MATH-GA2120 Linear Algebra II
 Composition is Matrix Multiplication
 Determinant of a Matrix
 Determinant of a Linear Transformation

Deane Yang

Courant Institute of Mathematical Sciences New York University

January 31, 2024

Composition is Matrix Multiplication

- Consider vector spaces U, V, W and linear maps

$$
K: U \rightarrow V, L: V \rightarrow W
$$

- Let $\left(e_{1}, \ldots, e_{k}\right)$ be a basis of U
- Let $\left(f_{1}, \ldots, f_{m}\right)$ be a basis of V
- Let $\left(g_{1}, \ldots, g_{n}\right)$ be a basis of W
- There is an m-by- k matrix M such that

$$
K\left(e_{j}\right)=f_{p} M_{j}^{p}, 1 \leq j \leq k
$$

- There is an n-by- m matrix N such that

$$
L\left(f_{p}\right)=g_{a} N_{p}^{a}, 1 \leq p \leq m
$$

- There is an n-by- k matrix P such that

$$
(L \circ K)\left(e_{j}\right)=g_{a} P_{j}^{a}, 1 \leq j \leq k
$$

- On the other hand,

$$
(L \circ K)\left(e_{j}\right)=L\left(K\left(e_{j}\right)\right)=L\left(f_{p} M_{j}^{p}\right)=L\left(f_{p}\right) M_{j}^{p}=g_{a} N_{p}^{a} M_{j}^{p}
$$

- Therefore, $P_{j}^{a}=N_{p}^{a} M_{j}^{p}$.

Parallelogram in Vector Space

- Let V be a 2-dimensional vector space
- Let $P\left(v_{1}, v_{2}\right)$ be the parallelogram with sides $v_{1}, v_{2} \in V$.

$$
P\left(v_{1}, v_{2}\right)=\left\{a v_{1}+b v_{2}: 0 \leq a, b \leq 1\right\} .
$$

Parallelogram With Respect To Basis

- With respect to basis $\left(e_{1}, e_{2}\right)$

$$
v_{1}=a e_{1}+h e_{2} \text { and } v_{2}=w e_{1}
$$

- Height is h and width is w
- Assume area of $P\left(e_{1}, e_{2}\right)$ is

$$
A\left(e_{1}, e_{2}\right)=\operatorname{area}\left(P\left(e_{1}, e_{2}\right)\right)=1
$$

- Then the area of $P\left(v_{1}, v_{2}\right)$ is

$$
A\left(v_{1}, v_{2}\right)=\operatorname{area}\left(P\left(v_{1}, v_{2}\right)\right)=h w
$$

Upside Down Parallelogram With Respect To Basis

- With respect to basis $\left(e_{1}, e_{2}\right)$

$$
v_{1}=a e_{1}+h e_{2} \text { and } v_{2}=w e_{1},
$$

where h is negative

- Height is $|h|$ and width is w
- Then the area of $P\left(v_{1}, v_{2}\right)$ is

$$
A\left(v_{1}, v_{2}\right)=|h| w,
$$

whether h is positive or negative

- Formula is awkward due to absolute value

Oriented Area of Parallelogram

- Define oriented area to be

$$
A\left(v_{1}, v_{2}\right)=h w
$$

- The oriented area of $P\left(v_{1}, v_{2}\right)$ is positive if v_{2} lies counterclockwise of v_{1}
- The oriented area of $P\left(v_{1}, v_{2}\right)$ is negative if v_{2} lies counterclockwise of v_{1}
- Oriented area, as a function of $v_{1}, v_{2} \in V$ has nice properties

Area of Two Parallelograms with Parallel Bases

- If v_{1} and v_{2} both point upward relative to w, then

$$
A\left(v_{1}+v_{2}, w\right)=A\left(v_{1}, w\right)+A\left(v_{2}, w\right)
$$

Area of Two Parallelograms with Parallel Bases

- If v_{1} points upward and v_{2} points downward relative to w, then $A\left(v_{2}, w\right)<0$ and

$$
A\left(v_{1}, w\right)=A\left(v_{1}+v_{2}, w\right)-A\left(v_{2}, w\right)
$$

and therefore

$$
A\left(v_{1}+v_{2}, w\right)=A\left(v_{1}, w\right)+A\left(v_{2}, w\right)
$$

Area of rescaled parallelogram

$$
A(c v, w)=c A(v, w)
$$

Area of reflected parallelogram

$$
A(-v, w)=A(v, w)
$$

Area Versus Oriented Area

- Definitions of area and oriented area require a basis $\left(e_{1}, e_{2}\right)$, where we assume that

