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Abstract

Monte Carlo sampling methods often suffer from long correlation

times. Consequently, these methods must be run for many steps to

generate an independent sample. In this paper a method is proposed to

overcome this difficulty. The method utilizes information from rapidly

equilibrating coarse Markov chains that sample marginal distributions

of the full system. This is accomplished through exchanges between the

full chain and the auxiliary coarse chains. Results of numerical tests on
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the bridge sampling and filtering/smoothing problems for a stochastic

differential equation are presented.

1 Introduction

In spite of substantial effort to improve the efficiency of Markov chain Monte

Carlo (MCMC) methods, spatial correlations remain a major impediment.

These correlations can severely restrict the possible configurations of a system

by imposing complicated relationships between variables. It is well known that

judicious elimination of variables by renormalization can reduce long range

correlations (see [1, 2]). The remaining variables are distributed according to

the marginal distribution,

π (x) =

∫
π (x, y) dy,

where π (x, y) is the full distribution. Given the values of the x variables and

the marginal distribution π the y variables are distributed according to the

conditional distribution

π (y|x) =
π (x, y)

π (x)
.

For systems exhibiting critical phenomena, the path through the space of

distributions taken by marginal distributions under repeated renormalization

can yield essential information about critical indices and the location of critical

points (see [1, 2]). More generally, because these marginal distributions exhibit

shorter correlation lengths and weaker local correlations, they are useful in the

acceleration of Markov chain Monte Carlo methods. As explained in the next
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section, parallel marginalization takes advantage of the shorter correlation

lengths present in marginal distributions of the target density.

The use of Monte Carlo updates on lower dimensional spaces is not a

new concept. In fact this is a necessary procedure in high dimensions. One

simply constructs a chain with steps that preserve the conditional probability

density of the full measure. This is usually accomplished by perturbing a

few components of the chain while holding all other components of the chain

constant. In other words the chain takes steps of the form

Y n+1 = (x1, . . . , xi−1, xi + ε, xi+1, . . . , xd)

where

Y n = (x1, . . . , xd)

and the move preserves π(xi|x1, . . . , xi−1, xi+1, . . . , xd). There have been many

important attempts to use proposals in more general sets of projected coor-

dinates. The multi-grid Monte Carlo method presented in [3, 4] is one such

method. These techniques do not incorporate marginal densities.

In [5], Brandt and Ron propose a multi-grid method which approximates

successive marginal distributions of the Ising model and then uses these ap-

proximations to generate large scale movements of the Markov chain sampling

the full joint distribution of all variables. Their method, while demonstrating

the efficacy of incorporating information from successive marginal distribu-

tions, suffers from two limitations. First, the method used to approximate the

marginal distributions is specific to a small class of problems. For example, it

cannot be easily generalized to systems in continuous spaces. Second, infor-
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mation from the approximate marginal distributions is adopted by the Markov

chain in a way which does not preserve the target distribution of all variables.

The design of a generally applicable method which approximates the marginal

distributions was addressed in [6, 7] by Chorin, and in [8] by Stinis. Both au-

thors approximate the renormalized Hamiltonian of the system given by the

formula,

H (x) = − log

∫
π (x, y) dy.

Thus exp
(
−H (x)

)
is the marginal distribution of the x variables. Chorin

determines the coefficients in an expansion of H (x) by first expanding the

derivatives ∂H(x)
∂x

, which can be expressed as conditional expectations with

respect to the full distribution. Stinis shows that a maximum likelihood ap-

proximation to the renormalized Hamiltonian can be found by minimizing the

error in the expectations of the basis functions in an expansion of H (x). For

applications of related ideas to MCMC simulations see [9] and [10].

Two Parallel marginalization algorithms are developed in the next section

along with propositions that guarantee that the resulting Markov chains satisfy

the detailed balance condition. In the final section the conditional path sam-

pling problem is described and numerical results are presented for the bridge

sampling and smoothing/filtering problems. A brief introduction to parallel

marginalization can be found in [11].
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2 Parallel marginalization

In this section, it is assumed that appropriate approximate marginal distribu-

tions are available. How to find these marginal distributions depends on the

application and will be discussed here only in the context of the examples pre-

sented in this paper. A new Markov chain Monte Carlo method is introduced

which uses approximate marginal distributions of the target distribution to ac-

celerate sampling. Auxiliary Markov chains that sample approximate marginal

distributions are evolved simultaneously with the Markov chain that samples

the distribution of interest. By swapping their configurations, these auxiliary

chains pass information between themselves and with the chain sampling the

original distribution.

Assume that the system of interest has a probability density, π0(x0), where

x0 lies in some space E. Suppose further that, by the Metropolis-Hastings or

any other method (see [12]), one can construct a Markov chain, Y n
0 ∈ E, which

has π0 as its stationary measure. That is, for two points x0, y0 ∈ E∫
τ0(y0|x0)π0(x0) dx0 = π0(y0)

where τ0(y0|x0) is the probability density of a move to
{
Y n+1

0 = y0

}
given that

{Y n
0 = x0}. Here, n is the algorithmic step.

In order to take advantage of the shorter spatial correlations exhibited by

marginal distributions of π0, a collection of lower dimensional Markov chains

which approximately sample marginal distributions of π0 is considered. Sup-
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pose the random variable X0 has d0 components. Divide these into two subsets,

X0 =
(
X̂0, X̃0

)
,

where X̂0 has d1 components and X̃0 has d0− d1 components. Recall that the

X̂0 variables are distributed according to the marginal density,

π0(x̂0) =

∫
π0(x̂0, x̃0)dx̃0 (1)

and that given the value of the X̂0 variables, the X̃0 variables are distributed

according to the conditional density,

π(x̃0|x̂0) =
π0(x̂0, x̃0)

π0(x̂0)
(2)

Label the domain of the X̂0 variables E1. Suppose further that an approxima-

tion to the marginal distribution of the X̂0 variables,

π1 (x̂0) ≈ π0 (x̂0)

is available. The sense in which π1 approximates π0 is intentionally left vague.

In applications of parallel marginalization the accuracy of the approximation

manifests itself through an acceptance rate.

Now let X1 ∈ E1 be independent of the X0 random variables and drawn

from π1 (x̂0). Notice that X1 represents the same physical variables as X̂0

though its probability density is not the exact marginal density. Continue in

this way to remove variables from the system by decomposing Xl ∈ El into

proper subsets as

Xl =
(
X̂l, X̃l

)
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and defining Xl+1 ∈ El+1 to be independent of the {X0, . . . , Xl} random vari-

ables and drawn from an approximation πl+1 to πl (x̂l). Clearly each Xl+1

represents fewer physical variables than Xl.

