MATH-GA2120 Linear Algebra II
 Review of Abstract Linear Algebra Abstract Notation
 Linear Maps as Matrices
 Normal Form of a Linear Map Rank-Nullity Theorem

Deane Yang

Courant Institute of Mathematical Sciences
New York University

January 242024

Course assignments

- All homework assignments and exams will be handled using Gradescope
- Homework
- Provided as Overleaf project and Gradescope assignment
- Solutions must be typed up using LaTeX
- Solutions uploaded as PDF to Gradescope
- Final

Grading

- Course grade
- Homework: 30\%
- Final: 70\%
- Tweaks
- Homework and Exams
- Partial credit for correct answer
- Full credit if correct answer is correctly justified
- Incorrect logic and calculations wil be heavily penalized

Abstract Vector Space

- Let \mathbb{F} be either the reals (denoted \mathbb{R}) or the complex numbers (denoted \mathbb{C})
- A vector space over \mathbb{F} is a set V with the following:
- A special element called the zero vector, which we will write as $\overrightarrow{0}, 0_{V}$, or simply 0
- An operation called vector addition:

$$
\begin{aligned}
V \times V & \rightarrow V \\
\left(v_{1}, v_{2}\right) & \mapsto v_{1}+v_{2}
\end{aligned}
$$

- An operation called scalar multiplication:

$$
\begin{aligned}
V \times \mathbb{F} & \rightarrow V \\
(v, r) & \mapsto r v=v r
\end{aligned}
$$

- The zero vector, vector addition, and scalar multiplication must satisfy the same fundamental properties that are listed above

Properties of Vector Addition

- Notation

$$
\begin{aligned}
& V \times V \rightarrow V \\
& \left(v_{1}, v_{2}\right) \mapsto v_{1}+v_{2}
\end{aligned}
$$

- Associativity

$$
\left(v_{1}+v_{2}\right)+v_{3}=v_{1}+\left(v_{2}+v_{2}\right)
$$

- Commutativity

$$
v_{1}+v_{2}=v_{2}+v_{1}
$$

- Identity element:

$$
v+\overrightarrow{0}=v
$$

- Inverse element: For each $v \in V$, there exists an element, written as $-v$, such that

$$
v+(-v)=\overrightarrow{0}
$$

Scalar Multiplication

- Properties
- Notation

$$
\begin{aligned}
\mathbb{F} \times V & \rightarrow V \\
(f, v) & \mapsto f v=v f
\end{aligned}
$$

- Associativity

$$
\left(f_{1} f_{2}\right) v=f_{1}\left(f_{2} v\right)
$$

- Distributivity

$$
\begin{aligned}
\left(f_{1}+f_{2}\right) v & =f_{1} v+f_{2} v \\
f\left(v_{1}+v_{2}\right) & =f v_{1}+f v_{2}
\end{aligned}
$$

- Identity element

$$
1 v=v
$$

- Consequences

$$
\begin{aligned}
\overrightarrow{0} v & =v \\
(-1) v & =v
\end{aligned}
$$

Mathematical Grammar

- Invalid expressions
- $a+b$, where a is a scalar and b is a vector
- $a b$, where a, b are both vectors
- When you write a formula or do a calculation,
- Make sure you are adding or multiplying correctly
- This is a good way to catch your mistakes
- Valid input and output of a function or map
- Definition of a function must include definitions of
- Domain (Set of possible inputs)
- Codomain (Set of possible outputs)
- If $f: D \rightarrow C$ is a map, then if you write

$$
f(\bowtie)=\square,
$$

check that $\bowtie \in D$ and $\square \in C$

- Sanity checks like this will catch 90% of your mistakes

Linear Combination of Vectors

- Given a finite set of vectors $v_{1}, \ldots, v_{m} \in V$ and scalars f^{1}, \ldots, f^{m}, the vector

$$
f^{1} v_{1}+\cdots+f^{m} v_{m}
$$

is called a linear combination of v_{1}, \ldots, v_{m}

- Given a subset $S \subset V$, not necessarily finite, the span of S is the set of all possible linear combinations of vectors in S
$[S]=\left\{f^{1} v_{1}+\cdots+f^{m} v_{m}: \forall f^{1}, \ldots, f^{m} \in \mathbb{F}\right.$ and $\left.v_{1}, \ldots, v_{m} \in S\right\}$
- A vector space V is called finite dimensional if there is a finite set S of vectors such that

$$
[S]=V
$$

Such a set S is called by some a spanning system, generating system, or complete system

