lambda_{k} v_{k}\right) \\
& =a^{1}\left(\lambda_{1}-\lambda_{k}\right) v_{1}+\cdots+a^{k}\left(\lambda_{k}-\lambda_{k}\right) v_{k} \\
& =a^{1}\left(\lambda_{1}-\lambda_{k}\right) v_{1}+\cdots+a^{k-1}\left(\lambda_{k-1}-\lambda_{k}\right) v_{k-1}
\end{aligned}
$$

- Therefore, $a^{1}\left(\lambda_{1}-\lambda_{k}\right)=\cdots=a^{k-1}\left(\lambda_{k-1}-\lambda_{k}\right)=0$

Linear Transformation With Distinct Eigenvalues

- Since v_{1}, \ldots, v_{k-1} are linearly independent, it follows that

$$
a^{1}\left(\lambda_{1}-\lambda_{k}\right)=\cdots=a^{k-1}\left(\lambda_{k-1}-\lambda_{k}\right)=0
$$

- Since the eigenvalues are distinct, this implies that

$$
a^{1}=\cdots=a^{k-1}=0
$$

- By assumption, $a^{1} v_{1}+\cdots+a^{k} v_{k} w=0$ and therefore $a^{k}=0$
- It follows by induction that v_{1}, \ldots, v_{n} form a basis of V
- Therefore, L is diagonalizable
- Conclusion: Any linear transformation with n distinct eigenvalues is diagonalizable

Direct Sum of Subspaces

- Let V_{1}, \ldots, V_{k} be subspaces of V
- $\left\{V_{1}, \ldots, V_{k}\right\}$ is a linearly independent set of subspaces if for any nonzero vectors

$$
v_{1} \in V_{1}, v_{2} \in V_{2}, \ldots, v_{k} \in V_{k}
$$

are linearly independent

- Equivalently, $\left\{V_{1}, \ldots, V_{k}\right\}$ is linearly independent if for any $v_{1} \in V_{1}, \ldots, v_{k} \in V_{k}$,

$$
v_{1}+v_{2}+\cdots+v_{k}=0 \Longrightarrow v_{1}=v_{2}=\cdots=v_{k}
$$

- Equivalently, $\left\{V_{1}, \ldots, V_{k}\right\}$ is linearly independent if for any $v_{1}, w_{1} \in V_{1}, \ldots, v_{k}, w_{k} \in V_{k}$,
$v_{1}+v_{2}+\cdots+v_{k}=w_{1}+w_{2}+\cdots+w_{k} \Longrightarrow v_{1}=w_{1}, \ldots, v_{k}=w_{k}$
- If $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ is linearly independent, then their direct sum is defined to be

$$
V_{1} \oplus V_{2} \oplus \cdots \oplus V_{k}=\operatorname{span}\left(V_{1} \cup V_{2} \cup \cdots \cup V_{k}\right)
$$

Examples

- $\left\{S_{1}, S_{2}\right\}$, where $S_{1}, S_{2} \subset \mathbb{F}^{3}$ are given by

$$
\begin{aligned}
& S_{1}=\operatorname{span}\left(e_{1}\right) \\
& S_{2}=\operatorname{span}\left(e_{2}\right),
\end{aligned}
$$

is linearly independent

- If $\left\{v_{1}, \ldots, v_{k}\right\}$ is linearly independent and

$$
\forall 1 \leq j \leq k, \quad V_{j}=\operatorname{span}\left(v_{j}\right)
$$

then $\left\{V_{1}, \ldots, V_{k}\right\}$ is a linearly independent set of subspaces

- If $\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ is a basis of V and

$$
S=\operatorname{span}\left(e_{1}, e_{2}, e_{3}\right), T=\operatorname{span}\left(e_{4}\right),
$$

then $V=S \oplus T$

Eigenspaces of Distinct Eigenvalues are Linearly Independent (Part 1)

- If $\lambda_{1}, \ldots, \lambda_{k}$ are distinct eigenvalues of $L: V \rightarrow V$, then their eigenspaces $E_{\lambda_{1}}, \ldots, E_{\lambda_{k}}$ are linearly independent
- Prove by induction that for any $1 \leq j \leq k$,

$$
v_{1}+\cdots+v_{j}=0 \Longrightarrow v_{1}=\cdots=v_{j}=0
$$

- This holds for $j=1$
- Inductive step: Assume that it holds for $1 \leq j<k$ and prove it holds for $j+1$