Just as one can construct a Markov chain Y n
0 ∈ E0 to sample X0, one can

also construct Markov chains Y n
l ∈ El to sample πl. In other words, for each

Y n
l choose a transition probability density τl, such that∫

τl(yl|xl)πl (xl) dxl = πl (yl)

for all i.

The chains Y n
l can be arranged in parallel to yield a larger Markov chain,

Y n = (Y n
0 , . . . , Y

n
L ) ∈ E0 × · · · × EL.

The probability density of a move to {Y n+1 = y} given that {Y n = x} for

x, y ∈ E0 × · · · × EL is given by

τ(y|x) =
L∏
l=0

τl(yl|xl). (3)

Since ∫ (
τ(y|x)

L∏
l=0

πl (xl)

)
dx0 . . . dxL =

L∏
l=0

πl (yl)

the stationary distribution of Y n is

Π (x0, . . . , xL) = π0 (x0) . . . πL (xL) .

The next step in the construction is to allow interactions between the chains

{Y n
l } and to thereby pass information from the rapidly equilibrating chains

on the lower dimensional spaces (large l) down to the chain on the original
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space (l = 0). This is accomplished by swap moves. In a swap move between

levels l and l + 1, a subset, x̂l ∈ El+1, of the xl variables is exchanged with

the xl+1 ∈ El+1 variables. The remaining x̃l variables are resampled from the

conditional distribution πl (x̃l|xl+1). For the full chain, this swap takes the

form of a move from {Y n = x} to {Y n+1 = y} where

x = (. . . , x̂l, x̃l, xl+1, . . . )

and

y = (. . . , xl+1, ỹl, x̂l, . . . ) .

The ỹl variables are drawn from πl (x̃l|xl+1) and the ellipses represent compo-

nents of Y n that remain unchanged in the transition.

If these swaps are undertaken unconditionally, the resulting chain may

equilibrate rapidly, but will not, in general, preserve the product distribution

Π. To remedy this the swap acceptance probability

Al = min

{
1,

πl(xl+1)πl+1(x̂l)

πl(x̂l)πl+1(xl+1)

}
(4)

is introduced. Recall that πl is the function resulting from the integration of

πl over the x̃l variables as in equation (1). Given that {Y n = x}, the prob-

ability density of {Y n+1 = y}, after the proposal and either acceptance with

probability Al or rejection with probability 1−Al, of a swap move, is given by

ψl (y|x) = (1− Al)
∏

δ{yj=xj}

+ Al πl(ỹl|xl+1) δ{(ŷl,yl+1)=(xl+1,x̂l)}
∏

j /∈{l,l+1}

δ{yj=xj}
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for x, y ∈ E0 × · · · × EL. δ is the Dirac delta function.

We have the following proposition.

Proposition 1. The transition probabilities ψl satisfy the detailed balance con-

dition for the measure Π, i.e.

Π(x) ψl (y|x) = Π(y) ψl (x|y)

where x, y ∈ E0 × · · · × EL.

Proof. Fix x, y ∈ E0 × · · · × EL such that x 6= y.

Π(x) ψl (y|x) =

 ∏
j /∈{l,l+1}

πj (xj) δ{yj=xj}

 πl (xl) πl+1 (xl+1)

×
(
(1− Al) δ{(yl,yl+1)=(xl,xl+1)} + Al πl(ỹl|xl+1) δ{(ŷl,yl+1)=(xl+1,x̂l)}

)
When x 6= y (Π(x)ψl (y|x)) and (Π(y)ψl (x|y)) are both zero unless xj = yj

for all j except l and l+ 1 and (ŷl, yl+1) = (xl+1, x̂l). Therefore it is enough to

check that the function

R ((xl, xl+1) , (yl, yl+1)) = πl (xl) πl+1 (xl+1) πl (ỹl|xl+1) Al

is symmetric in (xl, xl+1) and (yl, yl+1) when (ŷl, yl+1) = (xl+1, x̂l). Plugging

in the definition of Al,

R = πl (xl) πl+1 (xl+1) πl (ỹl|xl+1) min

{
1,

πl(xl+1)πl+1(x̂l)

πl(x̂l)πl+1(xl+1)

}
Rearranging terms gives,

R = πl (xl) πl+1 (xl+1) πl (ỹl|xl+1) πl (xl+1) πl+1 (yl+1)

×min

{
1

πl(xl+1)πl+1(yl+1)
,

1

πl(yl+1)πl+1(xl+1)

}
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Recall from (2), that πl(ỹl|xl+1)πl(xl+1) = πl(xl+1, ỹl). Therefore, since xl+1 =

ŷl,

R = πl (xl) πl+1 (xl+1) πl (yl) πl+1 (yl+1)

×min

{
1

πl(xl+1)πl+1(yl+1)
,

1

πl(yl+1)πl+1(xl+1)

}

The final formula is clearly symmetric in (xl, xl+1) and (yl, yl+1).

The detailed balance condition stipulates that the probability of observing

a transition x → y is equal to that of observing a transition y → x and

guarantees that the resulting Markov Chain preserves the distribution Π. If

the chain is also Harris recurrent then averages over a trajectory of {Y n} will

converge to averages over Π. In fact, chains generated by swaps as described

above cannot be recurrent and must be combined with another transition rule

to generate a convergent Markov chain. Since

π0(x0) =

∫
Π(x0, . . . , xL) dx1 . . . dxL,

if {Y n} is Harris recurrent with invariant distribution Π, averages over π0 can

be calculated by taking averages over the trajectories of the first d0 components

of {Y n}.

2.1 Approximation of acceptance probabilities

Notice that the formula (4) for Al requires the evaluation of πl at the points

x̂l, xl+1 ∈ El+1.While the approximation of πl by functions on El+1 is in general
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a very difficult problem, its evaluation at a single point is often not terribly

demanding. In fact, in many cases, including the examples in Chapter 3, the

X̂l variables can be chosen so that the remaining X̃l variables are conditionally

independent given X̂l.

Despite this mitigating factor, the requirement that πl be evaluated before

acceptance of any swap is inconvenient. Fortunately, and somewhat surpris-

ingly, this requirement is not necessary. In fact, standard strategies for ap-

proximating the point values of the marginals yield Markov chains that also

preserve the target measure. Thus even a poor estimate of the ratio appearing

in (4) can give rise to a method that is exact in the sense that the resulting

Markov chain will asymptotically sample the target measure.