Basis of a Vector Space

- A set $\left\{v_{1}, \ldots, v_{k}\right\} \subset V$ is linearly independent if

$$
\begin{equation*}
f^{1} v_{1}+\cdots f^{m} v_{m}=\Theta \quad \Longrightarrow \quad f^{1}=\cdots=f^{m}=\overrightarrow{0} \tag{1}
\end{equation*}
$$

- A finite set $S=\left(v_{1}, \ldots, v_{m}\right) \subset V$ is called a basis of V if it is linearly independent and

$$
[S]=V
$$

- For such a basis, if $v \in V$, then there exist a unique set of scalar coefficients $\left(a^{1}, \ldots, a^{m}\right)$ such that

$$
v=a^{k} v_{k}
$$

- In other words, the map

$$
\begin{aligned}
\mathbb{F}^{m} & \rightarrow V \\
\left\langle f^{1}, \ldots, f^{m}\right\rangle & \mapsto f^{1} v_{1}+\cdots+f^{m} v_{m}
\end{aligned}
$$

is bijective

Examples of Bases

- $\left\{v_{1}, v_{2}\right\}$ is a basis
- $\left\{w_{1}, w_{2}\right\}$ is a basis
- $\left\{w_{1}, w_{3}\right\}$ is a basis
- $\left\{w_{2}, w_{3}\right\}$ is NOT a basis

Every Finite Dimensional Vector Space Has a Basis

- Assume that T is a finite dimensional vector space
- By the definition of a finite-dimensional vector space, there is a finite set $S=\left\{s_{1}, \ldots, s_{p}\right\}$ that spans T
- If (1) holds, then S is a basis
- If (1) does not hold, then there exists $f^{1}, \ldots, f^{p} \in \mathbb{F}$, not all zero, such that

$$
f^{1} s_{1}+\cdots f^{p} s_{p}=\overrightarrow{0}
$$

- Suppose $f^{p} \neq 0$
- It follows that

$$
s_{p}=\frac{f^{1}}{f^{p}} s_{1}+\cdots+\frac{f^{p-1}}{f^{p}} s_{p-1}=\overrightarrow{0}
$$

- It follows that $S^{\prime}=\left\{s_{1}, \ldots, s_{p-1}\right\}$ spans T
- If S^{\prime} is not a basis, then repeat previous steps
- After a finite number of steps, you get either a basis or $S=\{\overrightarrow{0}\}$

Dimension of a Vector Space

- Every basis of a finite dimensional vector space V has the same number of elements
- If $\left(v_{1}, \ldots, v_{m}\right)$ and $\left(w_{1}, \ldots, w_{n}\right)$ are bases of V, then $m=n$
- We define the dimension of a finite dimensional vector space V to be the number of elements in a basis
- The dimension of V is denoted $\operatorname{dim} V$

Matrix Product of a Row Matrix and a Column Matrix

- A row matrix looks like this:

$$
R=\left(r_{1}, \ldots, r_{m}\right)=\left[\begin{array}{lll}
r_{1} & \cdots & r_{m}
\end{array}\right]
$$

- A column matrix looks like this:

$$
C=\left\langle c^{1}, \ldots, c^{m}\right\rangle=\left[\begin{array}{c}
c^{1} \\
\vdots \\
c^{m}
\end{array}\right]
$$

- The matrix product of R and C looks like this

$$
R C=\left[\begin{array}{lll}
r_{1} & \cdots & r_{m}
\end{array}\right]\left[\begin{array}{c}
c^{1} \\
\vdots \\
c^{m}
\end{array}\right]=r_{1} c^{1}+\cdots+r_{m} c^{m}
$$

- Normally, $r_{1}, \ldots, r_{m}, c^{1}, \ldots, c^{m}$ are scalars, but the notation can also be used, as long as you can multiply each r_{k} by each c^{k}

