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Abstract

We construct an importance sampling method for certain rare event
problems involving small noise diffusions. Standard Monte Carlo schemes
for these problems behave exponentially poorly in the small noise limit.
Previous work in rare event simulation has focused on developing, in very
specific situations, estimators with optimal exponential variance decay
rates. This criterion still allows for exponential growth of the statistical
relative error. We show that an estimator related to a deterministic control
problem not only has an optimal variance decay rate, but can even have
vanishingly small statistical relative error in the small noise limit. The
method can be seen as the limit of a well known zero variance importance
sampling scheme for diffusions which requires the solution of a second
order partial differential equation. We test the scheme on several simple
examples.

1 Introduction

The simulation of unlikely events and the approximation of their (small) prob-
abilities are important problems which present several difficult computational
and mathematical challenges. These problems arise for example in mathemati-
cal finance (see e.g. [1, 2]) as well as in computational statistical physics (see e.g.
[3]) and in reliability testing during the design of medical or electronic devices
(see e.g. [4]), among many other application areas. Unfortunately standard
sampling techniques result in statistical errors that explode as the events under
consideration become more and more rare.

Previous work in rare event simulation has focused mainly on developing es-
timators with optimal exponential variance decay rates (see in particular [5, 6]).
Indeed in some settings this may be the best possible result. By tradition any es-
timator with the optimal exponential variance decay rate is called a log-efficient
estimator. Unfortunately, log-efficient importance sampling estimators are dif-
ficult to identify in general settings. Moreover, even log-efficient estimators can
have statistical relative error which grows exponentially in the small noise limit.
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Estimators with bounded or vanishing relative errors are rare in the literature
and do not seem to have been proposed previously in the small noise diffusion
setting.

In a series of papers ([6, 7, 8, 9]) Dupuis and Wang have introduced a gen-
eral framework for analyzing importance sampling estimators in several set-
tings. They suggest several adaptive importance sampling techniques (includ-
ing an analogue of the one presented here) motivated by the form a certain
Hamilton–Jacobi equation. In [7] Dupuis and Wang establish a relationship
between smooth subsolutions of this Hamilton–Jacobi equation and the rate of
variance decay of associated importance sampling estimators. In this paper we
show that a log-efficient estimator for a specific class of expectations (see (1)
below) can be explicitly constructed from certain non-smooth (viscosity) solu-
tions of an analogous Hamilton–Jacobi Equation. Moreover we show that this
estimator can have vanishing relative error. Our estimator is associated with
the solution to a deterministic optimal control problem (and the associated first
order Hamilton–Jacobi equation) and is, in some sense, the limit of a family
of zero variance estimators. This deterministic optimal control problem can, in
principle, be solved on-the-fly without finding the global solution of any partial
differential equation.

More precisely, the work in this paper concerns the estimation of quantities
of the form

E
[
e−

1
ε g(X

ε)
]

(1)

where g is a suitable functional on C
(
[0, T ] : Rd

)
and Xε is the solution of the

stochastic differential equation

dXε(s) = b(Xε(s)) ds+
√
ε σ(Xε(s)) dW (s), s ∈ [0, T ]

Xε(0) = x0 (2)

with W a d-dimensional Brownian motion on some probability space (Ω,G, P ) .
An important special case of (1) corresponds to the choice, g = 0 if Xε ∈ A ⊂
C
(
[0, T ] : Rd

)
and g =∞ otherwise. In this case (1) becomes

P (Xε ∈ A) . (3)

In (1), (2), and (3), ε > 0 is a parameter and we will be interested mainly in
situations where ε � 1, i.e. when the noise amplitude in (2) is small and the
functional e−

1
ε g(X

ε) is rapidly varying in Xε.
To understand the difficulties presented by the problem, consider the follow-

ing simple estimator for the expectation in (1)

δ(ε) =
1
M

M∑
j=1

e−
1
ε g(Xεj ) (4)

where each Xε
j is an independent sample of Xε. This estimator is unbiased, i.e.

E [δ(ε)] = E
[
e−

1
ε g(X

ε)
]
,
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and its variance is

var (δ(ε)) =
1
M

(
E
[
e−

2
ε g(X

ε)
]
−E

[
e−

1
ε g(X

ε)
]2)

.

Therefore, the relative error of this estimator, defined as

ρ (δ(ε)) =

√
var (δ(ε))
E [δ(ε)]

, (5)

is given by

ρ (δ(ε)) =
1√
M

√√√√√√ E
[
e−

2
ε g(X

ε)
]

E
[
e−

1
ε g(X

ε)
]2 − 1. (6)

As one would hope, the error of the estimator decreases with increasing sample
size (M). However, Varadhan’s lemma (see e.g. [10, 11, 12]) indicates that,
under suitable assumptions, we have

lim
ε→0

ε log E
[
e−

1
ε g(X

ε)
]

= − inf
ϕ∈AC([0,T ]),
ϕ(0)=x0

{I (ϕ) + g (ϕ)} := −γ1 (7)

and
lim
ε→0

ε log E
[
e−

2
ε g(X

ε)
]

= − inf
ϕ∈AC([0,T ]),
ϕ(0)=x0

{I (ϕ) + 2g (ϕ)} := −γ2

where AC ([0, T ]) is the set of all absolutely continuous functions from [0, T ] into
Rd. Here I(ϕ) is the rate functional for the process Xε defined as

I(ϕ) = inf
u∈L2([0,T ]),
ϕ̇=b+σ u

∫ T

0

1
2
|u(s)|2ds (8)

for ϕ ∈ AC ([0, T ]) . From Jensen’s inequality it is always the case that

γ2 ≤ 2 γ1. (9)

When γ2 = 2 γ1 the simple estimator in (4) is called log-efficient. We will discuss
the concept of log-efficiency more below. Often the inequality in (9) is strict
and (6) implies that the relative error ρ (δ(ε)) increases exponentially for fixed
M as ε→ 0. In fact, from expression (6),

ρ (δ(ε)) =
1√
M

√
e

2 γ1−γ2+o(1)
ε − 1.

and the relative error can blow up even when γ2 = 2 γ1. In order to control the
relative error of the estimator δ(ε) one must increase the number of samples
exponentially as ε is decreased.