Before moving on to the description of the resulting Markov chain Monte

Carlo algorithms consider briefly the general problem of evaluating marginal

densities. Let p1(x, y) and p2(x, y) be the densities of two equivalent measures

with marginal densities,

p1(x) =

∫
p1(x, y)dy

and

p2(x) =

∫
p2(x, y)dy

respectively. For any integrable function γ(x, y),

Ep1 [γ (X, Y ) p2 (X, Y ) | {X = x}] =

∫
γ(x, y)p2(x, y)p1(y|x)dy

=
p2(x)

p1(x)

∫
γ(x, y)p2(y|x)p1(x, y)dy

=
p2(x)

p1(x)
Ep2 [γ (X, Y ) p1 (X, Y ) | {X = x}]
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Thus given p2(x), the value of p1 at x can be obtained through the formula,

p1(x) = p2(x)
Ep2 [γ (X, Y ) p1 (X, Y ) | {X = x}]
Ep1 [γ (X, Y ) p2 (X, Y ) | {X = x}]

(5)

Of course, the usual importance sampling concerns apply here. In particular,

the approximation of the conditional expectations in (5) will be much easier

when Y lives in a lower dimensional space.

Similar approximations can be inserted into our acceptance probabilities

Al in place of the ratio πl(xl+1)

πl(x̂l)
. For example, if pl(x̃l|x̂l) is a reference density

approximating πl(x̃l|x̂l), then the choice

γ(x̂l, x̃l) =
1

pl(x̂l, x̃l)

yields

πl(x̂) ≈ pl(x̂)
1

M

∑ πl (x̂l, V
j)

pl (x̂, V j)
=

1

M

∑ πl (x̂l, V
j)

pl (V j|x̂l)
(6)

where the {V j} are samples from pl(x̃l|x̂l). Thus if {U j} are samples from

pl(x̃l|xl+1), then

1
M

∑M
j=1

πl(xl+1,U
j)

pl(Uj |xl+1)

1
M

∑M
j=1

πl(x̂l,V j)
pl(V j |x̂l)

a.s.−−−−→
M→∞

Epl

[
πl(xl+1, eXl)
pl( eXl|xl+1)

|
{
X̂l = xl+1

}]
Epl

[
πl(x̂l, eXl)
pl( eXl|x̂l)

|
{
X̂l = x̂l

}] =
πl(xl+1)

πl(x̂l)

In the numerical examples presented here, pl( · |x̂l) is a Gaussian approxi-

mation of πl(x̃l|x̂l). How pl is chosen depends on the problem at hand (see

numerical examples below). In general pl( · |x̂l) should be easily evaluated

and independently sampled, and it should “cover” πl( · |x̂l) in the sense that

regions where πl( · |x̂l) is not negligible should be contained in regions where

pl( · |x̂l) is not negligible. In the case mentioned above that the X̂l variables
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can be chosen so that the remaining X̃l variables are conditionally indepen-

dent given X̂l the conditional density πl(x̃l|x̂l) can be written as a product of

many low dimensional densities. As mentioned above, the problem of finding a

reference density for importance sampling is much simpler in low dimensional

spaces.

The following algorithm results from replacing Al in (4) with approximation

of the form (6). Assume that the current position of the chain is {Y n = x}

where

x = (. . . , x̂l, x̃l, xl+1, . . . ) .

Algorithm 1 will result in either {Y n+1 = x} or {Y n+1 = y} where

y = (. . . , xl+1, ỹl, x̂l, . . . )

and ỹl is approximately drawn from πl (x̃l|xl+1) .

Algorithm 1 (Parallel Marginalization 1). The chain moves from Y n to Y n+1

as follows:

1. Let U j for j = 1, . . . ,M be independent random variables sampled from

pl( · |xl+1) (recall that the swap is between x̂l and xl+1 which are both in

El+1).

2. Evaluate the weights

W j
U =

πl (xl+1, U
j)

pl (U j| xl+1)
.

The choice of pl made above affects the variance of these weights, and

therefore the variance of the acceptance probability below.
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3. Draw the random index J ∈ {1, . . . ,M} according to the probabilities

P [J = j] =
W j
U∑M

m=1W
m
U

.

Set Ỹ ′ = UJ . Notice that Ỹ ′ is an approximate sample from πl( · |xl+1).

4. Let V J = x̃l and draw V j for j 6= J independently from pl( · |x̂l), Notice

that the {U j} variables depend on xl+1 while the {V j} variables depend

on x̂l.

5. Define the weights

W j
V =

πl (x̂l, V
j)

pl (V j|x̂l)

6. Set

Y n+1 =
(
. . . , xl+1, Ỹ

′, x̂l, . . .
)

with probability

AMl = min

{
1,

πl+1(x̂l)
∑M

j=1W
j
U

πl+1(xl+1)
∑M

j=1W
j
V

}
(7)

and

Y n+1 = Y n = (. . . , x̂l, x̃l, xl+1, . . . )

with probability 1− AMl .

The transition probability density for the above swap move from x to y for

x, y ∈ E0 × · · · × ELis given by

ψMl (y|x) = P [{Swap is rejected}]
∏

δ{yj=xj}

+ P
[
{Swap is accepted} ∩

{
Ỹ ′ = ỹl

}]
× δ{(ŷl,yl+1)=(xl+1,x̂l)}

∏
j /∈{i,i+1}

δ{yj=xj},
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where δ is again the Dirac delta function. Notice that to find the probability

density P
[
{Swap is accepted} ∩

{
Ỹ ′ = ỹl

}]
one must integrate over the pos-

sible values of the {U j} and {V j} variables. Since πl appears in the integrand

it is not possible, in general, to evaluate the integral. However, as indicated in

the proof of the next proposition, it is not necessary to evaluate this density

to show that the method converges.

While the preceding swap move corresponds to a method for approximating

the ratio

πl(xl+1)

πl(x̂l)

appearing in formula (4) for Al, it also has similarities with the multiple-try

Metropolis method, presented in [13, 14], that uses multiple suggestion samples

to improve acceptance rates of standard MCMC methods. In fact the proof

of the following proposition is motivated by the proof of the detailed balance

condition for the multiple try method.

Proposition 2. The transition probabilities ψMl satisfy the detailed balance

condition for the measure Π.