Generalized Matrix Products

- This notation works if

1. Each r_{k} is a scalar

- Each c^{k} is a scalar
- And therefore $R C$ is a scalar

2. Each r_{j} is a scalar

- Each c^{k} is a vector
- And therefore $R C$ is a vector

3. Each r_{j} is a vector

- Each c^{k} is a scalar
- And therefore $R C$ is a vector
- The notation is invalid if
- Each r_{j} is a vector
- Each c^{k} is a vector
- Order matters: $C R \neq R C$!
- We will use only items 1 and 3 above

Abstract Notation

- A basis $\left(e_{1}, \ldots, e_{m}\right)$ of a vector space V will always be written as a row matrix of vectors,

$$
E=\left[\begin{array}{lll}
e_{1} & \cdots & e_{m}
\end{array}\right]
$$

- Any vector $v=e_{1} a^{1}+\cdots+e_{m} a^{m} \in V$ can be written as

$$
v=e_{1} a^{1}+\cdots+e_{m} a^{m}=\left[\begin{array}{lll}
e_{1} & \cdots & e_{m}
\end{array}\right]\left[\begin{array}{c}
a^{1} \\
\vdots \\
a^{m}
\end{array}\right]=E a
$$

Example of Change of Basis

- Let E be the standard basis of \mathbb{R}^{3} and

$$
F=\left[\begin{array}{lll}
f_{1} & f_{2} & f_{3}
\end{array}\right]=\left[\begin{array}{c|c|c}
1 & 0 & 0 \\
-1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

- Given a vector $v=(1,2,3)$, there are coefficients b^{1}, b^{2}, b^{3} such that

$$
\begin{aligned}
(1,2,3) & =b^{1}(1,-1,1)+b^{2}(0,1,1)+b^{3}(0,0,1) \\
& =\left(b^{1},-b^{1}+b^{2}, b^{1}+b^{3}+b^{3}\right)
\end{aligned}
$$

or, equivalently,

$$
\begin{aligned}
b^{1} & =1 \\
-b^{1}+b^{2} & =2 \\
b^{1}+b^{2}+b^{3} & =3
\end{aligned}
$$

- Unique solution is $\left(b^{1}, b^{2}, b^{3}\right)=(1,3,-1)$

Change of Basis

- Consider two different bases of an n-dimensional vector space V,

$$
E=\left[\begin{array}{lll}
e_{1} & \cdots & e_{n}
\end{array}\right] \text { and } F\left[\begin{array}{lll}
f_{1} & \cdots & f_{n}
\end{array}\right]
$$

- Since F is a basis, we can write each vector in F as a linear combination of the vectors in E

$$
\begin{aligned}
F & =\left[\begin{array}{lll}
f_{1} & \cdots & f_{n}
\end{array}\right] \\
& =\left[\begin{array}{lll}
e_{1} M_{1}^{1}+\cdots+e_{n} M_{1}^{n} & \cdots & e_{1} M_{n}^{1}+\cdots+e_{n} M_{n}^{n}
\end{array}\right] \\
& =\left[\begin{array}{lll}
e_{1} & \cdots & e_{n}
\end{array}\right]\left[\begin{array}{ccc}
M_{1}^{1} & \cdots & M_{n}^{1} \\
\vdots & & \vdots \\
M_{1}^{n} & \cdots & M_{n}^{n}
\end{array}\right]
\end{aligned}
$$

$=E M$

Change of Coefficients

- Any vector v can be written as a linear combination of the vectors in E or as a linear combination of the vectors in F

$$
\begin{gathered}
v=e_{1} a^{1}+\cdots+e_{n} a^{n}=\left[\begin{array}{lll}
e_{1} & \cdots & e_{n}
\end{array}\right]\left[\begin{array}{c}
a^{1} \\
\vdots \\
a^{n}
\end{array}\right]=E a \\
\text { or } v=f_{1} b^{1}+\cdots+f_{n} b^{n}=\left[\begin{array}{lll}
f_{1} & \cdots & f_{n}
\end{array}\right]\left[\begin{array}{c}
b^{1} \\
\vdots \\
b^{n}
\end{array}\right]=F b
\end{gathered}
$$