3



Importance sampling is a standard technique by which one can attempt to
improve the efficiency of Monte Carlo simulations. In the context of diffusions
importance sampling is carried out as follows. Suppose that F is the complete
filtration induced by W and consider the distribution Q given by the change of
measure

dQ

dP
= exp

(
1√
ε

∫ T

0

〈U(t), dW (t)〉 − 1
2ε

∫ T

0

|U(t)|2dt

)
where U(s) is an F-progressively measurable process such that the right hand
side of this expression is a true martingale. By Girsanov’s Theorem, we know
that the above changes of measure completely describe the family of distribu-
tions which are absolutely continuous with respect to P. If we focus on choices
of U which can be written v(t,Xε(t)) for some function v on [0, T ] × Rd, then
instead of (4) we can use the following estimator for the expectation (1)

δ̂(ε) =
1
M

M∑
j=1

e−
1
ε g(X̂εj )Zj (10)

where

Zj = exp

(
− 1√

ε

∫ T

0

〈v(t, X̂ε
j (t)), dŴj(t)〉+

1
2ε

∫ T

0

|v(t, X̂ε
j (t))|2dt

)
(11)

and each pair
(
Ŵj , X̂

ε
j

)
is an independent sample of the pair (W,Xε) generated

according to the distribution Q with

dQ

dP
= exp

(
1√
ε

∫ T

0

〈v(t,Xε(t)), dW (t)〉 − 1
2ε

∫ T

0

|v(t,Xε(t))|2dt

)

instead of P. Notice that Zj is the realization of dP
dQ corresponding to the pair(

Ŵj , X̂
ε
j

)
. As we will see in the next section (see Remark 1) generating the

required samples is not difficult.
For any reasonable choice of v expression (10) defines an unbiased estimator

for (1). The goal of any importance sampling implementation is to replace the
estimator (4) by one with smaller variance by making an intelligent choice of v.
This is not a trivial task. To see what this entails, note that the relative error
of the estimator defined in (10) and (11) is

ρ(δ̂(ε)) =

√
var
(
δ̂(ε)

)
E
[
δ̂(ε)

] =
1√
M

√√√√√√√EQ

[
e−

2
ε g(X

ε)
(
dP
dQ

)2
]

E
[
e−

1
ε g(X

ε)
]2 − 1 (12)

where EQ represents expectation with respect to the measure Q. Therefore, to
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control the relative error of δ̂(ε) one must control the ratio

R(δ̂(ε)) =
EQ

[
e−

2
ε g(X

ε)
(
dP
dQ

)2
]

E
[
e−

1
ε g(X

ε)
]2 . (13)

Just as in (9), Jensen’s inequality implies that R(δ̂(ε)) ≥ 1 and

lim sup
ε→0

−ε log EQ

[
e−

2
ε g(X

ε)

(
dP

dQ

)2
]
≤ 2 lim

ε→0
−ε log E

[
e−

1
ε g(X

ε)
]

= 2 γ1

where γ1 is defined in expression (7). 2 γ1 therefore represents the slowest pos-
sible rate of growth of the ratio R(δ̂(ε)) (and of ρ(δ̂(ε)) by (12)). Our first
goal is to choose a function v in expressions (10) and (11) so that the resulting
importance sampling estimator achieves this minimal rate of error growth. For
this reason we use the following standard definition.

Definition 1. An importance sampling estimator of the form (10) is log-
efficient if

lim
ε→0
−ε logR(δ̂(ε)) = 0. (14)

The criterion in (14) is also variously refered to as efficiency and asymptotic
efficiency or optimality. Log-efficiency is difficult to establish in all but very
specific settings. Moreover, log-efficiency is far from the best result that one
might hope for in an estimator. In particular it only implies that

ρ(δ̂(ε)) =
1√
M

eo(1)/ε,

and does not rule out, for example, that the relative error increases exponentially
in ε−α for some α ∈ (0, 1).

Inspection of formula (7) suggests that it may be beneficial to bias paths of
Xε to follow the trajectory ϕ̂ where

I (ϕ̂) + g (ϕ̂) = γ1.

If we re-weight the likelihood that Xε follows any particular trajectory ϕ ∈
AC ([0, T ]) by the weight e−

1
ε g(ϕ) then one can think of ϕ̂ as the trajectory

that Xε is most likely to follow (when ε is small). One might hope then that
replacing samples of Xε by samples of, for example, the process Y ε which solves
the stochastic differential equation

dY ε(t) = ˙̂ϕ(t) dt+
√
ε σ(Y ε(t)) dW (t), X̂ε(0) = x0 (15)

and reweighting each sample appropriately might produce an estimator with
favorable error properties. The resulting importance sampling estimator would
correspond to the choice

v(t, x) = σ−1(t, x) ( ˙̂ϕ(t)− b(t, x)).
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We will refer to this estimator as the Cramér Tranformation estimator. Un-
fortunately, as we will see in Section 3, the Cramér Tranformation estimator is
not, in general, log-efficient.

As we discuss in the next section, in some cases it is actually possible to find
a function v = vε depending on ε, such that

ρ(δ̂(ε)) = 0

for each ε > 0, i.e.
R(δ̂(ε)) = 1.

The estimator corresponding to vε is not at all practical, but it gives hope that
one might be able to find a more practical choice for v which is independent of
ε and such that

lim
ε→0

ρ(δ̂(ε)) = 0

which is equivalent to the vanishing error criterion given by the following defi-
nition.

Definition 2. Any estimator satisfying

lim
ε→0

ρ(δ̂(ε)) = 0

will be called a vanishing error estimator.

The theoretical results in this paper will focus on establishing the vanishing
error criterion under appropriate conditions. We will also provide numerical
evidence that, under more general conditions, our estimator has the following
slightly weaker property.

Definition 3. Any estimator satisfying

lim
ε→0

ρ(δ̂(ε)) <∞

will be called a bounded error estimator.

For a scheme to have vanishing or bounded error it must not only have
the optimal rate of variance decay, but it must also match (or nearly match)
the large deviations prefactor, i.e. the e−o(1)/ε term in the large deviations
expression

E
[
e−

1
ε g(X

ε)
]

= e−(γ1+o(1))/ε (16)

which is equivalent to (7). Vanishing and bounded error estimators are the
exception in rare event importance sampling schemes. However, recent studies
have established bounded error for an analogue of the estimator suggested here
in some specific settings (see [13]). Instead of requiring more and more samples
as ε → 0 which is the case for most log-efficient estimators (estimators satisfy-
ing (14)), these schemes will actually require a constant number or even fewer
samples as ε→ 0.
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The remainder of this paper is organized as follows. In Section 2 we moti-
vate the construction of our estimator and discuss our main results. Our main
theorems, Theorem 1 and Theorem 2, which establish the log-efficiency and
vanishing error characteristics of our estimator are also first stated in Section 2.
Section 3 contains numerical studies on two simple problems. Sections 4 and 5
contain more detailed descriptions of the log-efficiency result and the vanishing
error result along with their proofs.

Before concluding this introduction we record the following definitions and
assumptions that will be used throughout the paper.

Definition 4. For any x ∈ Rd define the function,

a(x) = σ(x)σ(x)T .

