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Diagonal Linear Transformation

> LetdimV =n

> Let L:V — V be a linear transformation

» Suppose L has n linearly independent eigenvectors e, ..., e,
with eigenvalues A1,..., A,

» Then with respect to the basis £ = (eq, ..., e,),

L(ek) = ek)\k

> Equivalently,

0 X -~ 0
[L(el) . L(en)] — [el e en] . 2 . '
0 O An
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Diagonal Linear Transformation

» Conversely, suppose L : V — V is a linear transformation and
E is a basis such that

L(E) = ED,
where D is a diagonal matrix
> Then '
L(ex) = D} = exDy
» Therefore, L has eigenvalues D}, ..., D with eigenvectors
e1, ..., ey respectively
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Diagonalizable Linear Transformation

> Let L:V — V be a diagonal linear transformation
» If E is a basis of eigenvectors, then

L(E) = ED,

where D is a diagonal matrix
» Given any basis F, there is an invertible matrix M such that

F=EM

and vice versa
» There is a matrix A such that

L(F)=FA
» Therefore,
ED = L(E) = L(FM™Y) = L(F)M~! = FAM™! = EMAM™!

» l.e., M and D are similar
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Diagonalizable Linear Transformation and Matrix

» A linear transformation L : V — V is diagonalizable if any of
the following equivalent conditions hold:
P There exists a basis of V consisting of eigenvectors
> There exists a basis E such that L(E) = ED, where D is a
diagonal matrix
» Given any basis F and matrix A such that

A is similar to a diagonal matrix
» A matrix A is diagonalizable if it is similar to a diagonal
matrix
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Linear Transformation With Distinct Eigenvalues

» Let dim(V)=nand L:V — V be a linear transformation
with n distinct eigenvalues A\1,..., Ay, i.e.,

JFk = N # X

> Let vi,..., Vv, be eigenvectors of A1,..., A, respectively
» Suppose vi,..., Vk_1 are linearly independent
> If alvy +--- + akvew = 0, then

0=(L— M) v+ +a"v)
al(Lvl) —Avi) e+ ak(L(vk) — AkVk)
a' (A1 — M)ve + -+ (e — M) v
at (A — M)ve + - 4 T (1 — M) vit,

» Therefore, al()\l — )\k) =...= akil()\k,l — >\k) =0
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Linear Transformation With Distinct Eigenvalues

» Since vy, ..., vk_1 are linearly independent, it follows that
M = M) == 1= M) =0
» Since the eigenvalues are distinct, this implies that
... =1

By assumption, alvy + -+ akvew = 0 and therefore ak = 0
It follows by induction that vi,..., v, form a basis of V

Therefore, L is diagonalizable

vVvyYVvyy

Conclusion: Any linear transformation with n distinct
eigenvalues is diagonalizable
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Direct Sum of Subspaces

> Let V4,..., V), be subspaces of V
» {V4,..., Vi}is a linearly independent set of subspaces if for
any nonzero vectors
Vi € V1, Vo € Vg,...,VkG Vk
are linearly independent
» Equivalently, {V4,..., Vi} is linearly independent if for any
vi € Vi,...,v €V,
V1+V2_|_+Vk:0 — Vi = Vo = - = Vg
» Equivalently, {V4,..., Vi} is linearly independent if for any
Vi, w1 € V17"'7Vk7Wk S ka
Vitvot- v = witwot oW — vi = Wy, ..., Ve = Wy

> If {V4, Va,..., Vi} is linearly independent, then their direct
sum is defined to be

V1€BVg@---@Vk:span(V1UV2U-~UVk)
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Examples
> {51,S}, where 51,5, C F2 are given by

S1 = span(ey)
S = span(en),

is linearly independent

» If {vi,..., vk} is linearly independent and
V1< j <k, Vj=span(y)),

then {V4,..., Vk} is a linearly independent set of subspaces
» If (e1, e, €3,€4) is a basis of V and

S =span(e1, e2,e3), T = span(es),

then V=S¢ T
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Eigenspaces of Distinct Eigenvalues are Linearly
Independent (Part 1)