- If $F=E M$, then

$$
v=F b=E(M b) \rightsquigarrow a=M b \text { and } b=M^{-1} a
$$

Change of Basis Formula

- If E and F are bases of V such that

$$
F=E M
$$

then given any vector $v=E a$,

$$
v=F b, \text { where } b=M^{-1} a
$$

- The matrix that transforms old coefficients into new coefficients is the inverse of the matrix that transforms the old basis into the new basis
- This works only if you write a basis as a row matrix of vectors and the coefficients as a column matrix of scalars

Linear Functions

- If V is a vector space, then a function

$$
\ell: V \rightarrow \mathbb{F}
$$

is linear, if for any $v, v_{1}, v_{2} \in V$ and $s \in \mathbb{F}$,

$$
\begin{aligned}
& \forall v_{1}, v_{2} \in V, \ell\left(v_{1}+v_{2}\right)=\ell\left(v_{1}\right)+\ell\left(v_{2}\right) \\
& \forall s \in \mathbb{F}, v \in V, \ell(v s)=\ell(v) s
\end{aligned}
$$

- Easy to check that $\ell\left(0_{V}\right)=0$

Linear Maps

- If V and W are vector spaces, then

$$
L: V \rightarrow W
$$

is a linear map or linear transformation, if for any
$v, v_{1}, v_{2} \in V$ and $s \in \mathbb{F}$,

$$
\begin{aligned}
L\left(v_{1}+v_{2}\right) & =L\left(v_{1}\right)+L\left(v_{2}\right) \\
L(s v) & =s L(v)
\end{aligned}
$$

- Easy to check that $L\left(0_{V}\right)=0_{W}$
- If $K: U \rightarrow V$ and $L: V \rightarrow W$ are linear maps, then so is

$$
L \circ K: U \rightarrow W
$$

- If $L: V \rightarrow W$ is bijective, it is called a linear isomorphism
- If $L: V \rightarrow W$ is a linear isomorphism, then so is

$$
L^{-1}: W \rightarrow V
$$

n-Dimensional Vector Spaces are Isomorphic

- Let $\operatorname{dim} V=\operatorname{dim} W=m$
- Let $E=\left(e_{1}, \ldots, e_{m}\right)$ be a basis of V
- Let $F=\left(f_{1}, \ldots, f_{m}\right)$ be a basis of W
- There is a linear isomorphism

$$
\begin{aligned}
L_{E, F}: V & \rightarrow W \\
e_{1} a^{1}+\cdots+e_{m} a^{m} & \mapsto f_{1} a^{1}+\cdots+f_{m} a^{m}
\end{aligned}
$$

- Given any basis $\left(e_{1}, \ldots, e_{m}\right)$ of V, there is a linear isomorphism

$$
\begin{aligned}
L_{V}: \mathbb{R}^{m} & \rightarrow V \\
\left(a^{1}, \ldots, a^{m}\right) & \mapsto e_{1} a^{1}+\cdots+e_{m} a^{m}
\end{aligned}
$$

Vector Space of Linear Maps

- Given vector spaces V and W, let

$$
\mathcal{L}(V, W)=\{L: V \rightarrow W: L \text { is linear }\}
$$

- $\mathcal{L}(V, W)$ is itself a vector space, because
- If $A, B \in \mathcal{L}(V, W)$ and $s \in \mathbb{F}$, then

$$
A+B, s A \in \mathcal{L}(V, W)
$$

- Let $\mathrm{gl}(n, m, \mathbb{F})$ denote the vector space of n-by- m matrices with components in \mathbb{F}
- $\operatorname{dimgl}(n, m, \mathbb{F})=n m$

Matrix as Linear Map

- Let $E=\left(e_{1}, \ldots, e_{m}\right)$ be a basis of V
- Let $F=\left(f_{1}, \ldots, f_{n}\right)$ be a basis of W
- For each $M \in \operatorname{gl}(n, m, \mathbb{F})$, let $L: V \rightarrow W$ be the linear map where

$$
\forall 1 \leq k \leq m, L\left(e_{k}\right)=f_{1} M_{k}^{1}+\cdots+f_{n} M_{k}^{n}
$$