Definition 5. For any x ∈ Rd the norm ‖·‖x is defined by

‖β‖x =
√〈

β, a(x)−1 β
〉

for β ∈ Rd.

Assumption 1. b(x) and σ(x) are smooth and bounded and have bounded first
derivatives.

Assumption 2. There exists an η > 0 such that for all x ∈ Rd and β ∈ Rd,

〈β, a(x)β〉 ≥ η |β|2.

2 Discussion and statements of main results

As mentioned in the introduction, while log-efficiency is often the best available
result in rare event sampling, it still allows for very poor behavior of the relative
error as ε→ 0. Moreover, log-efficiency is difficult to verify in all but very specific
situations. In this section we introduce an estimator which, under appropriate
conditions, is not only log-efficient on very general problems but also satisfies
the remarkable property that

ρ
(
δ0(ε)

)
→ 0

as ε → 0 (see Theorems 1 and 2). In the interest of clarity, we restrict the
discussion in this section and in the rest of the paper to the estimation of
expectations of the form E

[
e−

1
ε g(X

ε(T ))
]

which includes probabilities of the form
P (Xε(T ) /∈ D) for an open domain with x0 ∈ D. However, the results extend
(in a modified form) to more general cases such as path dependent functionals
of the form

g (Xε) =
∫ τD∧T

0

l(t,Xε(t)) dt+ ψ(Xε(τD ∧ T )) (17)

where τD is the first escape time of the process from some domain D.
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2.1 Motivation and description of the method

We begin by establishing a formal connection with a zero variance estimator.
Let Xε

t,x be the solution of the stochastic differential equation

dXε
t,x(s) = b(Xε

t,x(s)) ds+
√
ε σ(Xε

t,x(s)) dW (s), Xε
t,x(t) = x (18)

(note that the subscript t denotes the initial time and not the value of the time
parameter as is sometimes the case in the stochastic process literature). Define
the function

Φε(t, x) = E
[
e−

1
ε g(Xεt,x(T ))

]
.

Our goal as stated in the introduction is to construct an importance sampling
estimator of Φε(0, x0). It will prove useful to expand this goal to any possible
initial condition, i.e. to the estimation of Φε(t, x) for any particular (t, x) ∈
[0, T ]×Rd. It is well known that, for each ε > 0, a zero variance estimator of Φ
is available. Indeed a simple application of Ito’s formula shows that if

vε := −εσ
T DxΦε

Φε
(19)

then Qεt,x-almost surely we have

e−
1
ε g(Xεt,x(T )) dP

dQεt,x
= Φε(t, x)

where

dQεt,x
dP

= exp

(
− 1√

ε

∫ T

t

〈vε(s,Xε
t,x(s)), dW (s)〉+

1
2ε

∫ T

t

|vε(s,Xε
t,x(s))|2ds

)
.

(20)
This change of measure is sometimes called the Doob h-transform. An obvious
strategy is to construct an estimator of the form (10) using v = vε, i.e. to
construct the estimator

δt,x(ε) =
1
M

M∑
j=1

e−
1
ε g(X̂εj )Zj (21)

where

Zj = exp

(
− 1√

ε

∫ T

t

〈vε(s, X̂ε
j (s)), dŴj(s)〉+

1
2ε

∫ T

t

|vε(s, X̂ε
j (s))|2ds

)
(22)

and each pair
(
Ŵj , X̂

ε
j

)
is an independent sample of the pair

(
W,Xε

t,x

)
gener-

ated according to the distribution Qεt,x. From (20) each sample is almost surely
equal to Φε(t, x) and the resulting estimator has zero variance and therefore
zero relative error.
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The function Φε satisfies the backward Kolmogorov equation

∂tΦε + 〈b,DxΦε〉+
ε

2
tr aD2

xΦε = 0. (23)

One could, therefore, attempt to discretize and solve the partial differential
equation (23) and use the estimator of the form above to approximate E

[
e−

1
ε g(Xεt,x(T ))

]
.

While in low dimensions these steps can be carried out, this strategy is not prac-
tical since if we can solve for Φε we have our answer and Monte Carlo is not
necessary.

These ideas, however, can be modified and put to use in high dimensions.
Notice that for each ε > 0 the function

Gε = −ε log Φε (24)

solves the second order Hamilton–Jacobi equation

−∂tGε +H(x,DxG
ε(t, x))− ε

2
tr aD2

xG
ε = 0 (25)

with terminal condition Gε(T, x) = g(x) where

H(x, p) = −〈b(x), p〉+
1
2
|σ(x)T p|2. (26)

In terms of Gε, the zero variance estimator above corresponds to the choice

vε = −σT DxG
ε. (27)

It is natural to replace Gε by its zero viscosity approximation G, i.e. by the
viscosity solution to the first order Hamilton–Jacobi equation,

−∂tG+H(x,DxG(t, x)) = 0 (28)

with terminal condition G(T, x) = g(x), and to use the function

v0 := −σT DxG (29)

in place of vε in (21) to define an importance sampling estimator. For any
particular initial point (t, x) ∈ [0, T ] × Rd we will call the resulting estimator
δ0
t,x(ε). At times we will need to consider the properties of our estimator over

sets of initial conditions. For this reason we will often refer to our estimator as
δ0(ε) without arguments in the subscript.

The expression, (29), for v0 immediately raises an important practical issue.
Evaluating the function v0 in principle requires solving the partial differential
equation (28) to find G and then differentiating to find DxG. In more than a few
dimensions, finding the global solution of (28) is no more practical than is finding
Gε the solution of (25). This difficulty can be avoided by taking advantage of
an optimal control representation of G. Indeed, equations of the form (28) are
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typically associated with an appropriate optimal control problem. Under very
general conditions the unique uniformly continuous viscosity solution of (28) is

G(t, x) = inf
ϕ∈AC([t,T ]):
ϕ(t)=x

{∫ T

t

1
2
‖ϕ̇(s)− b(ϕ(s))‖2ϕ(s) ds+ g (ϕ(T ))

}
. (30)

Indeed if the expression on the right hand side of (30) is continuous and if a
minimizer ϕ̂t,x ∈ ([t, T ]) exists for every (t, x) ∈ [0, T ] × Rd, then by Theorem
II.7.2 in [14] relation (30) holds. The following two definitions will be useful.

Definition 6. We will call a function ϕ̂t,x ∈ AC([t, T ]) an optimal control
trajectory at the point (t, x) if

ϕ̂t,x ∈ arg inf
ϕ∈AC([t,T ]):
ϕ(t)=x

{∫ T

t

1
2
‖ϕ̇(s)− b(ϕ(s))‖2ϕ(s) ds+ g (ϕ(T ))

}
(31)

i.e.