$$
A\left(e_{1}, e_{2}\right)=1
$$

- In particular, e_{2} must lie counterclockwise of e_{1}
- The area function $|A(v, w)|$ is awkward to use
- Instead, define $A(v, w)$ to be the oriented area of $P(v, w)$
- Define the oriented area of $P(v, w)$ to be

$$
A(v, w)= \begin{cases}\text { area of } P(v, w) & \text { if }(v, w) \text { is positively oriented } \\ - \text { area of } P(v, w) & \text { if }(v, w) \text { is negatively oriented } \\ 0 & \text { if } v \text { and } w \text { are linearly dependent }\end{cases}
$$

Oriented Area of Parallelogram

- If w is held fixed, $A(v, w)$ is a linear function of v

$$
\begin{aligned}
A\left(v_{1}+v_{2}, w\right) & =A\left(v_{1}, w\right)+A\left(v_{2}, w\right) \\
A(c v, w) & =c A(v, w)
\end{aligned}
$$

- If v is held fixed, $A(v, w)$ is a linear function of w

$$
\begin{aligned}
A\left(v, w_{1}+w_{2}\right) & =A\left(v, w_{1}\right)+A\left(v, w_{2}\right) \\
A(v, c w) & =c A(v, w)
\end{aligned}
$$

- Such a function of two vectors is called bilinear
- For any $v \in V$, the parallelogram $A(v, v)$ has height 0 and therefore

$$
\begin{equation*}
A(v, v)=0 \tag{1}
\end{equation*}
$$

- Fact: Any bilinear function $A: V \times V \rightarrow \mathbb{F}$ that satisfies (1) is antisymmmetric
- This means that for any $v, w \in V$,

$$
A(w, v)=-A(v, w)
$$

2-Dimensional Antisymmetric Bilinear Function

- Let $\left[e_{1} e_{2}\right]$ be a basis of V
- Let

$$
A: V \times V \rightarrow \mathbb{F}
$$

be an antisymmetric bilinear function such that

$$
A\left(e_{1}, e_{2}\right)=1
$$

- If $v=a e_{1}+b e_{2}$ and $w=c e_{1}+d e_{2}$, then

$$
\begin{aligned}
A(v, w) & =A\left(a e_{1}+b e_{2}, c e_{1}+d e_{2}\right) \\
& =A\left(a e_{1}, c e_{1}\right)+A\left(b e_{2}, c e_{1}\right)+A\left(a e_{1}, d e_{2}\right)+A\left(b e_{2}, d e_{2}\right) \\
& =b c A\left(e_{2}, e_{1}\right)+a d A\left(e_{,} e_{2}\right) \\
& =a d-b c
\end{aligned}
$$

2-Dimensional Antisymmetric Bilinear Function

- This can be written as follows

$$
\begin{aligned}
& A\left(\left(\left[\begin{array}{ll}
v & w
\end{array}\right]\right)=A\left(\left[\begin{array}{ll}
e_{1} & e_{2}
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)\right. \\
& =A\left(\left[\begin{array}{ll}
a e_{1}+b e_{2} & \left.c e_{1}+d e_{2}\right]
\end{array}\right)\right. \\
& =A\left(e_{1}, e_{2}\right)(a d-b c) \\
& =a d-b c
\end{aligned}
$$

- The determinant of a square 2-by-2 matrix is defined to be

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c
$$

Determinant of a 2-by-2 Matrix is Equal to Oriented Area

- Let $\left(e_{1}, e_{2}\right)$ be a basis where the oriented area of $P\left(e_{1}, e_{2}\right)$ is 1 ,

$$
A\left(e_{1}, e_{2}\right)=1
$$

- The oriented area of the parallelogram $P(v, w)$, where

$$
\left[\begin{array}{ll}
v & w
\end{array}\right]=\left[\begin{array}{ll}
e_{1} & e_{2}
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right],
$$

is

$$
A(v, w)=\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Parallelopiped spanned by 3 Vectors in 3-space

- Three linearly independent vectors $\vec{a}, \vec{b}, \vec{c}$ span a parallelopiped $P(\vec{a}, \vec{b}, \vec{c})$

$$
P(\vec{a}, \vec{b}, \vec{c})=\{s \vec{a}+t \vec{b}+u \vec{c}: 0 \leq s, t, u \leq 1\}
$$