and therefore for any $v=e_{1} a^{1}+\cdots e_{m} a^{m}=E a$,

$$
\begin{aligned}
L(v) & =L\left(e_{1} a^{1}+\cdots+e_{m} a^{m}\right) \\
& =L\left(e_{1}\right) a^{1}+\cdots+L\left(e_{m}\right) a^{m} \\
& =\left(f_{1} M_{1}^{1}+\cdots+f_{n} M_{1}^{n}\right) a^{1}+\cdots+\left(f_{1} M_{m}^{1}+\cdots+f_{n} M_{m}^{n}\right) a^{m} \\
& =f_{1}\left(M_{1}^{1} a^{1}+\cdots+M_{m}^{1} a^{m}\right)+\cdots f_{n}\left(M_{1}^{n} a^{1}+\cdots+M_{m}^{n} a^{m}\right) \\
& =f_{1}(M a)^{1}+\cdots+f_{n}(M a)^{n}
\end{aligned}
$$

- This defines a map $I_{E, F}: \operatorname{gl}(n, m, \mathbb{F}) \rightarrow \mathcal{L}(V, W)$

Linear Map as Matrix

- Let $E=\left(e_{1}, \ldots, e_{m}\right)$ be a basis of V
- Let $F=\left(f_{1}, \ldots, f_{n}\right)$ be a basis of W
- Let $L: V \rightarrow W$ be a linear map
- For each $e_{k}, 1 \leq k \leq m$, there exists $\left(M_{k}^{1}, \ldots, M_{k}^{n}\right) \in \mathbb{F}^{n}$ such that

$$
L\left(e_{k}\right)=f_{1} M_{k}^{1}+\cdots f_{n} M_{k}^{n}
$$

- Therefore, for any $v=e_{1} a^{1}+\cdots+e_{m} a^{m} \in V$,

$$
\begin{aligned}
L(v) & =L\left(e_{1} a^{1}+\cdots+e_{m} a^{m}\right) \\
& =L\left(e_{1}\right) a^{1}+\cdots+L\left(e_{m}\right) e^{m} \\
& =\left(f_{1} M_{1}^{1}+\cdots f_{n} M_{1}^{n}\right) a^{1}+\cdots+\left(f_{1} M_{m}^{1}+\cdots+f_{n} M_{m}^{n}\right) a^{m} \\
& =f_{1}\left(M_{1}^{1} a^{1}+\cdots M_{m}^{1} a^{m}\right)+\cdots+f_{n}\left(M_{1}^{n} a^{1}+\cdots+M_{m}^{n} a^{m}\right) \\
& =f_{1}(M a)^{1}+\cdots+f_{n}(M a)^{n}
\end{aligned}
$$

- This defines a map $J_{E, F}: \mathcal{L}(V, W) \rightarrow \operatorname{gl}(n, m, \mathbb{F})$
- $J_{E, F}=I_{E, F}^{-1}$ and $I_{E, F}=J_{E, F}^{-1}$
- Therefore, $\operatorname{dim} \mathcal{L}(V, W)=\operatorname{dim} g l(n, m, \mathbb{F})_{\square}=n m$

Concrete to Abstract Notation

$$
\begin{aligned}
L(v) & =L\left(e_{1} a^{1}+\cdots+e_{m} a^{m}\right)=L\left(\left[\begin{array}{lll}
e_{1} & \cdots & e_{m}
\end{array}\right]\left[\begin{array}{c}
a^{1} \\
\vdots \\
a^{m}
\end{array}\right]\right) \\
& =L\left(\left[\begin{array}{lll}
e_{1} & \cdots & e_{m}
\end{array}\right]\right)\left[\begin{array}{c}
a^{1} \\
\vdots \\
a^{m}
\end{array}\right]=\left[\begin{array}{lll}
L\left(e_{1}\right) & \cdots & L\left(e_{m}\right)
\end{array}\right]\left[\begin{array}{c}
a^{1} \\
\vdots \\
a^{m}
\end{array}\right] \\
& =\left[\begin{array}{lll}
f_{1} M_{1}^{1}+\cdots+f_{n} M_{1}^{n} & \cdots & f_{1} M_{n}^{1}+\cdots+f_{n} M_{n}^{n}
\end{array}\right]\left[\begin{array}{c}
a^{1} \\
\vdots \\
a^{m}
\end{array}\right] \\
& =\left[\begin{array}{lll}
f_{1} & \cdots & f_{n}
\end{array}\right]\left[\begin{array}{ccc}
M_{1}^{1} & \cdots & M_{m}^{1} \\
\vdots & & \vdots \\
M_{1}^{n} & \cdots & M_{m}^{n}
\end{array}\right]\left[\begin{array}{c}
a^{1} \\
\vdots \\
a^{m}
\end{array}\right]=F M a
\end{aligned}
$$