Eigenspaces of Distinct Eigenvalues are Linearly

 Independent (Part 2)- Suppose $v_{1} \in E_{\lambda_{1}}, \ldots, v_{j+1} \in E_{\lambda_{j+1}}$ satisfy

$$
\begin{equation*}
v_{1}+\cdots+v_{j+1}=0 \tag{1}
\end{equation*}
$$

- It follows that

$$
\begin{aligned}
0 & =\left(L-\lambda_{j+1} I\right)\left(v_{1}+\cdots+v_{j+1}\right) \\
& =\left(\lambda_{1}-\lambda_{j+1}\right) v_{1}+\cdots+\left(\lambda_{j}-\lambda_{j+1}\right) v_{j}
\end{aligned}
$$

- By the inductive assumption,

$$
\left(\lambda_{1}-\lambda_{j+1}\right) v_{1}=\cdots=\left(\lambda_{j}-\lambda_{j+1}\right) v_{j}=0
$$

- Since $\lambda_{i}-\lambda_{j+1} \neq 0$ for each $1 \leq i \leq j$,

$$
v_{1}=\cdots=v_{j}=0
$$

- By (1), it follows that $v_{j+1}=0$

Eigenspaces of Distinct Eigenvalues are Linearly

 Independent (Part 3)- By induction,

$$
v_{1}+\cdots+v_{k}=0 \Longrightarrow v_{1}=\cdots=v_{k}=0
$$

- This implies that $E_{\lambda_{1}}, \ldots, E_{\lambda_{k}}$ are linearly independent

Diagonalizability of a Linear Transformation (Part 1)

- Let $\lambda_{1}, \ldots, \lambda_{k}$ be the eigenvalues of $L: V \rightarrow V$
- L is diagonalizable if and only if

$$
\operatorname{dim}\left(E_{\lambda_{1}}\right)+\cdots+\operatorname{dim}\left(E_{\lambda_{k}}\right)=\operatorname{dim} V
$$

- Let $n_{0}=0$ and, for $1 \leq j \leq k$, let

$$
\begin{aligned}
n_{j} & =\operatorname{dim}\left(E_{\lambda_{j}}\right) \\
N_{j} & =n_{1}+\cdots+n_{j}
\end{aligned}
$$

- For each $1 \leq j \leq k$, let

$$
\left(v_{N_{j-1}+1}, \cdots, v_{N_{j}}\right)
$$

be a basis of $E_{\lambda_{j}}$

Diagonalizability of a Linear Transformation (Part 2)

- Suppose

$$
a^{1} v_{1}+\cdots+a^{n} v_{n}=0,
$$

- For each $1 \leq j \leq k$, let

$$
w_{j}=a^{N_{j-1}+1} v_{N_{j-1}}+\cdots+a^{N_{j}} v_{N_{j}} \in E_{\lambda_{j}}
$$

- Since $w_{1}+\cdots+w_{k}=0$, it follows that

$$
w_{1}=\cdots=w_{k}=0
$$

- For each $1 \leq j \leq k$,

$$
0=w_{j}=a^{N_{j-1}+1} v_{N_{j-1}}+\cdots+a^{N_{j}} v_{N_{j}}
$$

which implies $a^{N_{j-1}+1}=\cdots=a^{N_{j}}=0$

- Therefore, $\left(v_{1}, \ldots, v_{n}\right)$ is a basis of V
- L is diagonal with respect to this basis

Dot Product on \mathbb{R}^{n}

- Recall that the dot product of

$$
v=\left[\begin{array}{c}
v^{1} \\
\vdots \\
v^{n}
\end{array}\right], w=\left[\begin{array}{c}
w^{1} \\
\vdots \\
w^{n}
\end{array}\right] \in \mathbb{R}^{n}
$$

is defined to be

$$
v \cdot w=v^{1} w^{1}+\cdots+v^{n} w^{n}=v^{\top} w=w^{\top} v
$$

- The norm or magnitude of $v \in \mathbb{R}^{n}$ is defined to be

$$
|v|=\|v\|=\sqrt{v \cdot v}
$$

- If v and w are nonzero and the angle at 0 from v to w is θ, then

$$
\cos \theta=\frac{v \cdot w}{|v||w|}
$$

Properties of Dot Product

- The dot product is bilinear because for any $a, b \in \mathbb{R}$ and $u, v, w \in \mathbb{R}^{n}$,

$$
\begin{aligned}
(a u+b v) \cdot w & =a(u \cdot w)+b(v \cdot w) \\
u \cdot(a v+b w) & =a(u \cdot v)+b(u \cdot w)
\end{aligned}
$$

- It is symmetric, because for any $v, w \in \mathbb{R}^{n}$,

$$
v \cdot w=w \cdot v
$$

- It is positive definite, because for any $v \in \mathbb{R}^{n}$,

$$
v \cdot v \geq 0
$$

and

$$
v \cdot v>0 \Longleftrightarrow v \neq 0
$$

Inner Product on Real Vector Space

- Let V be an n-dimensional real vector space
- Consider a function

$$
\alpha: V \times V \rightarrow \mathbb{R}
$$

- It is bilinear if for any $a, b \in \mathbb{R}$ and $u, v, w \in \mathbb{R}^{n}$,

$$
\begin{aligned}
& \alpha(a u+b v, w)=a \alpha(u, w)+b \alpha(v, w) \\
& \alpha(u, a v+b w)=a \alpha(u, v)+b \alpha(u, w)
\end{aligned}
$$