Volume of a Parallelopiped

- Fix a basis $\left(e_{1}, e_{2}, e_{3}\right)$ of V
- Assume the volume of $P\left(e_{1}, e_{2}, e_{2}\right)$ is 1
- Assume \vec{a}, \vec{b} lies in the subspace spanned by $\left(e_{1}, e_{2}\right)$
- Therefore, $\vec{c}=h e_{3}$
- If $h>0$, then volume of parallelopiped is height times the area of the base:

$$
\operatorname{vol}(P(\vec{a}, \vec{b}, \vec{c}))=h|A(\vec{a}, \vec{b})|
$$

- Again, we want to avoid the absolute value

Oriented Volume of a Parallelopiped

- Define the oriented volume of $P \vec{a}, \vec{b}, \vec{c})$ to be

$$
V(\vec{a}, \vec{b}, \vec{c})
$$

where

- $V\left(e_{1}, e_{2}, e_{3}\right)=1$
- $|V(\vec{a}, \vec{b}, \vec{c})|$ is the volume of $P(\vec{a}, \vec{b}, \vec{c})$
- V is an antisymmetric multilinear function

Oriented Volume is the Determinant of a 3-by-3 Matrix

- Suppose $v_{1}, v_{2}, v_{3} \in V$, where, using Einstein notation,

$$
\begin{aligned}
{\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right] } & =\left[\begin{array}{lll}
e_{k} A_{1}^{k} & e_{k} A_{2}^{k} & e_{k} A_{3}^{k}
\end{array}\right] \\
& =\left[\begin{array}{lll}
e_{1} & e_{2} & e_{3}
\end{array}\right]\left[\begin{array}{lll}
A_{1}^{1} & A_{2}^{1} & A_{3}^{1} \\
A_{1}^{2} & A_{2}^{2} & A_{3}^{2} \\
A_{1}^{3} & A_{2}^{3} & A_{3}^{3}
\end{array}\right] \\
& =E A
\end{aligned}
$$

- The determinant of A is defined by the equation

$$
V\left(v_{1}, v_{2}, v_{3}\right)=E \operatorname{det} A
$$

- In particular, since $V\left(e_{1}, e_{2}, e_{2}\right)=1$,

$$
\operatorname{det} I=1
$$

Permutations

- A permutation is a bijective map $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$
- Let S_{n} be the set of all permutations of order n
- A transposition is a permutation τ that switches two elements and leaves the others unchanged.
- Example: $\tau:\{1,2,3,4\} \rightarrow\{1,2,3,4\}$, where

$$
\tau(1)=1, \tau(2)=4, \tau(3)=3, \tau(4)=2
$$

- Every permutation is a composition of transpositions
- Example: The permutation $\sigma(1)=2, \sigma(2)=3, \sigma(3)=1$ can be written as

$$
\begin{gathered}
\sigma=\tau_{1} \circ \tau_{2}, \text { where } \\
\tau_{1}(1)=2, \tau_{2}(2)=1, \tau_{2}(3)=3 \\
\tau_{2}(1)=1, \tau_{1}(2)=3, \tau_{1}(3)=2
\end{gathered}
$$

Parity or Sign of a Permutation

- Given any permutation $\sigma \in S_{n}$, its parity or sign, which we will write as $\epsilon(\sigma)$, is defined to be
- 1 if σ is the composition of an even number of transpositions
- -1 if σ is the composition of an odd number of transpositions
- Easy consequences
- If $\sigma \in S_{n}$ is a transposition, then $\epsilon(\sigma)=-1$
- For any $\sigma, \tau \in S_{n}, \epsilon(\sigma \circ \tau)=\epsilon(\sigma) \epsilon(\tau)$
- If σ is the identity map, then $\epsilon(\sigma)=1$
- For any $\sigma \in S_{n}, \epsilon\left(\sigma^{-1}\right)=\epsilon(\sigma)$ because

$$
\sigma=\tau_{1} \circ \cdots \circ \tau_{N} \Longrightarrow \sigma^{-1}=\tau_{N} \circ \cdots \circ \tau_{1}
$$

Existence of Sign Function

- We have stated the properties that the sign function

$$
\epsilon: S_{n} \rightarrow\{-1,1\}
$$

- Claim: There exists a unique function satisfying these properties
- This is the consequence of the following:
- A permutation is never both the composition of an even number of transpositions and the composition of an odd number of transpositions
- There are straightforward elementary proofs of this
- There are also many sophisticated proofs

