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Determinant of a Composition

▶ If L1, L2 are linear maps from V to V , then

det(L2 ◦ L1)D(v1, . . . , vn) = (L2 ◦ L1)∗(D(v1, . . . , vn))

= D((L2 ◦ L1)(v1)), . . . , (L2 ◦ L1)(vn)))
= D(L2(L1(v1)), . . . , L2(L1(vn)))

= det(L2)D(L1(v1), . . . , L1(vn))

= det(L2) det(L1)

▶ Since all three definitions of det(L) are equivalent, this is
another proof that

det(M2M1) = det(M2) det(M1)
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Eigenvalues and Eigenvectors of a Linear Transformation
▶ Consider a linear map L : V → V

▶ A scalar λ ∈ F is called an eigenvalue of L if there is a
nonzero vector v ∈ V such that any of the following
equivalent statements hold

L(v) = λv ⇐⇒ (L− λI )v = 0 ⇐⇒ v ∈ ker(L− λI )

The vector v is called an eigenvector
▶ λ is an eigenvalue of L ⇐⇒ the linear maps L−λI is singular

▶ Any nonzero v ∈ ker(L− λI ) is an eigenvector for the
eigenvalue λ

▶ Any nonzero v ∈ ker L is an eigenvector for the eigenvalue 0

▶ The eigenspace for an eigenvalue λ of L is the subspace

Eλ(L) = ker(L− λI ) = {v ∈ V : L(v) = λv}

A nonzero vector v is an eigenvector for the eigenvalue λ if
and only if v ∈ Eλ(L)
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Eigenvalues and Eigenvectors of a Square Matrix

▶ A scalar λ is an eigenvalue of a matrix M ∈ Mn×n if there is
a nonzero vector v ∈ Fn such that

Mv = λv

The vector v is called an eigenvector for the eigenvalue λ

▶ If v is an eigenvector for λ, then so is any nonzero scalar
multiple of it

▶ λ is an eigenvalue of M if and only if the matrix M − λI is
singular

▶ Therefore,

λ is an eigenvalue of M ⇐⇒ det(M − λI ) = 0

▶ ker(M − λI )\{0} is the set of all eigenvectors for the
eigenvalue λ
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Determinants, Eigenvalues, and Eigenvectors of Similar
Matrices

▶ Two matrices M and N are called similar if there is an
invertible matrix H such that

M = HNH−1

or, equivalently, there is an invertible matrix G such that

N = GMG−1

▶ If M and N are similar, then detM = detN

▶ M and N have the same eigenvalues, because

Mv = λv ⇐⇒ HNH−1v = λv ⇐⇒ N(H−1v) = λ(H−1v)
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Characteristic Polynomial of a Matrix

▶ Let δjk be the element in the j-th row and k-column of the
identity matrix, i.e.,

δjk =

{
1 if j = k

0 if j ̸= k

▶ Observe that the function pM : F → F given by

pM(λ) = det(M − λI )

=
∑
σ∈Sn

ϵ(σ)(M − λI )
σ(1)
1 · · · (M − λI )

σ(n)
n

=
∑
σ∈Sn

ϵ(σ)(M
σ(1)
1 − λδ

σ(1)
1 ) · · · (Mσ(n)

n − λδ
σ(n)
n )

is a polynomial in λ of degree n

▶ The roots of pM are eigenvalues of M
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Similar Matrices Have the Same Characteristic Polynomial

▶ If M = HNH−1, then

M − λI = HNH−1 − λH(I )H−1 = H(N − λI )H−1

▶ Therefore,

pM(λ) = det(M − λI )

= (detH)(det(N − λI ))(detH−1)

= det(N − λI )

= pN(λ)

▶ This is another proof that the eigenvalues of M are the same
as the eigenvalues of N
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Eigenvalues of Linear Transformation and its Matrix

▶ Consider a linear transformation L : V → V on an
n-dimensional vector space V

▶ Given a basis E = (e1, . . . , en) of V , there is a matrix
M ∈ Mn×n such that for any v = Ea,

L(v) = L(Ea) = E (Ma)

▶ Observe that for any v ∈ V ,

L(v) = λv ⇐⇒ L(Ea) = λEa

⇐⇒ E (Ma) = E (λa) ⇐⇒ Ma = λa

▶ Therefore, λ is an eigenvalue of L iff it is an eigenvalue of M
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Change of Basis formula for a Linear Transformation

▶ If F is another basis of V , then there is an invertible square
matrix H such that F = EH

▶ If v = Ea = Fb, then

v = Fb = EHb,

which implies that a = Hb and b = H−1a

▶ If L : V → V is a linear transformation, then there are
matrices M and N such that

L(Ea) = E (Ma) and L(Fb) = F (Nb) = EHNH−1a,

which implies that M = HNH−1 and N = H−1MH

▶ In other words, M and N are similar and therefore have the
same characteristic polynomial
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Characteristic Polynomial of a Linear Transformation