Proof. For x, y ∈ E0 × · · · × EL such that x 6= y,

Π(x) ψMl (y|x) = Π(x) P
[
{Swap is accepted} ∩

{
Ỹ ′ = ỹl

}]
× δ{(ŷl,yl+1)=(xl+1,x̂l)}

∏
j /∈{i,i+1}

δ{yj=xj},

As in the previous proof it can be assumed that xj = yj for all j except l

and l + 1 and (ŷl, yl+1) = (xl+1, x̂l). Since in this case π(xj) = π(yj) for all
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j /∈ {l, l + 1} , it remains to show that if (ŷl, yl+1) = (xl+1, x̂l) then

R ((xl, xl+1) , (yl, yl+1)) = πl (xl) πl+1 (xl+1)

×P
[
{Swap is accepted} ∩

{
Ỹ n+1
l = ỹl

}]
is symmetric in (xl, xl+1) and (yl, yl+1). Define a random index J ∈ {1, . . . ,M}

by the relation ỹl = UJ . Then, since the U j are i.i.d.,

P
[
{Swap is accepted} ∩

{
Ỹ ′ = ỹl

}]
=

M∑
j=1

P
[
{Swap is accepted} ∩

{
ỹl = U j

}
∩ {J = j}

]
= M P

[
{Swap is accepted} ∩

{
ỹl = U1

}
∩ {J = 1}

]
Thus,

R ((xl, xl+1) , (yl, yl+1)) = M πl (xl) πl+1 (xl+1)

×P
[
{Swap is accepted} ∩

{
ỹl = U1

}
∩ {J = 1}

]
Writing out the density on the right of this relation gives,

R = M πl (xl) πl+1 (xl+1)

∫
min

{
1,

πl+1(x̂l)
∑M

j=1W
j
U

πl+1(xl+1)
∑M

j=1W
j
V

} πl(xl+1,u
1)

p(u1|xl+1)∑M
j=1W

j
U

× p
(
u1|xl+1

)∏
j>1

p
(
uj|xl+1

)
p
(
vj|x̂l

)
dujdvj

Replacing u1 by ỹl and rearranging gives,

R = M πl (xl) πl+1 (xl+1) πl (xl+1, ỹl) πl+1 (x̂l)

×
∫

min

{
1

πl+1 (x̂l)
∑M

j=1W
j
U

,
1

πl+1(xl+1)
∑M

j=1W
j
V

}
×
∏
j>1

p
(
uj|xl+1

)
p
(
vj|x̂l

)
dujdvj.
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Since xl+1 = ŷl, πl(xl+1, ỹl) = πl(yl). Therefore, after replacing x̂l by yl+1,

R = M πl (xl)πl+1 (xl+1)πl (yl) πl+1 (yl+1)

×
∫

min

{
1

πl+1 (yl+1)
∑M

j=1W
j
U

,
1

πl+1(xl+1)
∑M

j=1W
j
V

}
×
∏
j>1

p
(
uj|xl+1

)
p
(
vj|yl+1

)
dujdvj.

which is symmetric in (xl, xl+1) and (yl, yl+1).

For small values of M in (13), calculation of the swap acceptance probabil-

ities is very cheap. However, higher values of M may improve the acceptance

rates. For example, if the {πl}i>0 are exact marginals of π0, then Al ≡ 1 while

AMl ≤ 1. In practice one has to balance the speed of evaluating AMl for small

M with the possible higher acceptance rates for M large.

In analogy again with the multiple-try method, the above algorithm can be

generalized to include correlated samples {U j} and {V j}. This generalization

is useful because it allows reference densities that cannot be independently

sampled. Again consider a transition from {Y n = x} where

x = (. . . , x̂l, x̃l, xl+1, . . . )

to either {Y n+1 = x} or {Y n+1 = y} where

y = (. . . , xl+1, ỹl, x̂l, . . . ) .

First choose some reference transition densities pjl (uj| (u0, . . . , uj−1) , x̂l)

that sample a variable U j given the previous j − 1 samples and the value of
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the x̂l variables. Let

pjl
(
(uk+1, . . . , uj)|(u0, . . . , uk), x̂l

)
=

∏
k<m≤j

pml
(
um|(u0, . . . , um−1), x̂l

)
. (8)

For example, one might choose the
{
pjl
}

to be a Markov transition kernel asso-

ciated with some Markov chain Monte Carlo method with stationary measure

πl(x̃l|x̂l). Also let λj ((u0, . . . , uj), x̂l, xl+1) be any function satisfying the re-

lation

λj
(
(u0, . . . , uj), x̂l, xl+1

)
= λj

(
(uj, . . . , u0), xl+1, x̂l

)
Algorithm 2 (Parallel Marginalization 2). We move the chain from Y n to

Y n+1 as follows:

1. For j = 1, . . . ,M sample U j from pjl ( · |(x̃l, U1, . . . , U j−1), xl+1) . Notice

the conditioning on the value X̂l = xl+1.

2. Define the weights

W j
U = πl

(
U j, xl+1

)
pjl
((
U j−1, . . . , U1, x̃l

)
|U j, x̂l

)
× λj

((
x̃l, U

1, . . . , U j
)
, x̂l, xl+1

)
.

Notice the reversal in the ordering of the {U j} and the conditioning on

X̂l = x̂l.

3. Choose the random index J ∈ {1, . . . ,M} according to the probabilities

P [J = j] =
W j
U∑M

m=1W
m
U

.

Set Ỹ ′ = UJ .
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4. Let V J = x̃l and for j = 1, . . . , J−1 let V j = UJ−j. For j = J+1, . . . ,M

sample V j from pjl

(
· |(Ỹ ′, . . . , V j−1), x̂l

)
. Notice the conditioning on

the value X̂l = x̂l.

5. Define the weights

W j
V = πl

(
V j, x̂l

)
pjl

(
(V j−1, . . . , V 1, Ỹ ′)|V j, xl+1

)
× λj

(
(Ỹ ′, V 1, . . . , V j), xl+1, x̂l

)
.

6. Set

Y n+1 =
(
. . . , xl+1, Ỹ

′, x̂l, . . .
)

with probability

AMl = min

{
1,

πl+1(x̂l)
∑M

j=1W
j
U

πl+1(xl+1)
∑M

j=1W
j
V

}
(9)

and

Y n+1 = Y n = (. . . , x̂l, x̃l, xl+1, . . . )

with probability 1− AMl .

The transition probability density for the above swap move from x to y for

x, y ∈ E0 × · · · × ELis again given by

ψMl (y|x) = P [{Swap is rejected}]
∏

δ{yj=xj}

+ P
[
{Swap is accepted} ∩

{
Ỹ ′ = ỹl

}]
× δ{(ŷl,yl+1)=(xl+1,x̂l)}

∏
j /∈{i,i+1}

δ{yj=xj}
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where and δ is again the Dirac delta function. Again, the density

P
[
{Swap is accepted} ∩

{
Ỹ ′ = ỹl

}]
cannot and need not be evaluated.