Automorphisms of $\{1, \ldots, n\}$

- Let $\operatorname{End}(n)$ denote the space of all maps

$$
\phi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}
$$

- Observe that $S_{n} \subset \operatorname{End}(n)$
- We can extend the function $\epsilon: S_{n} \rightarrow\{-1,1\}$ to a function

$$
\epsilon: \operatorname{End}(n) \rightarrow\{-1,0,1\}
$$

where, if $\phi \in S_{n}$, then $\epsilon(\phi)$ is as defined before and

$$
\epsilon(\phi)=0 \text { if } \phi \notin S_{n}
$$

Alternating Multilinear Function on Permutation of Basis

- Suppose $T: V \times \cdots V \rightarrow \mathbb{F}$ is an alternating multilinear function with n inputs on an n-dimensional vector space
- Let $\left(e_{1}, \ldots, e_{n}\right)$ be a basis of V
- If $\phi \in S_{n}$ is a transposition, then

$$
T\left(e_{\phi(1)}, \ldots, e_{\phi(n)}\right)=-T\left(e_{1}, \ldots, e_{n}\right)
$$

- If $\phi_{1}, \phi_{2} \in S_{n}$, then

$$
\begin{aligned}
T\left(e_{\phi_{2} \circ \phi_{1}(1)}, \ldots,\right. & \left.e_{\phi_{2} \circ \phi_{1}(n)}\right) \\
& =T\left(e_{\phi_{2}(1)}, \ldots, e_{\phi_{2}(n)}\right) T\left(e_{\phi_{1}(1)}, \ldots, e_{\phi_{1}(n)}\right)
\end{aligned}
$$

- Therefore, for any $\phi \in S_{n}$,

$$
T\left(e_{\phi(1)}, \ldots, e_{\phi(n)}\right)=\epsilon(\phi) T\left(e_{1}, \ldots, e_{n}\right)=\epsilon(\phi) a
$$

- If $\phi \in \operatorname{End}(n) \backslash S_{n}$, then it is not injective and therefore

$$
T\left(e_{\phi(1)}, \ldots, e_{\phi(n)}\right)=0=\epsilon(\phi) T\left(e_{1}, \ldots, e_{n}\right)
$$

Alternating Multilinear Function With Respect to Basis

- If $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ is a basis of V and $v_{k}=e_{j} a_{k}^{j}, 1 \leq k \leq n$,

$$
\begin{aligned}
T\left(v_{1}, \ldots, v_{n}\right) & =T\left(e_{j_{1}} a_{1}^{j_{1}}, \ldots, e_{j_{n}} a_{n}^{j_{n}}\right) \\
& =\sum_{j_{1}=1}^{n} \cdots \sum_{j_{n}=1}^{n} T\left(e_{j_{1}}, \cdots, e_{j_{n}}\right) a_{1}^{j_{1}} \cdots a_{n}^{j_{n}} \\
& =\sum_{\phi \in \operatorname{End}(n)} T\left(e_{\phi(1)}, \cdots, e_{\phi(n)}\right) a_{1}^{\phi(1)} \cdots a_{n}^{\phi(n)} \\
& =\sum_{\phi \in \operatorname{End}(n)} \epsilon(\phi) T\left(e_{1}, \cdots, e_{n}\right) a_{1}^{\phi(1)} \cdots a_{n}^{\phi(n)} \\
& =T\left(e_{1}, \ldots, e_{n}\right) \sum_{\phi \in \operatorname{End}(n)} \epsilon(\phi) a_{\phi(1)}^{1} \cdots a_{\phi(n)}^{n} \\
& =T\left(e_{1}, \ldots, e_{n}\right) \sum_{\phi \in S_{n}} \epsilon(\phi) a_{\phi(1)}^{1} \cdots a_{\phi(n)}^{n}
\end{aligned}
$$

Space of Alternating Multilinear Functions

- Let V be an n-dimensional vector space
- Let $\Lambda^{n} V^{*}$ denote the space of antisymmetric alternating functions with n inputs
- If $\left(e_{1}, \ldots, e_{n}\right)$ is a basis, then $T \in \Lambda^{n} V^{*}$, then T is uniquely determined by the value of

$$
T\left(e_{1}, \ldots, e_{n}\right)
$$

- If $T \in \Lambda^{n} V^{*}$ is nonzero, then for any $S \in \Lambda^{n} V^{*}$, there exists a constant $c \in \mathbb{F}$ such that

$$
S=c T
$$

- Specifically,

$$
S=\left(\frac{S\left(e_{1}, \ldots, e_{n}\right)}{T\left(e_{1}, \ldots, e_{n}\right)}\right) T
$$