> If A\1,..., Ak are distinct eigenvalues of L : V — V/, then their

eigenspaces Ey,, ..., Ey,  are linearly independent

» Prove by induction that for any 1 < j < k,
V1++VJ:O — V].:"':Vj:O

» This holds for j =1

» Inductive step: Assume that it holds for 1 < j < k and prove
it holds for j +1
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Eigenspaces of Distinct Eigenvalues are Linearly
Independent (Part 2)

> Suppose v € Ey,,...,vjt1 € By, satisfy
vit+-o+ v =0 (1)
> |t follows that

0=(L=XAjpal)(vi+ -+ vjt1)
=M =N -+ (4 = Ay

» By the inductive assumption,
(=A== (A = A1)y =0
» Since \j — A\jy1 #0 foreach 1 </ <,
vi=--=v =0

» By (1), it follows that vj4; =0
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Eigenspaces of Distinct Eigenvalues are Linearly
Independent (Part 3)

> By induction,
V]_+"'+Vk:0 — V1:-":Vk:0

» This implies that Ey,, ..., Ey, are linearly independent
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Diagonalizability of a Linear Transformation (Part 1)
> Let Aq,..., g be the eigenvalues of L: V — V
» [ is diagonalizable if and only if
dim(E)\l) +---+ dim(E)\k) =dimV
> Let np =0 and, for 1 <j <k, let

nj = dim(E)\j)
Nj:n1+---+nj

> Foreach 1l <<k, let

(VN_,-_1+1a R VNj)

be a basis of Ej;

13/28



Diagonalizability of a Linear Transformation (Part 2)

» Suppose
atvi +---+a"v, =0,

» Foreach 1l <<k, let

N;_1+1

N:
VVJ-:aJ VNJ'_1+“'+3JVNJ'€E)\J'

» Since wg + -+ wy = 0, it follows that
W1:”-:Wk:0

» Foreach 1l <j <k,

0= VV_] — aNjfl%"liji1 + o4 aNjVNJ.,

which implies aNi-1t1 = ... =N =0
» Therefore, (vi,...,v,) is a basis of V
» [ is diagonal with respect to this basis
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Dot Product on R”
» Recall that the dot product of

» The norm or magnitude of v € R" is defined to be
v =Illvll =vv-v

» If v and w are nonzero and the angle at 0 from v to w is 6,

then
vVew

cosf =
lv||wl
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Properties of Dot Product

» The dot product is bilinear because for any a, b € R and
u,v,w € R",

(au+bv)-w=a(u-w)+b(v-w)
u-(av+bw)=a(u-v)+ b(u-w)

> It is symmetric, because for any v, w € R”,
vV-w=w-v
> It is positive definite, because for any v € R",
v-v>0

and
v-v>0 < v#0
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Inner Product on Real Vector Space

» Let V be an n-dimensional real vector space
» Consider a function

a:VxV-R
» It is bilinear if for any a,b € R and u,v,w € R”,
alau + bv,w) = aa(u, w) + ba(v, w)
a(u,av + bw) = aa(u, v) + ba(u, w)
» It is symmetric if for any v, w € R”,
a(v,w) = a(w,v)
> It is positive definite if for any v € R”,
a(v,v) >0
and
a(v,v) >0 <= v#0
» Any positive definite symmetric bilinear function on a real

vector space V is called an inner product
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Hermitian Inner Product on C”
» Recall that if z=x+ iy € C, then

Z=x—iyand zZ = Zz = x> + y?

> If Ais a complex matrix, its Hermitian adjoint is defined to

be
A* = A
» The Hermitian inner product on C" of
vi wl
v=|:|,w=]|:|eC"
v w"
is defined to be
(v,w)=vial+.- vw" =viw=w"v=w'veC,

» The norm of v € C" is defined to be
vl =1vll = V(v,v)

» No geometric interpretation of the Hermitian inner product
18/28



Not a Real Inner Product

» Not bilinear, because if c € C,
(v,ew) = &(v, w)

» Not symmetric, because

(w,v) = (v,w)
> It is positive definite, because for any v € C", (v,v) € R,
(v,v) = vt 4+ v 0" = V24 V)2 >0,

and
(v,v)#0 <= v#0
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Properties of Hermitian Inner Product on C”