Algorithm 1 can be derived from Algorithm 2 by setting

pjl
(
uj|(u0, . . . , uj−1), x̂l

)
= pl

(
uj|x̂l

)
and

λj
(
(u0, . . . , uj), x̂l, xl+1

)
=

1

pl (uj|x̂l) pl (u0|xl+1)
.

Notice also that if

λj
(
(u0, . . . , uj), x̂l, xl+1

)
=

qj ((u1, . . . , uj−1)|x̂l, xl+1)

pjl ((uj−1, . . . , u0)|uj, x̂l) pjl ((u1, . . . , uj)|u0, xl+1)
,

where, for each j, qj is a conditional density satisfying qj ((u1, . . . , uj−1)|x̂l, xl+1) =

qj ((uj−1, . . . , u1)|xl+1, x̂l) then

Epj

[
W j
U

]
=

∫
πl(u

j, xl+1)q
j ((u1, . . . , uj−1)|x̂l, xl+1)

j∏
i=1

dui = πl(xl+1).

Thus, if the {pj} generate an ergodic sequence, then 1
M

∑
W j
U → πl(xi+1).

The same holds for the
{
W j
V

}
so that

AMl → min

{
1,

πl(xl+1)πl+1(x̂l)

πl(x̂l)πl+1(xl+1)

}
= Al.

More general choices of {λj} lead to AMl which converge to correpondingly

more general acceptance probabilities than Al.

Of course, expression (5) points the way to even more general algorithms.

Algorithms 1 and 2 correspond to choices of γ in (5) that make the conditional

expectation on the bottom of (5) equal to one. Other choices of γ may improve

the variance of the resulting weights.
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Proposition 3. The transition probabilities ψMl satisfy the detailed balance

condition for the measure Π.

Proof. Fix x, y ∈ E0×· · ·×EL such that x 6= y. For x, y ∈ E0×· · ·×EL such

that x 6= y,

Π(x) ψMl (y|x) = Π(x) P
[
{Swap is accepted} ∩

{
Ỹ ′ = ỹl

}]
× δ{(ŷl,yl+1)=(xl+1,x̂l)}

∏
j /∈{i,i+1}

δ{yj=xj},

As in the previous two proofs it can be assumed that xj = yj for all j except

l and l + 1 and (ŷl, yl+1) = (xl+1, x̂l). Since in this case π(xj) = π(yj) for all

j /∈ {l, l + 1} , it remains to show that if (ŷl, yl+1) = (xl+1, x̂l) then

R ((xl, xl+1) , (yl, yl+1)) =

πl (xl) πl+1 (xl+1) P
[
{Swap is accepted} ∩

{
Ỹ ′ = ỹl

}]
is symmetric in (xl, xl+1) and (yl, yl+1). Summing over disjoint events,

P
[
{Swap is accepted} ∩

{
Ỹ ′ = ỹl

}]
=

M∑
j=1

P
[
{Swap is accepted} ∩

{
ỹl = U j

}
∩ {J = j}

]
Thus R will be symmetric if for each j the function

Rj ((xl, xl+1), (yl, yl+1)) =

πl (xl) πl+1 (xl+1) P
[
{Swap is accepted} ∩

{
Ỹ ′ = ỹl

}
∩ {J = j}

]
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is symmetric.

Rj ((xl, xl+1), (yl, yl+1)) =

πl (xl)πl+1 (xl+1)

∫
min

{
1,

πl+1(x̂l)
∑M

k=1W
k
U

πl+1(xl+1)
∑M

k=1W
k
V

}
W k
U∑M

k=1W
k
U

× pMl
(
(vj+1, . . . , vM)|(ỹl, v1, . . . , vj), x̂l

)
pMl
(
(u1, . . . , uM)|x̃l, xl+1

)
× δ(uj − ỹl)δ(vj − x̃l)

( ∏
1≤k<j

δ(uj−k − vk)

)( ∏
k>1, k 6=j

dukdvk

)

Recall the definition of the weights and the fact that UJ = ỹl, V
J = x̃l, and

V j = UJ−j for j = 1, . . . , J − 1

W j
U = πl (ỹl, xl+1) p

j
l

((
uj−1, . . . , u1, x̃l

)
|ỹl, x̂l

)
λj
((
x̃l, u

1, . . . , uj−1, ỹl
)
, x̂l, xl+1

)
= πl (ỹl, xl+1) p

j
l

((
v1, . . . , vj−1

)
|ỹl, x̂l

)
λj
((
x̃l, u

1, . . . , uj−1, ỹl
)
, x̂l, xl+1

)
.

Thus,

Rj ((xl, xl+1), (yl, yl+1)) =

πl (xl) πl+1 (xl+1)

∫
min

{
1,

πl+1(x̂l)
∑M

k=1W
k
U

πl+1(xl+1)
∑M

k=1W
k
V

}
1∑M

k=1W
k
U

× πl (ỹl, xl+1) p
j
l

((
v1, . . . , vj−1

)
|ỹl, x̂l

)
λj
((
x̃l, u

1, . . . , uj−1, ỹl
)
, x̂l, xl+1

)
× pMl

(
(vj+1, . . . , vM)|(ỹl, v1, . . . , vj), x̂l

)
pMl
(
(u1, . . . , uM)|x̃l, xl+1

)
× δ(uj − ỹl)δ(vj − x̃l)

( ∏
1≤k<j

δ(uj−k − vk)

)( ∏
k>1, k 6=j

dukdvk

)
Definition (8) implies that for all j,

pjl
((
v1, . . . , vj−1

)
|ỹl, x̂l

)
pMl
(
(vj+1, . . . , vM)|(ỹl, v1, . . . , vj−1, x̃l), x̂l

)
= pMl

((
v1, . . . , vM

)
|ỹl, x̂l

)
,
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Thus,

Rj ((xl, xl+1), (yl, yl+1)) =

πl (xl) πl+1 (xl+1)

∫
min

{
1,

πl+1(x̂l)
∑M

k=1W
k
U

πl+1(xl+1)
∑M

k=1W
k
V

}
× πl (ỹl, xl+1)λ

j ((x̃l, u
1, . . . , uj−1, ỹl) , x̂l, xl+1)∑M
k=1W

k
U

× pMl
(
(v1, . . . , vM)|ỹl, x̂l

)
pMl
(
(u1, . . . , uM)|x̃l, xl+1

)
× δ(uj − ỹl)δ(vj − x̃l)