Subspace and its Dimension

- A subset T of a vector space X is a subspace of X if for any $p, q \in \mathbb{R}$ and $a, b \in T$,

$$
p a+q b \in T
$$

- If a subspace has at least one nonzero vector, then it is itself a vector space
- Define the dimension of a subspace S as follows:
- If $S=\{\overrightarrow{0}\}$ then $\operatorname{dim} S=0$
- If $S \neq\{\overrightarrow{0}\}$, then S is a vector space and $\operatorname{dim} S$ is its dimension as a vector space

Kernel, Image, Rank of a Linear Map

- Consider any linear map $P: Z \rightarrow Y$
- The kernel of P is defined to be

$$
\operatorname{ker} P=\{z \in Z: P(z)=\overrightarrow{0}\}
$$

- $\operatorname{ker}(P)$ is a subspace of Z
- The image of P is defined to be

$$
P(Z)=\{P(z): z \in Z\} \subset Y
$$

- $P(Z)$ is a subspace of Y
- The rank of P is

$$
\operatorname{rank}(P)=\operatorname{dim} P(Z)
$$

Example 0

- Define $Z: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ to be

$$
Z(x, y)=(x, y, 0), \text { for all }(x, y) \in \mathbb{R}^{2}
$$

- In other words,

$$
Z\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- $\operatorname{ker} Z=\{0\}$
- $Z\left(\mathbb{R}^{2}\right)=\{(x, y, 0): x, y, \in \mathbb{R}\} \subset \mathbb{R}^{n}$
- A basis of $Z\left(\mathbb{R}^{2}\right)$ is $\left\{Z\left(e_{1}\right), Z\left(e_{2}\right)\right\}=\{(1,0,0),(0,1,0)\}$
- Therefore,
$\operatorname{dim} \operatorname{ker} Z=0$
rank $Z=2$

Example 1

- Define $W: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ to be

$$
W(x, y)=(y, 0,0) \text {, for all }(x, y) \in \mathbb{R}^{2}
$$

- In other words,

$$
W\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- $\operatorname{ker} W=\{(x, 0): x \in \mathbb{R}\}$
- A basis of ker W is $\{(1,0)\}$
- $W\left(\mathbb{R}^{2}\right)=\{(y, 0,0): y \in \mathbb{R}\}$
- A basis of $W\left(\mathbb{R}^{2}\right)$ is $\{(1,0,0)\}$
- Therefore,

$$
\begin{aligned}
\operatorname{dim} \operatorname{ker} W & =1 \\
\operatorname{rank} W & =1
\end{aligned}
$$

Example 2

- Define $U: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ to be

$$
U(x, y)=(0,0,0), \text { for all }(x, y) \in \mathbb{R}^{2}
$$

- In other words,

$$
U\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- $\operatorname{ker} U=\mathbb{R}^{2}$
- $U\left(\mathbb{R}^{2}\right)=\{(0,0,0\}$
- Therefore,
$\operatorname{dim} \operatorname{ker} U=2$
rank $U=0$

Example 3

- Define $U: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ to be

$$
U(x, y, z)=(y, z), \text { for all }(x, y, z) \in \mathbb{R}^{3}
$$

- In other words,

$$
U\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

- $\operatorname{ker} U=\{(x, 0,0): \quad z \in \mathbb{R}\}$
- A basis is $\{(1,0,0)\}$
- $U\left(\mathbb{R}^{3}\right)=\mathbb{R}^{2}$
- Therefore,
$\operatorname{dim} \operatorname{ker} U=1$
rank $U=2$