▶ It follows that

pM(λ) = det(M − λI ) = det(N − λI ) = pN(λ)

▶ We can therefore define the characteristic polynomial pL of a
linear transformation L : V → V to be

pL = pM ,

where pM is the characteristic polynomial of the matrix M
associated to L and a basis of V

▶ The polynomial is the same, no matter what basis of V is used
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Examples

▶ Let

Z =

[
0 0
0 0

]
,

▶ Zv = 0v for any v ∈ R2 and therefore 0 is the only eigenvalue

▶ Any nonzero vector v ∈ R2 is an eigenvector

▶ The characteristic polynomial is

pZ (x) = det(Z − λI ) = det

([
0 0
0 0

]
− λ

[
1 0
0 1

])
= −λ2
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Examples

▶ If D =

[
a 0
0 b

]
, then D

[
v1

v2

]
=

[
a 0
0 b

] [
v1

v2

]
=

[
av1

bv2

]
▶ If λ = a = b, then the only eigenvalue is λ

▶ Every v ∈ R2 is an eigenvector

▶ If a ̸= b, then the only eigenvalues are a and b
▶ The eigenvectors for the eigenvalue a are[

x
0

]
= x

[
1
0

]
, x ∈ F\{0}

▶ The eigenvectors for the eigenvalue b are[
0
x

]
= x

[
0
1

]
, x ∈ F\{0}

▶ The characteristic polynomial is

pD(x) = det(D − λI ) = λ

[
a− λ 0
0 b − λ

]
= (a− λ)(b − λ)
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Examples

▶ If A =

[
0 1
1 0

]
, then A

[
v1

v2

]
=

[
0 1
1 0

] [
v1

v2

]
=

[
v2

v1

]
▶ The only eigenvalues are 1,−1

▶ The eigenvectors for the eigenvalue 1 are[
x
x

]
, x ∈ F\{0}

▶ The eigenvectors for the eigenvalue −1 are[
x
−x

]
, x ∈ F\{0}

▶ The characteristic polynomial is

pA(x) = det

([
0 1
1 0

]
− λ

[
1 0
0 λ

])
= det

([
−λ 1
1 λ

])
= 1− λ2
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Examples

▶ If B =

[
0 −1
1 0

]
, then B

[
v1

v2

]
=

[
0 −1
1 0

] [
v1

v2

]
=

[
−v2

v1

]
▶ There are no real eigenvalues
▶ The complex eigenvalues are i ,−i
▶ The eigenvectors for the eigenvalue i are[

ix
−x

]
= x

[
i
1

]
, x ∈ F\{0}

▶ The eigenvectors for the eigenvalue −i are[
x
ix

]
= x

[
1
i

]
, x ∈ F\{0}

▶ The characteristic polynomial is

pB(x) = det(B − λI )

= det

([
−λ −1
1 −λ

])
= 1 + λ2
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Complex Versus Real Eigenvalues

▶ If an n − by − n matrix contains only real entries, it can have
anywhere from 0 to n eigenvalues

▶ A polynomial with complex coefficients

p(x) = a0 + a1x + · · · anxn,

where an ̸= 0 with complex coefficients can always be factored
into n linear factors

p(x) = an(r1 − x) · · · (rn − x)

▶ A complex matrix A always has anywhere from 1 to n
eigenvalues, where an eigenvalue might appear more than
once in the factorization of pA

▶ The multiplicity of an eigenvalue λ is the number of linear
factors equal to (λ− x) in pA
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Examples

▶ Let D =

3 0 0
0 −2 0
0 0 3


▶ The eigenvalues of D are −2, 3
▶ The characteristic polynomial of D is

pD(λ) = (x − 3)(x + 2)(x − 3) = (x − 3)2(x + 2)

▶ The eigenvalue 3 has multiplicity 2, and the eigenvalue 2 has
multiplicity 1

▶ The eigenvectors for the eigenvalue −2 are0x
0

 = x

01
0

 , x ∈ F\{0}

▶ The eigenvectors for the eigenvalue 3 arex10
x2

 = x1

10
0

+ x2

00
1

 , x ∈ F\{0}
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Examples

▶ Let M =

[
1 1
0 1

]
▶ The characteristic polynomial of M is

pM(λ) = det(M − λI ) = det

([
1− λ 1
0 1− λ

])
= (1− λ)2

▶ The only eigenvalue is 1 with multiplicity 2

▶ Since

M

[
v1

v2

]
= M =

[
1 1
0 1

] [
v1

v2

]
=

[
v1

v1 + v2

]
,

the eigenvectors of the eigenvalue 1 are[
0
x

]
= x

[
0
1

]
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Diagonal Matrices
▶ An n-by-n matrix M is diagonal if

M j
k = 0 if j ̸= k

▶ In particular, the k-th column of M is

Ck = Mek = Mk
k ek (no sum over k),

where (e1, . . . , en) is the standard basis of Rn

▶ The determinant of M is, by multilinearity,

D(C1, . . . ,Cn) = D(M1
1e1,M

2
2e2, . . . ,M

n
n en)

= D(e1, . . . , en)

= (M1
1 · · ·Mn

n )

▶ Since M − λI is also diagonal, it follows that the characteristic
polynomial of M is

pM(λ) = det(M − λI ) = (M1
1 − λ) · · · (Mn

n − λ)

▶ The diagonal elements of M are its eigenvalues
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Triangular Matrices
▶ An n-by-n matrix M is upper triangular if it is of the form

M =


M1

1 M1
2 · · · M1

n−1 M1
n

0 M2
2 · · · M2

n−1 M2
n

...
...