G(t, x) =
∫ T

t

1
2
‖ ˙̂ϕt,x(s)− b(ϕ̂t,x(s))‖2ϕ̂t,x(s) ds+ g (ϕ̂t,x(T )) . (32)

Definition 7. A point (t, x) is called a regular point if there is a unique ϕ̂t,x ∈
AC([t, T ]) satisfying (31).

At any regular point there is a convenient representation of v0 in terms of the
unique optimal control. The statement of the relevant proposition is as follows.

Proposition 1. If (t, x) ∈ [0, T ]×Rd is a regular point then the unique optimal
control trajectory at (t, x), ϕ̂t,x, solves the ordinary differential equation

˙̂ϕt,x(s) = b(ϕ̂t,x(s)) + σ(ϕ̂t,x(s)) v0(s, ϕ̂t,x(s)), for a.e. s ∈ [t, T ].

The proof of Proposition 1 uses a standard control theory argument and
is therefore not included. When the optimal control ϕ̂t,x has a continuous
derivative Proposition 1 implies that

v0(t, x) = σ(x)−1
(

˙̂ϕt,x(t)− b(x)
)
.

This alternative description allows one to evaluate v0 “on-the-fly” only at those
points where it is needed. As we evolve each sample we will need to know
v0(s, X̂ε

j (s)). Instead of precomputing G everywhere we solve an optimization
problem at the single point (s, X̂ε

j (s)) to find the ϕ̂s,X̂εj (s) ∈ AC([s, T ]) satisfying
(31). An analogous computational strategy was suggested, in a different setting,
in [6] and [8]. In our setting, the approximation of the optimal trajectories
can be accomplished as in [15]. While this procedure has to be carried out
for each s ∈ [0, T ], if the optimal control trajectory varies slowly along the
path of (s, X̂ε

j (s)) the computation can be accelerated by continuation. We
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will investigate computational issues in future work. In this paper we focus
on the theoretical aspects of the resulting estimator. Before we move on to a
discussion of those theoretical issues we briefly mention how our importance
sampling estimator is implemented.

Remark 1. If W is a Brownian motion under P then the process Ŵ = W −
1√
ε

∫ ·
t
v0(s,Xε

t,x(s)) ds is a Brownian motion under Q0
t,x, where

dQ0
t,x

dP
= exp

(
− 1√

ε

∫ T

t

〈v0(s,Xε
t,x(s)), dW (s)〉+

1
2ε

∫ T

t

|v0(s,Xε
t,x(s))|2ds

)
.

(33)
In terms of Ŵ , the process Xε

t,x solves the stochastic differential equation

dXε
t,x(s) = (b(Xε

t,x(s)) + σ(Xε
t,x(s)) v0(s,Xε

t,x(s))) ds

+
√
ε σ(Xε

t,x(s)) dŴ (s). (34)

This implies that the pair (W,Xε
t,x) has the same distribution under Q0

t,x as has

the pair
(
W + 1√

ε

∫ ·
t
v0(s, X̂ε

t,x(s)) ds, X̂ε
t,x

)
under P where X̂ε

t,x is the strong
solution of the equation

dX̂ε
t,x(s) = (b(X̂ε

t,x(s)) + σ(X̂ε
t,x(s)) v0(s, X̂ε(s))) ds

+
√
ε σ(X̂ε

t,x(s)) dW (s). (35)

Thus we can define an estimator with the same distribution as δ0
t,x(ε) by replac-

ing each sample (Ŵj , X̂j) of (W,Xε
t,x) generated under Q0

t,x by an independent

sample of
(
W + 1√

ε

∫ ·
t
v0(s, X̂ε

t,x(s)) ds, X̂ε
t,x

)
generated under P. In fact we will

define δ0
t,x(ε) by

δ0
t,x(ε) =

1
M

M∑
j=1

e−
1
ε g(X̂εj )Zj (36)

where now

Zj = exp

(
− 1√

ε

∫ T

t

〈v0(s, X̂ε
j (s)), dŴj(s)〉 −

1
2ε

∫ T

t

|v0(s, X̂ε
j (s))|2ds

)
(37)

and each pair
(
Ŵj , X̂

ε
j

)
is an independent sample of the pair

(
W,Xε

t,x

)
gener-

ated according to the distribution P.

The relationship given by Proposition 1, between the optimal control ϕ̂t,x
defined in (31) and the function v0 = −σT DxG, implies that equation (35) can
be written as

dX̂ε
t,x(s) = ˙̂ϕs,X̂εt,x(s)(s) ds+

√
ε σ(X̂ε

t,x(s)) dW (s). (38)
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This equation should be compared with expression (15) corresponding to the
Cramér Tranformation estimator. Equation (38) requires finding the optimal
control trajectory at each point along a path of X̂ε

t,x, while equation (15) only
requires finding one initial optimal control trajectory. As we will see in Section 3,
this appearant computational advantage of the Cramér Tranformation estimator
can be more than negated by its poor performance on some generic problems.

2.2 Main results.

As mentioned in the introduction, previous work on importance sampling schemes
for rare event problems has focused on developing log-efficient schemes in spe-
cific cases. In Theorems 1 and 2 below we will give conditions under which our
estimator is not only log-efficient, but also has vanishing error. In general we
cannot expect the viscosity solution of (28) to be continuously differentiable so
our control function v0 = −σT DxG may not be continuous. It is important,
therefore, that our conditions include some cases in which v0 is not continuous.
The non-smooth behavior of v0 is the major difficulty that has to be overcome
in the proofs of both Theorems 1 and 2 below. The statement of Theorem 1
reflects this difficulty in that we are forced to be very specific about the possible
discontinuities allowed for v0 (see Assumption 3 in Section 4). Extending The-
orem 1 to allow more general discontinuities would have to be accomplished on
a case by case basis since the many possible discontinuities all require slightly
different treatment. To reflect our belief that log-efficiency holds under much
weaker conditions, Assumption 3 is replaced in the statement of Theorem 2 by
the more general requirement that our estimator satisfies a form of log-efficiency
(see Definition 8).

In slightly more generality than in (7), the Laplace Principle for Xε
t,x is

lim
ε→0
−ε log E

[
e−

1
ε g(X

ε
t,x)
]

= inf
ϕ∈AC([t,T ])
ϕ(t)=x

{It (ϕ) + g (ϕ(T ))}

where we have extended the definition of the rate function in (8) to

It(ϕ) = inf
u∈L2([t,T ]):
ϕ̇=b+σ u

∫ T

t

1
2
|u(s)|2ds (39)

for any t ∈ [0, T ]. Under our assumptions,

It(ϕ) =
1
2

∫ T

t

‖ϕ̇(s)− b(ϕ(s))‖2ϕ(s) ds

and so
inf

ϕ∈AC([t,T ])
{It (ϕ) + g (ϕ(T ))} = G(t, x).