» It is a linear function of the first argument, because for any
a,beC, uv,weC"

(au+ bv,w) = a(u, w) + b(v, w)

» [t is Hermitian, which means

(V’ W) = (W> V)
» Therefore, for any a,b € C and u,v,w € C",

(u,av + bw) = a(u,v) + b(a, w)
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Inner Product of a Vector Space Over [F

» Assume Fis R or C

» An inner product over a vector space V is a function
(,):VXV—=F

with the following properties: For any a, b € F and

u,v,w €V,
(au+ bv,w) = a(u, w) + b(v, w)
(w,v) = (v,w)
(v,v)>0
(v,v) #0 <= v#0

» If F = R, this is the same definition as before
> If F = C, this is the definition of a Hermitian inner product
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Examples

» For each v € F”, denote v* = ¢T
» The standard inner product on F” is

(v,w) =w"v,
which is the dot product on R" and the standard Hermitian

inner product on C”

» An inner product on the space of polynomials of degree n or
less and with coefficients in F is

t=1
(fe)= [ Fojede

» An inner product on the space of matrices with n rows and m
columns is

(A,B) =trace(B*A) = > > BlA,

1<k<m1<j<n

where B* = BT
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Nondegeneracy Property
» Fact: If a vector v € V satisfies the following property:
Ywe V, (v,w) =0,

then v =0
» Proof: Setting w = v, it follows that

(v,v) =0 and therefore v =0
» Corollary: If vi,vo € V satisfy the property that
Vw e V, (vi,w) = (vo, w),

then vi = »»
» Corollary: If ‘Ly, Ly : V — W are linear maps such that

YveV, weW, (Li(v),w) = (La(v), w),
then L1 = Ly
» Proof: Given v € V,
Vw € Wa (Ll(v)7 W) = (L2(V)7 W)a

which implies Li(v) = Lp(v)

» Since this holds for all v € V, it follows that £; = L, 22



Fundamental Inequalities

» Cauchy-Schwarz inequality: For any v,w € V,
(v, w)| < |v]|w]

and
(v, w)| = |v]|w]|

if and only if there exists s € F such that

vV =5Ssworw=sv

» Triangle inequality: For any v,w € V,
vt wl < vl + W]

and
v+ w|=|v[+]|w|

if and only if v =+4w
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Proof When F = R

> If v=0or w =0, equality holds
> Let

f(t) =|v — tw|?
=(v—tw,v—tw)

= |v|? = 2t(v, w) + t?|w|?

- <t|w| _ (V’W)>2 + VP (v, w)?

wi wl?

» f has a unique minimum when t = t;,, where

(V7 W) 2 ( )
tmin = ~———— and f(tmin) = |v|° —
|w] |wl?

v, w)?
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Proof of Cauchy-Schwarz (Part 1)
» If v=0or w =0, equality holds
> If w+#0, let f:F — R be the function

f(t) = |v — tw]?
=(v—tw,v—tw)
= v — t(w, v) — E(v, w) + [t]*|w]?

> If f has a minimum at tg € IF, then its directional derivative at
to is zero in any direction t

d )
0= — f(t t
ds|._, (to +s1)

_i(Wa V) - t(va W) + (t0;+ t_'Oi-)‘W|2
= i(F — (w,) + (tlwl? — (v, w)
t(to — (v, w)) + t(to|w|? — (v, w))
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Proof of Cauchy-Schwarz (Part 2)

» In particular, if
t= to’W‘z - (V7 W)7

we get
|to|w[* — (v, w)|* =0,

» Therefore, the only critical point of f is

. _(vw)
T WP

» Since f is always nonnegative, it follows that

0< f(tg) = |v|> - (

wl?

which implies the Cauchy-Schwarz inequality

v, w)l?
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Proof of Cauchy-Schwarz (Part 3)

» If w# 0 and |(v, w)| = |v||w|, then

(v, w)I?

0= ‘v’z — WPt

= f(to) = ‘V - t’oW’z7

which implies that
v = tow
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