MATH-GA2120 Linear Algebra II

Determinant of a Composition

Eigenvalues, Eigenvectors Characteristic Polynomial

Triangular Matrices

Deane Yang

Courant Institute of Mathematical Sciences
New York University

February 15, 2024

Determinant of a Composition

- If L_{1}, L_{2} are linear maps from V to V, then

$$
\begin{aligned}
\operatorname{det}\left(L_{2} \circ L_{1}\right) D\left(v_{1}, \ldots, v_{n}\right) & =\left(L_{2} \circ L_{1}\right)^{*}\left(D\left(v_{1}, \ldots, v_{n}\right)\right) \\
& \left.\left.=D\left(\left(L_{2} \circ L_{1}\right)\left(v_{1}\right)\right), \ldots,\left(L_{2} \circ L_{1}\right)\left(v_{n}\right)\right)\right) \\
& =D\left(L_{2}\left(L_{1}\left(v_{1}\right)\right), \ldots, L_{2}\left(L_{1}\left(v_{n}\right)\right)\right) \\
& =\operatorname{det}\left(L_{2}\right) D\left(L_{1}\left(v_{1}\right), \ldots, L_{1}\left(v_{n}\right)\right) \\
& =\operatorname{det}\left(L_{2}\right) \operatorname{det}\left(L_{1}\right)
\end{aligned}
$$

- Since all three definitions of $\operatorname{det}(L)$ are equivalent, this is another proof that

$$
\operatorname{det}\left(M_{2} M_{1}\right)=\operatorname{det}\left(M_{2}\right) \operatorname{det}\left(M_{1}\right)
$$

Eigenvalues and Eigenvectors of a Linear Transformation

- Consider a linear map $L: V \rightarrow V$
- A scalar $\lambda \in \mathbb{F}$ is called an eigenvalue of L if there is a nonzero vector $v \in V$ such that any of the following equivalent statements hold

$$
L(v)=\lambda v \Longleftrightarrow(L-\lambda I) v=0 \Longleftrightarrow v \in \operatorname{ker}(L-\lambda I)
$$

The vector v is called an eigenvector

- λ is an eigenvalue of $L \Longleftrightarrow$ the linear maps $L-\lambda /$ is singular
- Any nonzero $v \in \operatorname{ker}(L-\lambda I)$ is an eigenvector for the eigenvalue λ
- Any nonzero $v \in \operatorname{ker} L$ is an eigenvector for the eigenvalue 0
- The eigenspace for an eigenvalue λ of L is the subspace

$$
E_{\lambda}(L)=\operatorname{ker}(L-\lambda I)=\{v \in V: L(v)=\lambda v\}
$$

A nonzero vector v is an eigenvector for the eigenvalue λ if and only if $v \in E_{\lambda}(L)$

Eigenvalues and Eigenvectors of a Square Matrix

- A scalar λ is an eigenvalue of a matrix $M \in M_{n \times n}$ if there is a nonzero vector $v \in \mathbb{F}^{n}$ such that

$$
M v=\lambda v
$$

The vector v is called an eigenvector for the eigenvalue λ

- If v is an eigenvector for λ, then so is any nonzero scalar multiple of it
- λ is an eigenvalue of M if and only if the matrix $M-\lambda /$ is singular
- Therefore,

$$
\lambda \text { is an eigenvalue of } M \Longleftrightarrow \operatorname{det}(M-\lambda I)=0
$$

- $\operatorname{ker}(M-\lambda I) \backslash\{0\}$ is the set of all eigenvectors for the eigenvalue λ

Determinants, Eigenvalues, and Eigenvectors of Similar

 Matrices- Two matrices M and N are called similar if there is an invertible matrix H such that

$$
M=H N H^{-1}
$$

or, equivalently, there is an invertible matrix G such that

$$
N=G M G^{-1}
$$

- If M and N are similar, then $\operatorname{det} M=\operatorname{det} N$
- M and N have the same eigenvalues, because

$$
M v=\lambda v \Longleftrightarrow H N H^{-1} v=\lambda v \Longleftrightarrow N\left(H^{-1} v\right)=\lambda\left(H^{-1} v\right)
$$

Characteristic Polynomial of a Matrix

- Let δ_{k}^{j} be the element in the j-th row and k-column of the identity matrix, i.e.,

$$
\delta_{k}^{j}= \begin{cases}1 & \text { if } j=k \\ 0 & \text { if } j \neq k\end{cases}
$$