Thus the Laplace Principle for Xε
t,x can be written,

lim
ε→0
−ε log E

[
e−

1
ε g(X

ε
t,x)
]

= G(t, x). (40)
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Recalling Definition 1, the importance sampling estimator corresponding to
the change of measure

dQ

dP
= exp

(
− 1√

ε

∫ T

t

〈v(s,Xε
t,x(s)), dW (s)〉+

1
2ε

∫ T

t

|v(s,Xε
t,x(s))|2ds

)
. (41)

is log-efficient at the point (t, x) ∈ [0, T ]× Rd when

lim inf
ε→0

V ε(t, x) = 2G(t, x) (42)

where we have defined the function

V ε(t, x) = −ε log EQ

[
e−

2
ε g(Xεt,x(T ))

(
dP

dQ

)2
]
. (43)

In Theorem 2 below we will show that when δ0(ε) satisfies a slightly stronger
form of log-efficiency, uniform log-efficiency, then the relative error can actually
vanish as ε→ 0. Uniform log-efficiency is defined as follows.

Definition 8. The importance sampling estimator corresponding to the change
of measure in (41) is uniformly log-efficient if

lim
ε→0

sup
(t,x)∈K

|V ε(t, x)− 2G(t, x)| = 0 (44)

for any compact set K ⊂ [0, T ]× Rd.

In other words an importance sampling scheme is uniformly log-efficient if the
function V ε defined in (43) converges to 2G uniformly on compact subsets of
[0, T ] × Rd. If an estimator is uniformly log-efficient then it is log-efficient at
any point (t, x) ∈ [0, T ]× Rd. An arbitrary choice of the function v in (41) will
not result in a uniformly efficient or even efficient importance sampling scheme.
The next theorem asserts that if v = v0 then the resulting scheme is uniformly
efficient. As already mentioned, in the statement of Theorem 1 we make specific
assumptions about the form of the possible discontinuities of v0 = −σT DxG.
The precise statement of the result is as follows.

Theorem 1. Assume that v0 = −σT DxG satisfies Assumption 3 in Section 4.
Then the estimator δ0(ε) corresponding to the choice v = v0 in (41) is uniformly
log-efficient.

The proof of Theorem 1 proceeds in two steps. First we identify a function
V (t, x) (see equation (66)) which is the uniform limit on compact sets of V ε

and then we show that V = 2G. The identification of V is essentially a Laplace
Principle type result and is the subject of Section 4.1. In our case we will see that
what is needed is a Laplace Principle for a discontinuous exponential functional.
Results establishing Laplace Principles with discontinuous functionals are rare
in the literature. We will apply the weak convergence arguments used to prove

13



the Laplace Principle for diffusions with discontinuous drift in [16]. Section 4.2
contains the proof that V = 2G, the second step in our proof of Theorem 1.
The function V is defined by an optimal control type variational problem with
a discontinuous running cost. This discontinuity requires a slight modification
of the standard verification argument.

With uniform log-efficiency established by Theorem 1 it is relatively easy to
prove that we can expect much more of the estimator δ0(ε) at least in special
regions. In Theorem 2 we show that our estimator has vanishing relative error
in regions where G is sufficiently smooth. As mentioned after Definitions 2
and 3 this result establishes that our estimator accurately captures the e−o(1)/ε

prefactor in the expression (equivalent to the Laplace Principle in (40))

E
[
e−

1
ε g(X

ε
t,x(T ))

]
= e−(G(t,x)+o(1))/ε

The precise statement of the theorem is as follows.

Theorem 2. Let (t, x) be contained in a region of strong regularity N ⊂ [0, T ]×
Rd. Suppose that G is smooth on N̄ and that δ0(ε) is uniformly log-efficient.
Then the relative error ρ(δ0

t,x(ε)) defined in (12) satisfies

lim
ε→0

ρ(δ0
t,x(ε)) = 0.

The concept of a region of strong regularity will be defined in Section 5.
In particular, on any region of strong regularity G solves the Hamilton–Jacobi
equation (28) in the classical sense. As established by the following proposition,
when g is sufficiently smooth these sets comprise almost all of space and the
requirement in the statement of Theorem 2 that (t, x) be contained in a region
of strong regularity is hardly restrictive.

Proposition 2. Suppose that g is smooth. Then the set of points which are
contained in a region of strong regularity has full Hausdorff Dimension.

Even with Proposition 2 in hand, it is comforting to know that while there
may be points where our scheme does not have vanishing error it will be log-
efficient everywhere (at least under the assumptions of Theorem 1).

Theorem 2 may seem natural given that, at least informally, the estimator
δ0(ε) is the limit of the zero variance estimation scheme described in the begin-
ning of this section. However, v0 is, at least formally, the limit of the log trans-
formation −ε log Φε of Φε. One might expect, therefore, that all subexponential
information about Φε should be lost in this limit. It is somewhat surprising that
the estimator can be more than just log-efficient. It is also highly unusual to
find a generally applicable log-efficient scheme, let alone one that has vanishing
or bounded relative error. As mentioned earlier, even a log-efficient scheme can
require more and more samples as ε → 0 our estimator can actually requires
fewer samples (under appropriate conditions) as ε → 0. In the next section we
will see that even some educated choices of importance sampling measures (Q)
can lead to disastrous results.
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The restriction on the possible discontinuities of v0 in Theorem 1 (in particu-
lar Assumption 3) excludes many interesting cases. Once uniform log-efficiency
has been established as assumed in Theorem 2 those discontinuities become
much less of an issue. What remains an issue, however, is the boundedness of
v0. For many important problems the function v0(t, x) = −σT (t, x)DxG(t, x)
will blow up as t approaches the terminal time T. In particular our requirement
that v0 be bounded essentially constricts us (with some exceptions) to cases in
which

E
[
e−

1
ε g(X

ε
t,x(T ))

]
= e−

1
εG(t,x)(C + o(1)) (45)

for some constant C, i.e. to leading order the Laplace Principle prefactor does
not depend on ε (see the discussion around expression (16)).

The behavior in (45) is in contrast, for example, to the case that g =∞ on
D and g = 0 on Dc for some domain D. Since estimating probabilities of the
form

P
(
Xε
t,x(T ) /∈ D

)
(46)

is an important problem, it useful to try to extend Theorem 2 to cover this case.
Even for probabilities of the form in (46) there are many possible prefactors
depending on the geometric properties of the set D. As for the possible discon-
tinuities of v0, each of the different cases requires slightly different treatment.
Furthermore, examination of the proof and numerical experiments suggest that
vanishing error may be too much to hope for here. However there is numerical
and theoretical evidence that, at least when the boundary of D is smooth, our
estimator may have asymptotically bounded relative error, i.e.

lim sup
ε→0

ρ
(
δ0
t,x(ε)

)
<∞. (47)

We will consider this extension in future work.