- $\Lambda^{n} V^{*}$ is a 1-dimensional vector space

Determinant of an n-by- n Matrix

- Let $\left(e_{1}, \ldots, e_{n}\right)$ be the standard basis of \mathbb{F}^{n}
- There is a unique antisymmetric multilinear function

$$
D: \mathbb{F}^{n} \times \cdots \times \mathbb{F}^{n} \rightarrow \mathbb{F}
$$

with n inputs such that

$$
D\left(e_{1}, \ldots, e_{n}\right)=1
$$

- The formula for D is

$$
D\left(v_{1}, \ldots, v_{n}\right)=\sum_{\phi \in \operatorname{End}(n)} b_{\phi(1)}^{1} \cdots b_{\phi(n)}^{n}=\sum_{\sigma \in S_{n}} b_{\sigma(1)}^{1} \cdots b_{\sigma(n)}^{n}
$$

where each $v_{k}=\left(b_{k}^{1}, \ldots, b_{k}^{n}\right)=e_{j} b_{k}^{j}$

- Let M be an n-by- n matrix with columns C_{1}, \ldots, C_{n}
- The determinant of M is defined to be

$$
\operatorname{det} M=D\left(C_{1}, \ldots, C_{n}\right)
$$

Determinant of an n-by- n Matrix

- The determinant function det : $M_{n \times n} \rightarrow \mathbb{F}$ is the unique function such that
- $\operatorname{det} M$ is an alternating multilinear function of the columns of M
$\rightarrow \operatorname{det} I=1$
- If

$$
M=\left[\begin{array}{ccc}
M_{1}^{1} & \cdots & M_{n}^{1} \\
\vdots & & \vdots \\
M_{1}^{n} & \cdots & M_{n}^{n}
\end{array}\right]
$$

then

$$
\operatorname{det} M=\sum_{\phi \in \operatorname{End}(n)} \epsilon(\phi) M_{\phi(1)}^{1} \cdots M_{\phi(n)}^{n}=\sum_{\sigma \in S_{n}} \epsilon(\sigma) M_{\sigma(1)}^{1} \cdots M_{\sigma(n)}^{n}
$$

- This formula can be useful in proofs
- To calculate the determinant of a specific matrix M, it is usually easier to use the properties of an alternating multilinear function

Multiplicative Property of the Determinant

A fundamental property of the determinant is that if A and B are n-by- n matrices, then

$$
\operatorname{det} A B=(\operatorname{det} A)(\operatorname{det} B)
$$

Proof of Multiplicative Property

- Given a matrix A, define the function $D_{A}: \mathbb{F}^{n} \times \cdots \times \mathbb{F}^{n} \rightarrow \mathbb{F}$ to be

$$
D_{A}\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det} A M
$$

where $\left(v_{1}, \ldots, v_{n}\right)$ are the columns of M

- If C_{1}, \ldots, C_{N} are the columns of B, then the k-th column of $A B$ is $A C_{k}$
- Therefore,

$$
D_{A}\left(C_{1}, \ldots, C_{n}\right)=\operatorname{det} A B=D\left(A C_{1}, \ldots, A C_{n}\right)
$$

- From this it is easy to see that D_{A} is an antisymmetric multilinear function of the columns of B
- Therefore,

$$
\begin{aligned}
D_{A}\left(C_{1}, \ldots, C_{n}\right) & \left.=D_{A}\left(e_{1}, \ldots, e_{n}\right)\right) D\left(C_{1}, \ldots, C_{n}\right) \\
& =(\operatorname{det}(A I))(D(B))=(\operatorname{det} A)(\operatorname{det} B)
\end{aligned}
$$

Transpose of a Matrix

- Given a matrix $M \in \mathrm{gl}(n, m, \mathbb{F})$, its transpose is the matrix $M^{T} \in \mathrm{gl}(m, n, \mathbb{F})$ that switches the rows and columns
- In other words,

$$
\left(M^{T}\right)_{k}^{j}=M_{j}^{k}
$$

- Or

$$
\left[\begin{array}{ccc}
M_{1}^{1} & \cdots & M_{m}^{1} \\
\vdots & & \vdots \\
M_{1}^{n} & \cdots & M_{m}^{n}
\end{array}\right]^{T}=\left[\begin{array}{ccc}
M_{1}^{1} & \cdots & M_{1}^{n} \\
\vdots & & \vdots \\
M_{m}^{1} & \cdots & M_{m}^{n}
\end{array}\right]
$$