( ∏
1≤k<j

δ(uj−k − vk)

)( ∏
k>1, k 6=j

dukdvk

)

which can be rewritten,

Rj ((xl, xl+1), (yl, yl+1)) = πl (xl) πl+1 (xl+1) πl (ỹl, xl+1) πl+1 (x̂l)

×
∫

min

{
1

πl+1(x̂l)
∑M

k=1W
k
U

,
1

πl+1(xl+1)
∑M

k=1W
k
V

}
× λj

((
x̃l, u

1, . . . , uj−1, ỹl
)
, x̂l, xl+1

)
× pMl

(
(v1, . . . , vM)|ỹl, x̂l

)
pMl
(
(u1, . . . , uM)|x̃l, xl+1

)
× δ(uj − ỹl)δ(vj − x̃l)

( ∏
1≤k<j

δ(uj−k − vk)

)( ∏
k>1, k 6=j

dukdvk

)

23



Plugging yl+1 = x̂l and ŷl = xl+1, into this expression yields,

Rj ((xl, xl+1), (yl, yl+1)) = πl (xl) πl+1 (xl+1) πl (yl) πl+1 (yl+1)

×
∫

min

{
1

πl+1(yl+1)
∑M

k=1W
k
U

,
1

πl+1(xl+1)
∑M

k=1W
k
V

}
× λj

((
x̃l, u

1, . . . , uj−1, ỹl
)
, yl+1, xl+1

)
× pMl

(
(v1, . . . , vM)|ỹl, yl+1

)
pMl
(
(u1, . . . , uM)|x̃l, xl+1

)
× δ(uj − ỹl)δ(vj − x̃l)

( ∏
1≤k<j

δ(uj−k − vk)

)( ∏
k>1, k 6=j

dukdvk

)

By the symmetry property of λj this expression is symmetric in (xl, xl+1) and

(yl, yl+1).

Clearly a Markov chain that evolves only by swap moves cannot sample all

configurations, ie. the chain generated by ψ is not φ-irreducible for any non

trivial measure φ. These swap moves must therefore be used in conjunction

with a transition rule that can reach any region of space. More precisely, let

τ from expression (3) be Harris recurrent with stationary distribution Π (see

[15]). The the transition rule for parallel marginalization is

τpm(y|x) = (1− α) τ(y|x) + α

∫
τ(z|x)ψ (y|z) dz

where

ψ(y|x) =
L−1∑
k=0

1

L
ψMl (y|x)

and α ∈ [0, 1) is the probability that a swap move occurs. τpm dictates that,

with probability α, the chain attempts a swap move between levels I and I+1

where I is a random variable chosen uniformly from {0, . . . , L− 1}. Next, the
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chain evolves according to τ . With probability 1 − α the chain moves only

according to τ and does not attempt a swap. The next result guarantees the

invariance of Π under evolution by τpm.

It is not difficult to verify that the chain generated by τpm has invariant

measure Π and is Harris recurrent if the chain generated by τ has these proper-

ties. Thus by combining standard MCMC steps on each component, governed

by the transition probability τ , with swap steps between the components gov-

erned by ψ, an MCMC method results that not only uses information from

rapidly equilibrating lower dimensional chains, but is also convergent.

3 Numerical Examples

In this section I consider applications of parallel marginalization to two con-

ditional path sampling problems for a one dimensional stochastic differential

equation,

dZ(t) = f (Z(t)) dt+ σ (Z(t)) dW (t), (10)

where f and σ are real valued functions of R. One must first approximate

{Z(t)} by a discrete process for which the path density is readily available.

Let t0 = 0, t1 = T
N
, . . . , tN = T be a mesh on which one wishes to calculate

path averages. One such approximate process is given by the linearly implicit
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Euler scheme (a balanced implicit method, see [16]),

X(n+ 1) = X(n) + f (X(n))4

+ (X(n+ 1)−X(n)) f
′
(X(n))4+ σ (X(n))

√
4 ξ(n),

X(0) = Z(0).

(11)

Here X(n) is an approximation to Z at time tn. The reader should note that

the rate of convergence of the above scheme to the solution of (10) would not

be effected by the insertion in (11) of a non-negative constant in front of the

f
′

term. The choice of 1 made here seemed to improve the stability of the

resulting scheme for large values of 4. The {ξ(n)} are independent Gaussian

random variables with mean 0 and variance 1, and 4 = T
N
. N is assumed to

be a power of 2. The choice of this scheme over the Euler scheme (see [17])

is due to its favorable stability properties as explained later. It is henceforth

assumed that X(t) instead of Z(t) is the process of interest.

The first of the conditional sampling problems discussed here is the bridge

sampling problem in which one generates samples of transition paths between

two states. This problem arises, for example, in financial volatility estimation

where, given a sequence of observations, (z(s0), . . . , z(sK)) with {sj} ⊂ {tl} ,

the goal is to estimate the diffusion term σ (assumed here to be constant)

appearing in the stochastic differential equation. Since in general one cannot

easily evaluate the transition probability between times sj and sj+1 (and thus

the likelihood of the observations) it is necessary to generate samples between

the observations,

V (j) = (X(j, 1), . . . , X(j,Nj))
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where Nj = N (sj+1 − sj)− 1 (assumed to be an integer) and X(j, n) denotes

the value of the process at time sj+
n
Nj

. It is then easy to evaluate the likelihood

of a path

X(s0), V (0), . . . , X(sK), V (K)

given a particular value of the volatility, σ.

The filtering/smoothing problem is similar to the financial volatility exam-

ple of the previous paragraph except that now it is assumed that the observa-

tions are noisy functions of the underlying process. For example, one may wish

to sample possible trajectories taken by a rocket given somewhat unreliable

GPS observations of its position. If the conditional density of the observations

given the position of the rocket is known, it is possible to generate conditional

samples of the trajectories.

3.1 Bridge path sampling

In the bridge path sampling problem one seeks to approximate conditional

expectations of the form

E
[
g (Z(t1), . . . , Z(tN−1)) |{Z(0) = z−}, {Z(T ) = z+}

]
where g is a real valued function, and {Z(t)} is solution to (10).

Without the condition Z(T ) = z+ above, generating an approximate sam-

ple (X(0), . . . , X(N)) path is a relatively straitforward endeavor. One simply

generates a sample of Z(0), then evolves (11) with this initial condition. How-

ever, the presence of information about {Z(t)}t>0 complicates the task. In
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general, some sampling method which requires only knowlege of a function

proportional to conditional density of (X(1), . . . , X(N − 1)) must be applied.