3 Illustrative examples

In this section we consider a couple of simple example problems to illustrate
some interesting features of our results. Let Xε be the solution of the simple
stochastic differential equation

dXε(t) =
√
ε dW (t), Xε(0) = 0.1, (48)

for 0 ≤ t ≤ 1 (T = 1), where W is a Brownian motion in R. In the first of the
following subsections we estimate E

[
e−

1
ε g(X

ε(1))
]

for a continuous function g.

We will find that, consistent with the conclusion of Theorem 2, our estimator
appears to have vanishing error. We will also discuss our assumptions further
in connection with the example. In the second subsection we will consider
the probability P (Xε(1) /∈ D) that Xε(1) is outside of a domain D given that
Xε(0) ∈ D. As already mentioned, while this case is not contained in Theorem
2 there is some theoretical evidence that our estimator might have bounded
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error. We will provide numerical evidence supporting this assertion. We will
also compare our estimator with the standard Monte Carlo estimator δ(ε) de-
scribed in the introduction as well as an estimator suggested by the proof of the
Large Deviations Principle (the Cramér Tranformation estimator) which has
been suggested and studied in several publications.

As described in the previous section, the estimator presented in this paper
requires finding the minimizing trajectory for the variational problem in (30)
at each point along any sample trajectory (see Remark 1 and equation (38)).
In both of the examples below the function g for which we wish to approxi-
mate E

[
e−

1
ε g(X

ε(1))
]

is chosen so that whenever x = 0, there are two distinct
minimizers in (30). As any sample trajectory Xε(s) passes across {x = 0} , the
control v0(s,Xε(s)) changes discontinuously from one of the two minimizers to
the other. If instead one were to use a local minimizer (not the global minimizer)
when evaluating v0, the resulting method would not only fail to be log-efficient,
but would have exploding variance. As described below, the Cramér Tranfor-
mation estimator uses the initial optimal control (computed at t = 0 and x = 0)
at all times resulting in dramatically poor performance.

3.1 Estimating E
[
e−

1
ε
g(Xε(1))

]
.

Our first example is chosen so that the control function v0 = −σT DxG is smooth
everywhere away from a discontinuity across the set [0, T ] × {x = 0} . We will
check that this discontinuity is consistent with the assumptions of Theorems 1
and 2.

Let g be defined as follows

g(x) =


1
2

(1− x)2, x > 0,

1
2

(1 + x)2, x < 0.

In this simple case we can exactly solve the variational problem (30) which
defines G and see that

G(t, x) =


(1− x)2

2(2− t)
, x > 0,

(1 + x)2

2(2− t)
, x < 0.

which implies that

v0(t, x) = −σ(x)T DxG(t, x) =


1− x
2− t

, x > 0,

−1− x
2− t

, x < 0.

To tie this discussion to that in Section 4 we will use the notation

H+ = {x ∈ R : x > 0} , H− = {x ∈ R : x < 0} ,
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and
Λ = {0} .

The function v0 is smooth everywhere away from the set [0, T ] × Λ. It is also
clear that Assumption 3, required in Theorem 1 is satisfied, i.e. the restrictions
of v0 to the sets [0, 1]×H+ and [0, 1]×H− have the smooth extensions to all of
[0, 1]× Rd,

v+(t, x) =
1− x
2− t

and
v−(t, x) =

−1− x
2− t

respectively. The extentions v+ and v− are not bounded as required by Assump-
tion 3, but smooth growth of the kind they exhibit is not a serious problem for
the theory in Sections 4 and 5. Therefore Theorem 1 assures us that our esti-
mator will be uniformly log-efficient.

Next we check the assumptions of Theorem 2 to see at which points we
can expect to see vanishing error. It is easy to see that any set of the form
[0, 1]×{x ∈ R : x > η} or [0, 1]×{x ∈ R : x < η} for η > 0 is a region of strong
regularity. Moreover G is smooth on these sets. Thus any point in either
[0, 1]×H+ or [0, 1]×H− satisfies the assumptions of Theorem 2 and our estimator
δ0(ε) (the one corresponding to setting v = v0 in (10) and (11)) is guaranteed
to have vanishing error everywhere except on the set [0, 1]×Λ where it will still
be log-efficient.

To better appreciate the strength of these results we will consider the related
Cramér Tranformation estimator. At the point (0, Xε(0)) = (0, 0.1), the unique
minimizer in expression (30) is the function

ϕ̂0,0.1(s) = 0.1 + 0.45 s.

The Large Deviations Theory essentially says that if the likelihood of each pos-
sible trajectory ϕ ∈ AC([0, 1]) is reweighted by e−

1
ε g(ϕ(1)) then the control tra-

jectory ϕ̂0,0.1 is the most likely to be close to the trajectory of Xε. Thus one
might hope that an importance sampling estimator in which one samples the
process

Y ε(s) = ϕ̂0,0.1(s) +
√
εW (s) (49)

would have small variance. The Cramér Tranformation estimator, which we
denote by δ̄0,0.1(ε), corresponds to setting

v ≡ ˙̂ϕ0,0.1 = 0.45

in expressions (10) and (11).
Analogues of the Cramér Tranformation estimator have been has been stud-

ied by several authors (see [17],[2]). For more complicated problems in which
one cannot find the minimizer in (30) exactly the estimator δ̄0,0.1(ε) can be
much cheaper to generate than our estimator because the optimal control ϕ̂0,0.1
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ε R(δ0,0.1(ε)) R(δ̄0,0.1(ε)) R(δ0
0,0.1(ε)) δ0

0,0.1(ε) exact value

1 1.0340 1.2564 1.1746 0.8368 0.8369
2−1 1.0800 1.6636 1.3494 0.7225 0.7227
2−2 1.3084 3.5982 1.6971 0.4848 0.4852
2−3 2.2672 25.526 2.2903 0.1983 0.1986
2−4 7.7807 977.66 2.5990 0.3316×10−1 0.3323×10−1

2−5 81.266 – 1.5193 0.1127×10−2 0.1129×10−2

2−6 6008.4 – 1.0200 0.1666×10−5 0.1666×10−5

Table 1: Comparison of ratios defined in (13) for each estimator. The ratio, and
therefore the relative error, is much smaller for δ0

0,0.1(ε) than for the other two
estimators. Notice also that the ratio R(δ0

0,0.1(ε)) appears to converge to 1 as
ε→ 0 (and, therefore, the relative error appears to converges to 0).

can be precomputed once while generating δ0
0,0.1(ε) requires solving a separate

optimization problem to evaluate v0 at all points along each sample trajectory.
However, the performance of δ̄0,0.1(ε) can be catastrophic on generic problems
while Theorems 1 and 2 establish the favorable performance of δ0

0,0.1(ε) in sig-
nificant generality.