- Observe that the function $p_{M}: \mathbb{F} \rightarrow \mathbb{F}$ given by

$$
\begin{aligned}
p_{M}(\lambda) & =\operatorname{det}(M-\lambda I) \\
& =\sum_{\sigma \in S_{n}} \epsilon(\sigma)(M-\lambda I)_{1}^{\sigma(1)} \cdots(M-\lambda I)_{n}^{\sigma(n)} \\
& =\sum_{\sigma \in S_{n}} \epsilon(\sigma)\left(M_{1}^{\sigma(1)}-\lambda \delta_{1}^{\sigma(1)}\right) \cdots\left(M_{n}^{\sigma(n)}-\lambda \delta_{n}^{\sigma(n)}\right)
\end{aligned}
$$

is a polynomial in λ of degree n

- The roots of p_{M} are eigenvalues of M

Similar Matrices Have the Same Characteristic Polynomial

- If $M=H N H^{-1}$, then

$$
M-\lambda I=H N H^{-1}-\lambda H(I) H^{-1}=H(N-\lambda I) H^{-1}
$$

- Therefore,

$$
\begin{aligned}
p_{M}(\lambda) & =\operatorname{det}(M-\lambda I) \\
& =(\operatorname{det} H)(\operatorname{det}(N-\lambda I))\left(\operatorname{det} H^{-1}\right) \\
& =\operatorname{det}(N-\lambda I) \\
& =p_{N}(\lambda)
\end{aligned}
$$

- This is another proof that the eigenvalues of M are the same as the eigenvalues of N

Eigenvalues of Linear Transformation and its Matrix

- Consider a linear transformation $L: V \rightarrow V$ on an n-dimensional vector space V
- Given a basis $E=\left(e_{1}, \ldots, e_{n}\right)$ of V, there is a matrix $M \in M_{n \times n}$ such that for any $v=E a$,

$$
L(v)=L(E a)=E(M a)
$$

- Observe that for any $v \in V$,

$$
\begin{aligned}
L(v)=\lambda v & \Longleftrightarrow L(E a)=\lambda E a \\
& \Longleftrightarrow E(M a)=E(\lambda a) \quad \Longleftrightarrow M a=\lambda a
\end{aligned}
$$

- Therefore, λ is an eigenvalue of L iff it is an eigenvalue of M

Change of Basis formula for a Linear Transformation

- If F is another basis of V, then there is an invertible square matrix H such that $F=E H$
- If $v=E a=F b$, then

$$
v=F b=E H b
$$

which implies that $a=H b$ and $b=H^{-1} a$

- If $L: V \rightarrow V$ is a linear transformation, then there are matrices M and N such that

$$
L(E a)=E(M a) \text { and } L(F b)=F(N b)=E H N H^{-1} a,
$$

which implies that $M=H N H^{-1}$ and $N=H^{-1} M H$

- In other words, M and N are similar and therefore have the same characteristic polynomial

Characteristic Polynomial of a Linear Transformation

- It follows that

$$
p_{M}(\lambda)=\operatorname{det}(M-\lambda I)=\operatorname{det}(N-\lambda I)=p_{N}(\lambda)
$$

- We can therefore define the characteristic polynomial p_{L} of a linear transformation $L: V \rightarrow V$ to be

$$
p_{L}=p_{M},
$$

where p_{M} is the characteristic polynomial of the matrix M associated to L and a basis of V

- The polynomial is the same, no matter what basis of V is used

Examples

- Let

$$
Z=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

- $Z v=0 v$ for any $v \in \mathbb{R}^{2}$ and therefore 0 is the only eigenvalue
- Any nonzero vector $v \in \mathbb{R}^{2}$ is an eigenvector
- The characteristic polynomial is

$$
p_{Z}(x)=\operatorname{det}(Z-\lambda I)=\operatorname{det}\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=-\lambda^{2}
$$

Examples

- If $D=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$, then $D\left[\begin{array}{l}v^{1} \\ v^{2}\end{array}\right]=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]\left[\begin{array}{l}v^{1} \\ v^{2}\end{array}\right]=\left[\begin{array}{l}a v^{1} \\ b v^{2}\end{array}\right]$
- If $\lambda=a=b$, then the only eigenvalue is λ
- Every $v \in \mathbb{R}^{2}$ is an eigenvector
- If $a \neq b$, then the only eigenvalues are a and b
- The eigenvectors for the eigenvalue a are

$$
\left[\begin{array}{l}
x \\
0
\end{array}\right]=x\left[\begin{array}{l}
1 \\
0
\end{array}\right], x \in \mathbb{F} \backslash\{0\}
$$