...
...

...

0 0 · · · Mn−1
n−1 Mn−1

n

0 0 · · · 0 Mn
n


▶ I.e., M j

k = 0 if j > k
▶ An n-by-n matrix M is lower triangular if it is of the form

M =


M1

1 0 · · · 0 0
M2

1 M2
2 · · · 0 0

...
...

...
...

...

Mn−1
1 Mn−1

2 · · · Mn−1
n−1 0

Mn
1 Mn

2 · · · Mn
n−1 Mn

n


▶ I.e., M j

k = 0 if j < k
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Columns of an Upper Triangular Matrix

▶ Let M be an upper triangular matrix and consider the matrix
T = M − λI

▶ T is itself an upper triangular matrix

▶ Choose a value of λ ∈ F such that every element on the
diagonal of T is nonzero

▶ Let (e1, . . . , en) be the standard basis of Rn

▶ Let (C1, . . . ,Cn) be the columns of T

▶ By assumption, C 1
1 ,C

2
2 , · · · ,Cn

n are all nonzero
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Columns of Upper Triangular Matrix (Part 2)

▶ Each column can therefore be written as

Ck = C k
k Ĉk ,

where

Ĉk =



Ĉ 1
k
...

Ĉ k−1
k
1
0
...
0


and Ĉ j

k =
C j
k

C k
k

, for each 1 ≤ j , k ≤ n
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Determinant of Upper Triangular Matrix (Part 1)

▶ Let (C1, . . . ,Cn) be the columns of T and recall that the
determinant of T is

det(T ) = D(C1, . . . ,Cn)

where D ∈ ΛnV ∗ satisfies D(e1, . . . , en) = 1

▶ By the multilinearity of D,

D(C1, . . . ,Cn) = D(C 1
1 Ĉ1,C

2
2 Ĉ2, . . . ,C

n
n Ĉn)

= (C 1
1C

2
2 · · ·Cn

n )D(Ĉ1, . . . , Ĉn)
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Determinant of Upper Triangular Matrix (Part 2)
▶ Since T is lower triangular, its columns are of the form

C1 = C 1
1 e1

C2 = C 1
2 e1 + C 2

2 e2

C3 = C 1
3 e1 + C 2

3 e2 + C 3
3 e3

...
...

Cn = C 1
n e1 + C 2

n e2 + C 3
n e3 + · · ·+ Cn

n en

▶ Similarly,

Ĉ1 = e1

Ĉ2 = Ĉ 1
2 e1 + e2

Ĉ3 = Ĉ 1
3 e1 + Ĉ 2

3 e2 + e3
...

...

Ĉn = Ĉ 1
n e1 + Ĉ 2

n e2 + Ĉ 3
n e3 + · · ·+ Ĉn−1

n en−1 + en
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Determinant of Upper Triangular Matrix (Part 3)

▶ Therefore,

D(Ĉ1, . . . , Ĉn)

= D(e1, Ĉ2, . . . , Ĉn)

= D(e1, Ĉ
1
2 e1 + e2, Ĉ

1
3 e1 + Ĉ 2

3 e2 + e3, . . . , Ĉ
1e1 + · · ·+ en)

= D(e1, e2, Ĉ
2
3 e2 + e3, . . . , Ĉ

2
n e2 + · · ·+ en)

= D(e1, e2, e3, . . . , Ĉ
3
n e3 + · · ·+ · · ·+ en)

...
...

= D(e1, e2, . . . , en)

= 1
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Characteristic Polynomial and Determinant of M
▶ It follows that if λ is not equal to any of C 1

1 , · · · ,Cn
n ,

pM(λ) = det(T )

= D(C1, . . . ,Cn)

= C 1
1C

2
2 · · ·Cn

nD(Ĉ1, . . . , Ĉn)

= C 1
1C

2
2 · · ·Cn

n

= (M1
1 − λI ) · · · (Mn

n − λI )

▶ If follows that the polynomial

r(λ) = pM(λ)− (M1
1 − λI ) · · · (Mn

n − λI )

has infinitely many roots
▶ This implies that r is the zero polynomial
▶ Therefore, the characteristic polynomial of an upper triangular

matrix M is

pM(λ) = (M1
1 − λI ) · · · (Mn

n − λI )

▶ In particular, det(M) = pM(0) = M1
1 · · ·Mn

n
25 / 25