In Table 1 we compare the performance of our importance sampling estima-
tor δ0

0,0.1(ε) with the unweighted estimator δ0,0.1(ε) (see (4)) and the Cramér
Tranformation estimator, δ̄0,0.1(ε), just described. The error results are reported
in terms of the ratio R defined in (13) which has no explicit dependence on the
number of samples M. Recall from formula (12) that in terms of R, the relative
error is given by

ρ =
√
R− 1√
M

so that when R is close to 1 the relative error is small. In all of our experiments
in this subsection and the next the time step used to evolve X̂ε (see Remark 1)
is 10−3. This small time step is chosen to reduce discretization effects. All of
our results have been checked with up to 109 samples to verify that the reported
values of R are stable.

The performance of δ0
0,0.1(ε) far surpasses that of the other two estimators.

Notice that despite its intuitive appeal δ̄0,0.1(ε) behaves far worse than even the
standard estimator δ0,0.1(ε). A simple calculation shows that

var
(
δ̄0,0.1(ε)

)
= e0.79/ε+o(1).

This poor behavior is due to the large importance weights corresponding to
samples of Y ε(1) which are close to −1. Such samples are exponentially unlikely
but their importance weights are large enough to cause the variance to grow
exponentially. In contrast, by Remark 1 generating an estimator with the same
distribution as δ0

0,0.1(ε) requires sampling the process X̂ε which solves

dX̂ε(s) = v0(s, X̂ε(s)) ds+
√
ε dW (s), X̂ε(0) = 0.1.
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ε R(δ0,0(ε)) R(δ̄0,0(ε)) R(δ0
0,0(ε)) δ0

0,0(ε) exact value

1 1.0336 1.3034 1.1762 0.8372 0.8373
2−1 1.0800 1.8775 1.3714 0.7212 0.7217
2−2 1.3110 5.2088 1.7604 0.4805 0.4793
2−3 2.2918 65.397 2.4711 0.1868 0.1870
2−4 8.3531 8805.1 3.3540 0.2607×10−1 0.2584×10−1

2−5 121.08 – 4.7635 0.4715×10−3 0.4744×10−3

2−6 18596 – 5.6141 0.1574×10−6 0.1591×10−6

Table 2: Comparison of ratios defined in (13) for each estimator. The ratio,
and therefore the relative error, is much smaller for δ0

0,0(ε) than for the other
two estimators. Notice however that the ratio R(δ0

0,0(ε)) continues to grow as
ε→ 0.

The drift v0 pulls X̂ε in the direction of the closest minimum of g. Consequently
samples of X̂ε(1) near −1 are much more likely than samples of Y ε(1) near −1
and produce moderate importance weights Ẑ in (11).

The initial point (0, 0.1) is contained in a region of strong regularity which
in accordance with the results reported in Table 1 implies that δ0

0,0.1(ε) will
have vanishing error (by Theorem 2). As we have checked above, v0 meets the
requirements of Theorem 1 and we know that δ0(ε) is an log-efficient estima-
tor at all points, including those not contained in a region of strong regularity.
Therefore it is worth checking the performance of δ0

0,0(ε), the estimator corre-
sponding to the initial condition X(0) = 0 which is not contained in any region
of strong regularity. These results are reported in Table 2 and we can see that
again δ0

0,0(ε) outperforms the other two estimators and again δ̄0,0(ε) (where the
optimal control û corresponding to the point (0,0.1) has been replaced by an
optimal control corresponding to the point (0,0)) behaves extremely poorly.

3.2 Estimating P (Xε(1) /∈ D) .

The goal of this subsection is to further investigate our claim at the end of
Subsection 2.2 that under more general assumptions on the behavior of v0 the
estimator δ0(ε) can still have bounded relative error, i.e.

lim
ε→0

ρ(δ0
t,x(ε)) <∞

for appropriate (t, x) ∈ [0, T ] × Rd. In particular we will attempt to estimate
P (Xε(1) /∈ D) where D ⊂ R2 is the open interval (−1, 1). Xε is still defined
as the solution of equation (48). The domain D is chosen so that away from
{t = 1} the discontinuity of v0 is qualitatively similar to the one described in
the previous subsection. As ε→ 0

sup
0≤t≤1

|Xε(t)− 0.1| → 0.

Therefore the event {Xε(1) /∈ D} becomes increasingly unlikely in this limit.
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If we define the function g as

g(x) =

{
∞, x ∈ (−1, 1),
0, x /∈ (−1, 1)

then
P (Xε(1) /∈ D) = E

[
e−

1
ε g(X

ε(1))
]
.

In this simple case we can exactly solve the variational problem (30) which
defines G and see that

G(t, x) =


(1− x)2

2(1− t)
, x ≥ 0,

(1 + x)2

2(1− t)
, x < 0.

and therefore that

v0(t, x) = −σ(x)T DxG(t, x) =


1− x
1− t

, x > 0,

−1− x
1− t

, x < 0.

Let H+ and H− be as defined in the previous subsection. The restrictions of
v0 to the sets [0, 1) × H+ and [0, 1) × H− have the smooth extensions to all of
[0, 1)× Rd,

v+(t, x) =
1− x
1− t

and
v−(t, x) =

−1− x
1− t

respectively. Unfortunately the blow up of v+ and v− as t → 1 does seem to
require non-trivial modifications of the arguments in Sections 4 and 5.