- The eigenvectors for the eigenvalue b are

$$
\left[\begin{array}{l}
0 \\
x
\end{array}\right]=x\left[\begin{array}{l}
0 \\
1
\end{array}\right], x \in \mathbb{F} \backslash\{0\}
$$

- The characteristic polynomial is

$$
p_{D}(x)=\operatorname{det}(D-\lambda I)=\lambda\left[\begin{array}{cc}
a-\lambda & 0 \\
0 & b-\lambda
\end{array}\right]=(a-\lambda)(b-\lambda)
$$

Examples

- If $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, then $A\left[\begin{array}{l}v^{1} \\ v^{2}\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}v^{1} \\ v^{2}\end{array}\right]=\left[\begin{array}{c}v^{2} \\ v^{1}\end{array}\right]$
- The only eigenvalues are $1,-1$
- The eigenvectors for the eigenvalue 1 are

$$
\left[\begin{array}{l}
x \\
x
\end{array}\right], x \in \mathbb{F} \backslash\{0\}
$$

- The eigenvectors for the eigenvalue -1 are

$$
\left[\begin{array}{c}
x \\
-x
\end{array}\right], x \in \mathbb{F} \backslash\{0\}
$$

- The characteristic polynomial is

$$
p_{A}(x)=\operatorname{det}\left(\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & \lambda
\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & 1 \\
1 & \lambda
\end{array}\right]\right)=1-\lambda^{2}
$$

Examples

- If $B=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$, then $B\left[\begin{array}{l}v^{1} \\ v^{2}\end{array}\right]=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}v^{1} \\ v^{2}\end{array}\right]=\left[\begin{array}{c}-v^{2} \\ v^{1}\end{array}\right]$
- There are no real eigenvalues
- The complex eigenvalues are $i,-i$
- The eigenvectors for the eigenvalue i are

$$
\left[\begin{array}{c}
i x \\
-x
\end{array}\right]=x\left[\begin{array}{l}
i \\
1
\end{array}\right], x \in \mathbb{F} \backslash\{0\}
$$

- The eigenvectors for the eigenvalue $-i$ are

$$
\left[\begin{array}{c}
x \\
i x
\end{array}\right]=x\left[\begin{array}{l}
1 \\
i
\end{array}\right], x \in \mathbb{F} \backslash\{0\}
$$

- The characteristic polynomial is

$$
\begin{aligned}
p_{B}(x) & =\operatorname{det}(B-\lambda I) \\
& =\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & -1 \\
1 & -\lambda
\end{array}\right]\right) \\
& =1+\lambda^{2}
\end{aligned}
$$

Complex Versus Real Eigenvalues

- If an $n-b y-n$ matrix contains only real entries, it can have anywhere from 0 to n eigenvalues
- A polynomial with complex coefficients

$$
p(x)=a_{0}+a_{1} x+\cdots a_{n} x^{n}
$$

where $a_{n} \neq 0$ with complex coefficients can always be factored into n linear factors

$$
p(x)=a_{n}\left(r_{1}-x\right) \cdots\left(r_{n}-x\right)
$$

- A complex matrix A always has anywhere from 1 to n eigenvalues, where an eigenvalue might appear more than once in the factorization of p_{A}
- The multiplicity of an eigenvalue λ is the number of linear factors equal to $(\lambda-x)$ in p_{A}

Examples

- Let $D=\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3\end{array}\right]$
- The eigenvalues of D are $-2,3$
- The characteristic polynomial of D is

$$
p_{D}(\lambda)=(x-3)(x+2)(x-3)=(x-3)^{2}(x+2)
$$

- The eigenvalue 3 has multiplicity 2 , and the eigenvalue 2 has multiplicity 1
- The eigenvectors for the eigenvalue -2 are

$$
\left[\begin{array}{l}
0 \\
x \\
0
\end{array}\right]=x\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], x \in \mathbb{F} \backslash\{0\}
$$

- The eigenvectors for the eigenvalue 3 are

$$
\left[\begin{array}{c}
x^{1} \\
0 \\
x^{2}
\end{array}\right]=x^{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+x^{2}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], x \in \mathbb{F} \backslash\{0\}
$$

Examples

- Let $M=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
- The characteristic polynomial of M is

$$
p_{M}(\lambda)=\operatorname{det}(M-\lambda I)=\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 1 \\
0 & 1-\lambda
\end{array}\right]\right)=(1-\lambda)^{2}
$$