Example 4

- Define $U: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ to be

$$
U(x, y, z)=(z, 0) \text {, for all }(x, y, z) \in \mathbb{R}^{3}
$$

- In other words,

$$
U\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

- $\operatorname{ker} U=\{(x, y, 0): x, y \in \mathbb{R}\}$
- A basis is $\{(1,0,0),(0,1,0)\}$
- $U\left(\mathbb{R}^{2}\right)=\{(z, 0): z \in \mathbb{R}\}$
- A basis is $\{(1,0)\}$
- Therefore,
$\operatorname{dim} \operatorname{ker} U=2$
rank $U=1$

Example 5

- Define $U: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ to be

$$
T(x, y, z)=(0,0,0), \text { for all }(x, y, z) \in \mathbb{R}^{3}
$$

- In other words,

$$
T\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

- $\operatorname{ker} U=\mathbb{R}^{3}$
- $U\left(\mathbb{R}^{3}\right)=\{(0,0,0)\}$
- Therefore,
$\operatorname{dim} \operatorname{ker} U=3$
rank $U=0$

Bases of V and W Induce Basis of $\mathcal{L}(V, W)$

- If $\left(e_{1}, \ldots, e_{m}\right)$ is a basis of V and $\left(f_{1}, \ldots, f_{n}\right)$ is a basis of W, then for each $1 \leq k \leq m$ and $1 \leq p \leq n$, let

$$
L_{k}^{p}: V \rightarrow W
$$

be the linear map where

$$
L_{p}^{k}\left(e_{j}\right)= \begin{cases}f_{p} & \text { if } j=k \\ 0 & \text { otherwise }\end{cases}
$$

and let $E_{k}^{p} \in \mathrm{gl}(n, m)$ be the matrix that has a 1 in the p-th row and k-th column and 0 everywhere else

- The set $\left\{L_{p}^{k}: 1 \leq k \leq m\right.$ and $\left.1 \leq p \leq n\right\}$ is a basis of $\mathcal{L}(V, W)$ such that

$$
I_{V, W}\left(E_{k}^{p}\right)=M_{k}^{p}
$$

Normal Form of a Linear Map

- Let $L: V \rightarrow W$ be a linear map
- Lemma: There exists a basis $\left(e_{1}, \ldots, e_{m}\right)$ of V and a basis $\left(f_{1}, \ldots, f_{n}\right)$ of W such that for each $1 \leq k \leq m$,

$$
L\left(e_{k}\right)= \begin{cases}f_{k} & \text { if } 1 \leq k \leq r \\ 0_{w} & \text { if } r+1 \leq k \leq m\end{cases}
$$

where $r=\operatorname{rank}(L)$

- In particular,

$$
\operatorname{ker}(L)=\operatorname{span} \text { of }\left\{e_{r+1}, \ldots, e_{m}\right\} \text { and } L(V)=\operatorname{span} \text { of }\left\{f_{1}, \ldots, f_{r}\right\}
$$

- The matrix of L with respect to this basis is

$$
M=\left[\begin{array}{c|c}
I_{r \times r} & 0_{r \times m-r} \\
\hline 0_{n-r, r} & 0_{n-r, m-r}
\end{array}\right]
$$

Corollary: Rank-Nullity Theorem

- Theorem: $\operatorname{dim} \operatorname{ker}(L)+\operatorname{rank}(L)=\operatorname{dim} V$
- Proof: The normal form shows that if $\operatorname{dim} V=m$ and $\operatorname{rank}(L)=r$, then $\operatorname{dim} \operatorname{ker}(L)=m-r$

Proof of Existence of Normal Form

- Let $s=\operatorname{dim} \operatorname{ker}(L)$ and $r=\operatorname{dim} V-\operatorname{dim} \operatorname{ker}(L)=m-s$
- If $s>0$, there exists a basis of $\operatorname{ker}(L)$, which will be denoted

$$
\left(e_{m-s+1}, \ldots, e_{m}\right)
$$

- This can be extended to a basis $\left(e_{1}, \ldots, e_{r}, e_{r+1}, \ldots, e_{m}\right)$ of V
- For each $1 \leq k \leq r$, let $f_{k}=L\left(e_{k}\right)$
- $\left(f_{1}, \ldots, f_{r}\right)$ is linearly independent
- It can be extended to a basis $\left(f_{1}, \ldots, f_{n}\right)$ of W
- It follows that

$$
\begin{aligned}
\operatorname{dim} \operatorname{ker} L+\operatorname{rank} L & =\operatorname{dim} \operatorname{ker} L+\operatorname{dim} L(V) \\
& =s+r=m \\
& =\operatorname{dim} V
\end{aligned}
$$