The approximate path density associated with discretization (11) is

π0 (x0(1), . . . , x0(N − 1) |x0(0), x0(N)) ∝ exp

(
−

N−1∑
k=0

V (x0(n), x0(n+ 1),4)

)
(12)

where

V (x, y,4) =

[(
1−4f ′

(x)
)

(y − x) +4f (x)
]2

2σ2 (x)4

At this point the parallel marginalization sampling procedure is applied

to the density π0. However, as indicated above, a prerequisite for the use of

parallel marginalization is the ability to estimate marginal densities. In some

important problems homogeneities in the underlying system yield simplifica-

tions in the calculation of these densities by the methods in [6, 8]. These

calculations can be carried out before implementation of parallel marginaliza-

tion, or they can be integrated into the sampling procedure.

In some cases, computer generation of the {πl}l>0 can be completely avoided.

The examples presented here are two such cases. Let Sl =
{

0, 2l, 2(2l), 3(2l), . . . , N
}

(recall N is a power of 2). Decompose Sl as Ŝl t S̃l where

Ŝl =
{

0, 2(2l), 4(2l), 6(2l), . . . , N
}

and

S̃l =
{

2l, 3(2l), 5(2l), 7(2l), . . . , N − 2l
}
.

In the notation of the previous sections, xl = (x̂l, x̃l) where x̂l = {xl(n)}n∈bSl\{0,N}

and x̃l = {xl(n)}n∈eSl
. In words, the hat and tilde variables represent alternat-
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ing time slices of the path. For all l fix xl(0) = z− and xl(N) = z+. We choose

the approximate marginal densities

πl

(
{xl(n)}n∈Sl\{0,N} |xl(0), xl(N)

)
∝ ql

(
{xl(n)}n∈Sl

)
where for each l, ql is defined by successive coarsenings of (11). That is,

ql
(
{xl(n)}n∈Sl

)
= exp

−N/2l−1∑
k=0

V
(
xl(2

lk), xl(2
l(k + 1)), 2l4

) .

Since πl will be sampled using a Metropolis-Hastings method with x(0) and

x(N) fixed, knowlege of the normalization constants

Zl (xl(0), xl(N)) =

∫
ql

∏
n∈Sl\{0,N}

dxl(n)

is unnecessary.

Notice from (12) that, conditioned on the values of X(n−1) and X(n+1),

the variance ofX(n) is of order4. Thus any perturbation ofX(n) which leaves

X(m) fixed for m 6= n and which is compatible with joint distribution (12)

must be of the order
√
4. This suggests that distributions defined by coarser

discretizations of (12) will allow larger perturbations, and consequently will

be easier to sample. However, it is important to choose a discretization that

remains stable for large values of 4. For example, while the linearly implicit

Euler method performs well in the experiments below, similar tests using the

Euler method were less successful due to limitations on the largest allowable

values of 4.

In this numerical example bridge paths are sampled between time 0 and
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time 10 for a diffusion in a double well potential

f(x) = −4x
(
x2 − 1

)
and σ(x) = 1

The left and right end points are chosen as z− = z+ = 0. 4 = 2−10.

Y n
l ∈ R10/(2l4)+1 is the lth level of the parallel marginalization Markov chain

at algorithmic time n. There are 10 chains (L = 9). The observed swap accep-

tance rates are reported in table (1). Notice that the swap rates are highest

at the lower levels but seems to stabilize at the higher levels.

Table 1: Swap acceptance rates for bridge sampling problem

Levels1 0/1 1/2 2/3 3/4 4/5 5/6 6/7 7/8 8/9

0.86 0.83 0.75 0.69 0.54 0.45 0.30 0.22 0.26

1 Swaps between levels l and l + 1.

Let Y n
mid ∈ R denote the midpoint of the path defined by Y n

0 (i.e. an

approximate sample of the path at time 5). In Figure 1 the autocorrelation of

Y n
mid

Corr
[
Y n
mid, Y

0
mid

]
is compared to that of a standard Metropolis-Hastings rule using 1 dimen-

sional Gaussian random walk proposals. In the figure, the time scale of the

autocorrelation for the Metropolis-Hastings method has been scaled by a fac-

tor of 1/10 to more than account for the extra computational time required

per iteration of parallel marginalization. The relaxation time of the parallel
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chain is clearly reduced.

0
0

0.2

0.4

0.6

0.8

1

parallel marginalization
Metropolis-Hastings

Figure 1: Autocorrelation of Y n
mid for Metropolis-Hastings method with 1-d

Gaussian random walk proposals (solid) and parallel marginalization (dotted).

The x-axis runs from 0 to 10000 iterations of the Metropolis-Hastings method

and from 0 to 1000 iterations of parallel marginalization. This rescaling more

than compensates for the extra work for parallel marginalization per iteration.

In these numerical examples, parallel marginalization is applied with a

slight simplification as detailed in the following algorithm.

Algorithm 3. The chain moves from Y n to Y n+1 as follows:

1. Generate M independent Gaussian random paths {ζm (n)}n∈eSl
with in-

dependent components ζm (n) of mean 0 and variance 2l−14.

2. For each j and n ∈ S̃l let

Um (n) = ζm (n) + 0.5 (xl+1(n− 1) + xl+1(n+ 1)) .
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3. Define the weights

Wm
U =

πl (xl+1, U
m)

pl (Um|xl+1)
,

where pl is defined by the choice in step 1 as

pl (x̃l|x̂l) ∝ exp

∑
n∈eSl

−(x̃l(n)− 0.5 (x̂l(n− 1) + x̂l(n+ 1)))2

2l4

 .

4. Choose J ∈ {1, . . . ,M} according to the probabilities

P [J = j] =
W j
U∑M

k=1W
k
U

.

Set Ỹ ′ = UJ .

5. Set V J = x̃l and for j 6= J set

V j (n) = ζj (n) + 0.5 (x̂l(n− 1) + x̂l(n+ 1)) .

6. Define the weights

Wm
V =

πl (x̂l, V
m)

pl (V m|x̂l)
.

7. Set

Y n+1 = (. . . , xl+1, ỹl, x̂l, . . . )

with probability

AMl = min

{
1,

πl+1(x̂l)
∑M

m=1W
m
U

πl+1(xl+1)
∑M

m=1W
m
V

}
(13)

and

Y n+1 = Y n = (. . . , x̂l, x̃l, xl+1, . . . )

with probability 1− AMl .