- It is symmetric if for any $v, w \in \mathbb{R}^{n}$,

$$
\alpha(v, w)=\alpha(w, v)
$$

- It is positive definite if for any $v \in \mathbb{R}^{n}$,

$$
\alpha(v, v) \geq 0
$$

and

$$
\alpha(v, v)>0 \Longleftrightarrow v \neq 0
$$

- Any positive definite symmetric bilinear function on a real vector space V is called an inner product

Hermitian Inner Product on \mathbb{C}^{n}

- Recall that if $z=x+i y \in \mathbb{C}$, then

$$
\bar{z}=x-i y \text { and } z \bar{z}=\bar{z} z=x^{2}+y^{2}
$$

- If A is a complex matrix, its Hermitian adjoint is defined to be

$$
A^{*}=\bar{A}^{*}
$$

- The Hermitian inner product on \mathbb{C}^{n} of

$$
v=\left[\begin{array}{c}
v^{1} \\
\vdots \\
v^{n}
\end{array}\right], w=\left[\begin{array}{c}
w^{1} \\
\vdots \\
w^{n}
\end{array}\right] \in \mathbb{C}^{n}
$$

is defined to be

$$
(v, w)=v^{1} \bar{w}^{1}+\cdots+v^{n} \bar{w}^{n}=v^{T} \bar{w}=\bar{w}^{T} v=w^{*} v \in \mathbb{C}
$$

- The norm of $v \in \mathbb{C}^{n}$ is defined to be

$$
|v|=\|v\|=\sqrt{(v, v)}
$$

- No geometric interpretation of the Hermitian inner product

Not a Real Inner Product

- Not bilinear, because if $c \in \mathbb{C}$,

$$
(v, c w)=\bar{c}(v, w)
$$

- Not symmetric, because

$$
(w, v)=\overline{(v, w)}
$$

- It is positive definite, because for any $v \in \mathbb{C}^{n},(v, v) \in \mathbb{R}$,

$$
(v, v)=v^{1} \bar{v}^{1}+\cdots+v^{n} \bar{v}^{n}=\left|v^{1}\right|^{2}+\cdots+\left|v^{n}\right|^{2} \geq 0
$$

and

$$
(v, v) \neq 0 \Longleftrightarrow v \neq 0
$$

Properties of Hermitian Inner Product on \mathbb{C}^{n}

- It is a linear function of the first argument, because for any $a, b \in \mathbb{C}, u, v, w \in \mathbb{C}^{n}$,

$$
(a u+b v, w)=a(u, w)+b(v, w)
$$

- It is Hermitian, which means

$$
(v, w)=\overline{(w, v)}
$$

- Therefore, for any $a, b \in \mathbb{C}$ and $u, v, w \in \mathbb{C}^{n}$,

$$
(u, a v+b w)=\bar{a}(u, v)+\bar{b}(a, w)
$$

Inner Product of a Vector Space Over \mathbb{F}

- Assume \mathbb{F} is \mathbb{R} or \mathbb{C}
- An inner product over a vector space V is a function

$$
(\cdot, \cdot): V \times V \rightarrow \mathbb{F}
$$

with the following properties: For any $a, b \in F$ and $u, v, w \in V$,

$$
\begin{aligned}
(a u+b v, w) & =a(u, w)+b(v, w) \\
(w, v) & =\overline{(v, w)} \\
(v, v) & \geq 0 \\
(v, v) & \neq 0 \Longleftrightarrow v \neq 0
\end{aligned}
$$

- If $\mathbb{F}=\mathbb{R}$, this is the same definition as before
- If $\mathbb{F}=\mathbb{C}$, this is the definition of a Hermitian inner product

Examples

- For each $v \in \mathbb{F}^{n}$, denote $v^{*}=\bar{v}^{T}$
- The standard inner product on \mathbb{F}^{n} is

$$
(v, w)=w^{*} v
$$

which is the dot product on \mathbb{R}^{n} and the standard Hermitian inner product on \mathbb{C}^{n}