- The only eigenvalue is 1 with multiplicity 2
- Since

$$
M\left[\begin{array}{l}
v^{1} \\
v^{2}
\end{array}\right]=M=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
v^{1} \\
v^{2}
\end{array}\right]=\left[\begin{array}{c}
v^{1} \\
v^{1}+v^{2}
\end{array}\right],
$$

the eigenvectors of the eigenvalue 1 are

$$
\left[\begin{array}{l}
0 \\
x
\end{array}\right]=x\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Diagonal Matrices

- An n-by- n matrix M is diagonal if

$$
M_{k}^{j}=0 \text { if } j \neq k
$$

- In particular, the k-th column of M is

$$
C_{k}=M e_{k}=M_{k}^{k} e_{k}(\text { no sum over } k)
$$

where $\left(e_{1}, \ldots, e_{n}\right)$ is the standard basis of \mathbb{R}^{n}

- The determinant of M is, by multilinearity,

$$
\begin{aligned}
D\left(C_{1}, \ldots, C_{n}\right) & =D\left(M_{1}^{1} e_{1}, M_{2}^{2} e_{2}, \ldots, M_{n}^{n} e_{n}\right) \\
& =D\left(e_{1}, \ldots, e_{n}\right) \\
& =\left(M_{1}^{1} \cdots M_{n}^{n}\right)
\end{aligned}
$$

- Since $M-\lambda I$ is also diagonal, it follows that the characteristic polynomial of M is

$$
p_{M}(\lambda)=\operatorname{det}(M-\lambda I)=\left(M_{1}^{1}-\lambda\right) \cdots\left(M_{n}^{n}-\lambda\right)
$$

- The diagonal elements of M are its eigenvalues

Triangular Matrices

- An n-by- n matrix M is upper triangular if it is of the form

$$
M=\left[\begin{array}{ccccc}
M_{1}^{1} & M_{2}^{1} & \cdots & M_{n-1}^{1} & M_{n}^{1} \\
0 & M_{2}^{2} & \cdots & M_{n-1}^{2} & M_{n}^{2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & M_{n-1}^{n-1} & M_{n}^{n-1} \\
0 & 0 & \cdots & 0 & M_{n}^{n}
\end{array}\right]
$$

- I.e., $M_{k}^{j}=0$ if $j>k$
- An n-by- n matrix M is lower triangular if it is of the form

$$
M=\left[\begin{array}{ccccc}
M_{1}^{1} & 0 & \cdots & 0 & 0 \\
M_{1}^{2} & M_{2}^{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
M_{1}^{n-1} & M_{2}^{n-1} & \cdots & M_{n-1}^{n-1} & 0 \\
M_{1}^{n} & M_{2}^{n} & \cdots & M_{n-1}^{n} & M_{n}^{n}
\end{array}\right]
$$

- I.e., $M_{k}^{j}=0$ if $j<k$

Columns of an Upper Triangular Matrix

- Let M be an upper triangular matrix and consider the matrix $T=M-\lambda I$
- T is itself an upper triangular matrix
- Choose a value of $\lambda \in \mathbb{F}$ such that every element on the diagonal of T is nonzero
- Let $\left(e_{1}, \ldots, e_{n}\right)$ be the standard basis of \mathbb{R}^{n}
- Let $\left(C_{1}, \ldots, C_{n}\right)$ be the columns of T
- By assumption, $C_{1}^{1}, C_{2}^{2}, \cdots, C_{n}^{n}$ are all nonzero

Columns of Upper Triangular Matrix (Part 2)

- Each column can therefore be written as

$$
C_{k}=C_{k}^{k} \hat{C}_{k}
$$

where

$$
\hat{C}_{k}=\left[\begin{array}{c}
\hat{C}_{k}^{1} \\
\vdots \\
\hat{C}_{k}^{k-1} \\
1 \\
0 \\
\vdots \\
0
\end{array}\right] \text { and } \hat{C}_{k}^{j}=\frac{C_{k}^{j}}{C_{k}^{k}}, \text { for each } 1 \leq j, k \leq n
$$

Determinant of Upper Triangular Matrix (Part 1)