Injective and Surjective Maps

- Consider a linear map $L: V \rightarrow W$
- $\operatorname{dim} \operatorname{ker} L=0 \Longleftrightarrow L$ is injective:

$$
\begin{aligned}
L\left(v_{1}\right)=L\left(v_{2}\right) & \Longleftrightarrow L\left(v_{2}\right)-L\left(v_{1}\right)=0_{w} \\
& \Longleftrightarrow L\left(v_{2}-v_{1}\right)=0_{w} \\
& \Longleftrightarrow v_{2}-v_{2} \in \operatorname{ker} L=\left\{0_{v}\right\} \\
& \Longleftrightarrow v_{2}=v_{1}
\end{aligned}
$$

- $\operatorname{rank} L=\operatorname{dim} W \Longleftrightarrow L$ is surjective:

$$
\begin{aligned}
\operatorname{rank} L & =\operatorname{dim} W \\
\Longleftrightarrow \operatorname{dim} L(V) & =\operatorname{dim} W \\
\Longleftrightarrow L(V) & =W
\end{aligned}
$$

Bijective Maps

- A map $L: V \rightarrow W$ an isomorphism if it is bijective, i.e., both injective and surjective
- Therefore,
$L: V \rightarrow W$ is bijective $\Longleftrightarrow \operatorname{dim} \operatorname{ker}(L)=0$ and $\operatorname{rank}(L)=\operatorname{dim} W$
- By the rank-nullity theorem, this holds if and only if

$$
\operatorname{rank}(L)=\operatorname{dim} W
$$

- Equivalently, L is an isomorphism if and only if

$$
\operatorname{dim} V=\operatorname{dim} W \text { and } \operatorname{dim} \operatorname{ker} L=0
$$

if and only if

$$
\operatorname{dim} V=\operatorname{dim} W=\operatorname{rank} L
$$

Example (Part 1)

- Consider the map $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by

$$
L\left(\left[\begin{array}{l}
v^{1} \\
v^{2} \\
v^{3}
\end{array}\right]\right)=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{c}
v^{1} \\
v^{2} \\
v^{3}
\end{array}\right]=\left[\begin{array}{c}
v^{1}+2 v^{2}+3 v^{3} \\
4 v^{3}
\end{array}\right]
$$

- $\operatorname{ker} L=\left\{\left(v^{1}, v^{2}, v^{3}\right): v^{1}+2 v^{2}=0\right\}$
- A basis of $\operatorname{ker} L$ is $\{(-2,1,0)\}$
- A basis of \mathbb{R}^{3} is $\{(0,1,0),(0,0,1),(-2,1,0)\}$
- A basis of $L\left(\mathbb{R}^{3}\right)$ is

$$
\{L(0,1,0), L(0,0,1)\}=\{(2,0),(3,4)\}
$$

Example (Part 2)

- If

$$
\left[\begin{array}{lll}
e_{1} & e_{2} & e_{3}
\end{array}\right]=\left[\begin{array}{l|l|l}
0 & 0 & -2 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \text { and }\left[\begin{array}{ll}
f_{1} & f_{2}
\end{array}\right]=\left[\begin{array}{l|l}
2 & 3 \\
0 & 4
\end{array}\right]
$$

- Then

$$
\left[\begin{array}{lll}
L\left(e_{1}\right) & L\left(e_{2}\right) & L\left(e_{3}\right)
\end{array}\right]=\left[\begin{array}{lll}
f_{1} & f_{2} & 0
\end{array}\right]=\left[\begin{array}{ll}
f_{1} & f_{2}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

- And given any vector $v=e_{1} a^{1}+e_{2} a^{2}+e_{3} a^{3}$,

$$
L(v)=L\left(e_{1}\right) a^{1}+L\left(e_{2}\right) a^{2}+L\left(e_{3}\right) a^{3}=f_{1} a^{2}+f_{2} a^{3}=F M a,
$$

where

$$
M=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