32



This simplification reduces by half the number of gaussian random variables

needed to evaluate the acceptance probability but may not be appropriate in

all settings. For this problem, the choice of M in (13), the number of samples

{Um} and {V m}, seems to have little effect on the swap acceptance rates. In

the numerical experiment M = l + 1 for swaps between levels l and l + 1.

The results of the Metropols-Hastings and parallel marginalization meth-

ods applied to the above bridge sampling problem after a run time of 10 min-

utes on a standard workstation are presented in Figures 2 and 3. Apparently

the sample generated by parallel marginalization is a reasonable bridgepath

while the Metropolis-Hastings method has clearly not converged.

0
-2

-1

0

1

2

Figure 2: Metropolis generated bridge path from Section 3.1 after a 10 minute

run on a standard desktop workstation. Clearly the method has not converged.
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Figure 3: Parallel marginalization generated bridge path from Section 3.1 after

a 10 minute run on a standard desktop workstation. Apparently the method

has converged.

3.2 Non-linear smoothing/filtering

In the non-linear smoothing and filtering problem one seeks to approximate

conditional expectations of the form

E
[
g (Z(0), Z(t1), . . . , Z(T )) | {H(j) = h(j)}K0

]
where the real valued processes {Z(t)} and {H(j)} are given by the system

dZ(t) = f (Z(t)) dt+ σ (Z(t)) dW (t),

H(j) = r (Z(sj)) + χ(j),

Z(0) ∼ ρ, χ(j) ∼ i.i.d. µ.

(14)
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g, f , σ, and r are real valued functions of R. The {χ(j)} are real valued

independent random variable drawn from the density µ and are independent of

the Brownian motion {W (t)} . {sj} ⊂ {tj} , and 0 = s0 < s1 < ... < sK = T.

The process Z(t) is a hidden signal and the {H(j)} are noisy observations.

The idea of computing the above conditional expectation by conditional path

sampling has been suggested in [18, 19]. Popular alternatives include particle

filters (see [20]) and ensemble Kalman filters (see [21]).

Again, begin by discretizing the system. Assume that Nj = N (sj+1 − sj)−

1 is an integer and let 4 = T
N
. The linearly implicit Euler scheme gives

X(j, n+ 1) = X(j, n) + f (X(j, n))4

+ (X(j, n+ 1)−X(j, n)) f
′
(X(j, n))4+ σ (X(j, n))

√
4 ξ(j, n),

H(j) = r (X(j)) + χ(j),

X(0) = Z(0) χ(j) ∼ i.i.d. µ

where X(j, n) represents the discrete time approximation to Z(sj + n4), for

0 ≤ n ≤ Nj. The {ξ(n)} are independent Gaussian random variables with

mean 0 and variance 1. The {ξ(n)} are independent of the {χm}. N is again

assumed to be a power of 2.

The approximate path measure for this problem is

π0 (x0(0), . . . , x0(N) |h(0), . . . , h(K)) ∝ exp

(
−

N−1∑
k=0

V (x0(n), x0(n+ 1),4)

)

× ρ (x0(0))
K∏
n=0

µ (x0(j)− r (h(j)))
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The approximate marginals are chosen as

πl
(
{xl(n)}n∈Sl

|h(0), . . . , h(K)
)
∝

ql
(
{xl(n)}n∈Sl

)
ρ (xl(0))

K∏
n=0

µ (xl(j)− r (h(j)))

where V , ql and Sl are as defined in the previous section.

In this example, samples of the smoothed path are generated between time

time 0 and time 10 for the same diffusion in a double well potential. The

densities µ and ρ are chosen as

µ = N(0, 0.01) and ρ(x) ∝ exp
(
−
(
x2 − 1

)2)
The function r in (14) is the identity function. The observation times are

s0 = 0, s1 = 1, . . . , s10 = 10 with H(j) = −1 for j = 0, . . . , 5 and H(j) = 1

for j = 6, . . . , 10. 4 = 2−10. There are 8 chains (L = 7). The observed swap

acceptance rates are reported in table (2). Notice that the swap rates are

again highest at the lower levels but, for this problem, become unreasonably

small at the highest level.

Table 2: Swap acceptance rates for filtering/smoothing problems

Levels1 0/1 1/2 2/3 3/4 4/5 5/6 6/7

0.86 0.83 0.74 0.65 0.46 0.23 0.04

1 Swaps between levels l and l + 1.

Again, Y n
mid ∈ R denotes the midpoint of the path defined by Y n

0 (i.e. an

approximate sample of the path at time 5). In Figure 4 the autocorrelation of
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Y n
mid is compared to that of a standard Metropolis-Hastings rule. The figure

has been adjusted as in the previous example. The relaxation time of the

parallel chain is again clearly reduced.

0
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

parallel marginalization
Metropolis-Hastings

Figure 4: Autocorrelation of Y n
mid for Metropolis-Hastings method with 1-d

Gaussian random walk proposals (solid) and parallel marginalization (dotted).

The x-axis runs from 0 to 10000 iterations of the Metropolis-Hastings method

and from 0 to 1000 iterations of parallel marginalization. This rescaling more

than compensates for the extra work for parallel marginalization per iteration.

The algorithm is modified as in the previous example. For this problem,

acceptable swap rates require a higher choice of M in (13) than needed in

the bridge sampling problem. In this numerical experiment M = 2l for swaps

between levels l and l + 1.

The results of the Metropols-Hastings and parallel marginalization meth-
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ods applied to the smoothing problem above after a run time of 10 minutes

on a standard workstation are presented in figure 5 and 6. Apparently the

sample generated by parallel marginalization is a reasonable bridgepath while

the Metropolis-Hastings method has clearly not converged.

0
-1.5

-1

-0.5

0

0.5

1

1.5

observations

Figure 5: Metropolis-Hastings generated smoothed path from Section 3.2 after

a 10 minute run on a standard desktop workstation. Clearly the method has

not converged.

4 Conclusion

A Markov chain Monte Carlo method has been proposed and applied to two

conditional path sampling problems for stochastic differential equations. Nu-

merical results indicate that this method, parallel marginalization, can have a

dramatically reduced equilibration time when compared to standard MCMC
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Figure 6: Parallel marginalization generated smoothed path from Section 3.2

after a 10 minute run on a standard desktop workstation. Apparently the

method has converged.

methods.

Note that parallel marginalization should not be viewed as a stand alone

method. Other acceleration techniques such as hybrid Monte Carlo can and

should be implemented at each level within the parallel marginalization frame-

work. As the smoothing problem indicates, the acceptance probabilities at

coarser levels can become small. The remedy for this is the development of

more accurate approximate marginal distributions by, for example, the meth-

ods in [6] and [8].
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