- Let $\left(C_{1}, \ldots, C_{n}\right)$ be the columns of T and recall that the determinant of T is

$$
\operatorname{det}(T)=D\left(C_{1}, \ldots, C_{n}\right)
$$

where $D \in \Lambda^{n} V^{*}$ satisfies $D\left(e_{1}, \ldots, e_{n}\right)=1$

- By the multilinearity of D,

$$
\begin{aligned}
D\left(C_{1}, \ldots, C_{n}\right) & =D\left(C_{1}^{1} \hat{C}_{1}, C_{2}^{2} \hat{C}_{2}, \ldots, C_{n}^{n} \hat{C}_{n}\right) \\
& =\left(C_{1}^{1} C_{2}^{2} \cdots C_{n}^{n}\right) D\left(\hat{C}_{1}, \ldots, \hat{C}_{n}\right)
\end{aligned}
$$

Determinant of Upper Triangular Matrix (Part 2)

- Since T is lower triangular, its columns are of the form

$$
\begin{aligned}
C_{1} & =C_{1}^{1} e_{1} \\
C_{2} & =C_{2}^{1} e_{1}+C_{2}^{2} e_{2} \\
C_{3} & =C_{3}^{1} e_{1}+C_{3}^{2} e_{2}+C_{3}^{3} e_{3} \\
\vdots & \vdots \\
C_{n} & =C_{n}^{1} e_{1}+C_{n}^{2} e_{2}+C_{n}^{3} e_{3}+\cdots+C_{n}^{n} e_{n}
\end{aligned}
$$

- Similarly,

$$
\begin{aligned}
\hat{C}_{1} & =e_{1} \\
\hat{C}_{2} & =\hat{C}_{2}^{1} e_{1}+e_{2} \\
\hat{C}_{3} & =\hat{C}_{3}^{1} e_{1}+\hat{C}_{3}^{2} e_{2}+e_{3} \\
\vdots & \vdots \\
\hat{C}_{n} & =\hat{C}_{n}^{1} e_{1}+\hat{C}_{n}^{2} e_{2}+\hat{C}_{n}^{3} e_{3}+\cdots+\hat{C}_{n}^{n-1} e_{n-1}+e_{n}
\end{aligned}
$$

Determinant of Upper Triangular Matrix (Part 3)

- Therefore,

$$
\begin{aligned}
& D\left(\hat{C}_{1}, \ldots, \hat{C}_{n}\right) \\
& =D\left(e_{1}, \hat{C}_{2}, \ldots, \hat{C}_{n}\right) \\
& =D\left(e_{1}, \hat{C}_{2}^{1} e_{1}+e_{2}, \hat{C}_{3}^{1} e_{1}+\hat{C}_{3}^{2} e_{2}+e_{3}, \ldots, \hat{C}^{1} e_{1}+\cdots+e_{n}\right) \\
& =D\left(e_{1}, e_{2}, \hat{C}_{3}^{2} e_{2}+e_{3}, \ldots, \hat{C}_{n}^{2} e_{2}+\cdots+e_{n}\right) \\
& =D\left(e_{1}, e_{2}, e_{3}, \ldots, \hat{C}_{n}^{3} e_{3}+\cdots+\cdots+e_{n}\right) \\
& \vdots \\
& \quad \vdots \\
& =D\left(e_{1}, e_{2}, \ldots, e_{n}\right) \\
& =1
\end{aligned}
$$

Characteristic Polynomial and Determinant of M

- It follows that if λ is not equal to any of $C_{1}^{1}, \cdots, C_{n}^{n}$,

$$
\begin{aligned}
p_{M}(\lambda) & =\operatorname{det}(T) \\
& =D\left(C_{1}, \ldots, C_{n}\right) \\
& =C_{1}^{1} C_{2}^{2} \cdots C_{n}^{n} D\left(\hat{C}_{1}, \ldots, \hat{C}_{n}\right) \\
& =C_{1}^{1} C_{2}^{2} \cdots C_{n}^{n} \\
& =\left(M_{1}^{1}-\lambda I\right) \cdots\left(M_{n}^{n}-\lambda I\right)
\end{aligned}
$$

- If follows that the polynomial

$$
r(\lambda)=p_{M}(\lambda)-\left(M_{1}^{1}-\lambda I\right) \cdots\left(M_{n}^{n}-\lambda I\right)
$$

has infinitely many roots

- This implies that r is the zero polynomial
- Therefore, the characteristic polynomial of an upper triangular matrix M is

$$
p_{M}(\lambda)=\left(M_{1}^{1}-\lambda I\right) \cdots\left(M_{n}^{n}-\lambda I\right)
$$

- In particular, $\operatorname{det}(M)=p_{M}(0)=M_{1}^{1} \cdots M_{n}^{n}$