- An inner product on the space of polynomials of degree n or less and with coefficients in \mathbb{F} is

$$
(f, g)=\int_{t=0}^{t=1} f(t) \overline{g(t)} d t
$$

- An inner product on the space of matrices with n rows and m columns is

$$
(A, B)=\operatorname{trace}\left(B^{*} A\right)=\sum_{1 \leq k \leq m} \sum_{1 \leq j \leq n} \bar{B}_{k}^{j} A_{k}^{j},
$$

where $B^{*}=\bar{B}^{T}$

Nondegeneracy Property

- Fact: If a vector $v \in V$ satisfies the following property:

$$
\forall w \in V,(v, w)=0
$$

then $v=0$

- Proof: Setting $w=v$, it follows that

$$
(v, v)=0 \text { and therefore } v=0
$$

- Corollary: If $v_{1}, v_{2} \in V$ satisfy the property that

$$
\forall w \in V,\left(v_{1}, w\right)=\left(v_{2}, w\right)
$$

then $v_{1}=v_{2}$

- Corollary: If ' $L_{1}, L_{2}: V \rightarrow W$ are linear maps such that

$$
\forall v \in V, w \in W,\left(L_{1}(v), w\right)=\left(L_{2}(v), w\right)
$$

then $L_{1}=L_{2}$

- Proof: Given $v \in V$,

$$
\forall w \in W,\left(L_{1}(v), w\right)=\left(L_{2}(v), w\right)
$$

which implies $L_{1}(v)=L_{2}(v)$

- Since this holds for all $v \in V$, it follows that $E_{1}=L_{2}$

Fundamental Inequalities

- Cauchy-Schwarz inequality: For any $v, w \in V$,

$$
|(v, w)| \leq|v||w|
$$

and

$$
|(v, w)|=|v||w|
$$

if and only if there exists $s \in \mathbb{F}$ such that

$$
v=s w \text { or } w=s v
$$

- Triangle inequality: For any $v, w \in V$,

$$
|v+w| \leq|v|+|w|
$$

and

$$
|v+w|=|v|+|w|
$$

if and only if $v= \pm w$

Proof When $\mathbb{F}=\mathbb{R}$

- If $v=0$ or $w=0$, equality holds
- Let

$$
\begin{aligned}
f(t) & =|v-t w|^{2} \\
& =(v-t w, v-t w) \\
& =|v|^{2}-2 t(v, w)+t^{2}|w|^{2} \\
& =\left(t|w|-\frac{(v, w)}{|w|}\right)^{2}+|v|^{2}-\frac{(v, w)^{2}}{|w|^{2}}
\end{aligned}
$$

- f has a unique minimum when $t=t_{\text {min }}$, where

$$
t_{\min }=\frac{(v, w)}{|w|} \text { and } f\left(t_{\min }\right)=|v|^{2}-\frac{(v, w)^{2}}{|w|^{2}}
$$

Proof of Cauchy-Schwarz (Part 1)

- If $v=0$ or $w=0$, equality holds
- If $w \neq 0$, let $f: \mathbb{F} \rightarrow \mathbb{R}$ be the function

$$
\begin{aligned}
f(t) & =|v-t w|^{2} \\
& =(v-t w, v-t w) \\
& =|v|^{2}-t(w, v)-\bar{t}(v, w)+|t|^{2}|w|^{2}
\end{aligned}
$$

- If f has a minimum at $t_{0} \in \mathbb{F}$, then its directional derivative at t_{0} is zero in any direction \dot{t}

$$
\begin{aligned}
0 & =\left.\frac{d}{d s}\right|_{s=0} f\left(t_{0}+s \dot{t}\right) \\
& =-\dot{t}(w, v)-\overline{\dot{t}}(v, w)+\left(t_{0} \overline{\dot{t}}+\bar{t}_{0} \dot{t}\right)|w|^{2} \\
& =\dot{t}\left(\bar{t}_{0}-(w, v)\right)+\overline{\dot{t}}\left(t_{0}|w|^{2}-(v, w)\right) \\
& =\dot{t}\left(\overline{t_{0}-(v, w)}\right)+\overline{\dot{t}}\left(t_{0}|w|^{2}-(v, w)\right)
\end{aligned}
$$

Proof of Cauchy-Schwarz (Part 2)

- In particular, if

$$
\dot{t}=t_{0}|w|^{2}-(v, w)
$$

we get

$$
\left.\left|t_{0}\right| w\right|^{2}-\left.(v, w)\right|^{2}=0
$$

- Therefore, the only critical point of f is

$$
t_{0}=\frac{(v, w)}{|w|^{2}}
$$

- Since f is always nonnegative, it follows that

$$
0 \leq f\left(t_{0}\right)=|v|^{2}-\frac{|(v, w)|^{2}}{|w|^{2}}
$$

which implies the Cauchy-Schwarz inequality

Proof of Cauchy-Schwarz (Part 3)

- If $w \neq 0$ and $|(v, w)|=|v||w|$, then

$$
0=|v|^{2}-\frac{|(v, w)|^{2}}{|w|^{2}}=f\left(t_{0}\right)=\left|v-t_{0} w\right|^{2}
$$

which implies that

$$
v=t_{0} w
$$