- If $M \in \mathcal{M}_{n \times m}$, then $M^{T} \in \operatorname{gl}(m, n, \mathbb{F})$
- For any $A \in \mathcal{M}_{k \times m}$ and $B \in \operatorname{gl}(m, n, \mathbb{F})$, then $A B \in \mathcal{M}_{k \times n}$ and

$$
(A B)^{T}=B^{T} A^{T} \in \mathcal{M}_{n \times k}
$$

Determinant of Matrix Equals Determinant of Its Tranpose

- Given any square matrix M,

$$
\operatorname{det} M^{T}=\operatorname{det} M
$$

- Proof 1: Use the formula for the determinant

$$
\begin{aligned}
\operatorname{det} M & =\sum_{\sigma \in S_{n}} \epsilon(\sigma) M_{1}^{\sigma(1)} \cdots M_{n}^{\sigma(n)} \\
& =\sum_{\sigma \in S_{n}} \epsilon(\sigma) M_{\sigma^{-1}(1)}^{1} \cdots M_{\sigma^{-1}(n)}^{n} \\
& =\sum_{\sigma \in S_{n}} \epsilon(\sigma) M_{\sigma(1)}^{1} \cdots M_{\sigma(n)}^{n} \\
& =\operatorname{det} M^{T}
\end{aligned}
$$

- Proof 2: Use the following facts:
- Any matrix M can be written as $M=P L U$, where
- P is a permutation matrix and $\operatorname{det} P=\operatorname{det} P^{T}$
- L is a lower triangular matrix
- U is an upper triangular matrix
- Transpose of a triangular matrix is a triangular matrix with same determinant

$\operatorname{det} M \neq 0 \Longleftrightarrow M$ is Invertible

- If the columns of M are linearly dependent, then one column can be written as a linear combination of the others, e.g.,

$$
C_{n}=a^{1} C_{1}+\cdots+a^{n-1} C_{n-1}
$$

- It follows that

$$
\begin{aligned}
\operatorname{det} M & =D\left(C_{1}, \ldots, C_{n}\right) \\
& =D\left(C_{1}, \ldots, C_{n-1}, a^{1} C_{1}+\cdots+a^{n-1} C_{n-1}\right. \\
& =a^{k} D\left(C_{1}, \ldots, C_{n-1}, C_{k}\right) \\
& =0
\end{aligned}
$$

- Recall that M is invertible
- if and only if $\operatorname{dim} \operatorname{ker} M=0$
- if and only if the columns of M are linearly independent
- Conclusion:
- M is invertible if and only if $\operatorname{det} M \neq 0$
- Equivalently, M is singular if and only if $\operatorname{det} M=0$

Determinant of a Linear Transformation

- Consider a linear transformation $L: V \rightarrow V$
- Given a basis $E=\left(e_{1}, \ldots, e_{n}\right)$ of V, let M be the matrix such that $L(E)=E M$
- Given another basis F, let N be the matrix such that $L(F)=F N$
- Observe that if $F=E T$, where T is an invertible matrix,

$$
L(F)=L(E T)=L(E) T=E M T=E T\left(T^{-1} M T\right)=F\left(T^{-1} M T\right)
$$

- It follows that $N=T^{-1} M T$
- Define the determinant of L to be the following: If E is a basis and $L(E)=E M$, then

$$
\operatorname{det}(L)=\operatorname{det}(M)
$$

- By the calculation above, this definition is independent of the basis used

Abstract Definition of $\operatorname{det}(L)$

- Let $L: V \rightarrow V$ be a linear map
- Let $D \in \Lambda^{n} V^{*}$
- Consider the function

$$
\begin{aligned}
D_{L}: V \times & \cdots \times V \rightarrow \mathbb{F} \\
& \left(v_{1}, \ldots, v_{n}\right) \mapsto D\left(L\left(v_{1}\right), \ldots, L\left(v_{n}\right)\right)
\end{aligned}
$$

- D_{L} is an antisymmetric multilinear function
- Therefore, there exists $c \in \mathbb{F}$ such that $D_{I}=c D$
- Define $\operatorname{det}(L)=c$