For this problem the Cramér Tranformation estimator δ̄0,0.1(ε) is constructed
as follows. At the point (0, Xε(0)) = (0, 0.1), the unique minimizer in expression
(30) is the function

ϕ̂0,0.1(s) = 0.1 + 0.9 s.

and the estimator δ̄0,0.1(ε) corresponds to setting

v ≡ ˙̂ϕ0,0.1(0) = 0.9

in expressions (10) and (11). According to Remark 1, generating samples of an
estimator with the same distribution as δ̄0,0.1(ε) requires sampling the process

Y ε(s) = ϕ̂0,0.1(s) +
√
εW (s) (50)

Because of the behavior of v+ and v− at {t = 1} neither Theorem 1 or
Theorem 2 apply in this case. Nevertheless as reported in Table 3 the per-
formance of δ0

0,0.1(ε) far surpasses that of the other two estimators. Again,
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ε R(δ0,0.1(ε)) R(δ̄0,0.1(ε)) R(δ0
0,0.1(ε)) δ0

0,0.1(ε) exact value

1 3.1259 10.065 2.2648 0.3186 0.3197
2−1 6.1948 77.460 2.8884 0.1609 0.1614
2−2 20.083 3360.8 4.2575 0.5002×10−1 0.4983×10−1

2−3 156.57 – 3.0951 0.6363×10−2 0.6386×10−2

2−4 6053.3 – 2.4925 0.1643×10−3 0.1645×10−3

2−5 – – 2.4483 0.1782×10−6 0.1782×10−6

2−6 – – 2.4861 0.3011×10−12 0.3011×10−12

Table 3: Comparison of ratios defined in (13) for each estimator. The ratio, and
therefore the relative error, is much smaller for δ0

0,0.1(ε) than for the other two
estimators. Notice also that the ratio R(δ0

0,0.1(ε)) appears to remain bounded
as ε→ 0.

the Cramér Tranformation estimator, δ̄0,0.1(ε), behaves far worse than even
the standard Monte Carlo estimator δ0,0.1(ε). While δ0

0,0.1(ε) no longer has
vanishing error (limε→0R(δ0

0,0.1(ε)) = 1) it does seem to have bounded error
(lim supε→0R(δ0

0,0.1(ε)) < ∞). This supports our suggestion that it should be
possible to modify the arguments in Sections 4 and 5 to prove that for problems
of the form P (Xε(1) /∈ D), our estimator has bounded error (in appropriate
regions).

To further investigate this possibility recall that The Large Deviations The-
ory tells us that

−ε logP (Xε(1) /∈ D)→ G(0, 0.1) as ε→ 0

but it does not provide a prefactor. In other words the Large Deviations Theory
only reveals that

P (Xε(1) /∈ D) = e−(G(0,0.1)+o(1))/ε.

It can be shown by an asymptotic expansion (see [18]) that, in this case,

P (Xε(1) /∈ D) =
√
ε e−

1
εG(0,0.1)

(
1 +O(

√
ε)
)
.

Any log-efficient estimator must satisfy

lim
ε→0
−ε log EQ

[
e−

2
ε g(X

ε)

(
dP

dQ

)2
]

= 2G(0, 0.1)

so that

EQ

[
e−

2
ε g(X

ε)
(
dP
dQ

)2
]

P (Xε(1) /∈ D)2
∼ 1
ε
e−2G(0,0.1)/ε EQ

[
e−

2
ε g(X

ε)

(
dP

dQ

)2
]
.

In this case, an estimator with bounded error must satisfy

EQ

[
e−

2
ε g(X

ε)

(
dP

dQ

)2
]

= O(ε) e−2G(0,0.1)/ε. (51)
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Careful inspection of the proof of Theorem 2 suggests that the validity of expres-
sion (51) is related to the behavior of X̂ε(1) near the boundary of D. In Figure
3.2 we compare the distribution of X̂ε(1) with the distribution of Y ε(1) and the
conditional distribution of Xε(1) under P given that Xε(1) /∈ D. The distribu-
tion of X̂ε(1) is a much better approximation of the conditional distribution of
Xε(1) under P given that Xε(1) /∈ D.

4 log-efficiency.

This section and the next contain a more in depth discussion of the theoretical
properties of the importance sampling estimator δ0(ε) introduced in Section 2.
As in that section we will focus on the estimation of quantities of the form

E
[
e−

1
ε g(X

ε
t,x(T ))

]
,

though the arguments are readily generalized to the case that g takes the form
in (17).

In this section we identify (somewhat restrictive) conditions under which
our estimator is uniformly log-efficient (see Assumption 3 below). Uniform log-
efficiency is often difficult to verify and is required in the proof of our vanishing
error result, Theorem 2. Repeating Definition 8, an importance sampling esti-
mator is uniformly log-efficient when for any compact subset K ⊂ [0, T ]× Rd,

lim
ε→0

sup
(t,x)∈K

|V ε(t, x)− 2G(t, x)| = 0 (52)

where the functions V ε and Gε are defined in expressions (43) and (30) respec-
tively.

In this section we will prove the following theorem:

Theorem 1. Assume that v0 = −σT DxG satisfies Assumption 3 below. Then
the estimator δ0(ε) corresponding to the choice v = v0 in (41) is uniformly
log-efficient.

This result will be established in two steps:

1. First we identify a function V which is the uniform limit of V ε, i.e.

V = lim
ε→0

V ε

and the convergence is uniform on compact sets.

2. Second we show that
V = 2G.

As we will see both of these steps are more difficult to prove when G is not
continuously differentiable (so that v0 is not continuous). The first step will
be accomplished using existing techniques for proving the Laplace Principle for

23



diffusions with discontinuous drift coefficients and is the subject of the next
subsection. The second step will be accomplished using a verification type
argument where extra care is taken along the set of points at which DxG does
not exist (see Section 4.2).

Before we tackle the proof of uniform log-efficiency in more generality we
consider Steps 1 and 2 when v0 is replaced by some arbitrary smooth and
bounded function v. By a straightforward application of Girsanov’s Theorem
we can rewrite V ε as

V ε(t, x) = −ε log E
[
e−

2
ε g(X̃

ε
t,x(T ))+ 1

ε

R T
t
|v(s,X̃εt,x(s))|2 ds

]
(53)

where X̃ε
t,x is the unique strong solution of the stochastic differential equation

dX̃ε
t,x(s) = (b(X̃ε

t,x(s))− σ(X̃ε
t,x(s)) v(s, X̃ε

t,x(s))) dt

+
√
εσ(X̃ε

t,x(s)) dW (s), X̃ε
t,x(t) = x (54)

(the reader should note that (54) differs from (35), the equation solved by X̂ε
t,x).

When v is a continuous bounded function the functional

F (X) = 2 g(X(T ))−
∫ T

t

|v(s,X(s))|2 ds (55)

is bounded and continuous on the Wiener space of continuous functions on
[t, T ] with the topology of uniform convergence. We can therefore appeal to the
Laplace Principle for X̃ε

t,x to conclude that

lim
ε→0

V ε(t, x) = lim
ε→0
−ε log E

[
e−

1
εF (X̃εt,x)

]
= inf
ϕ∈AC([t,T ]):
ϕ(t)=x

{∫ T

t

1
2
‖ϕ̇(s)− b(ϕ(s))

+ σ(ϕ(s)) v(s, ϕ(s))‖2ϕ(s) ds+ F (ϕ)

}
.

This identity can be rewritten as

lim
ε→0

V ε(t, x) = inf
ϕ∈AC([t,T ]):
ϕ(t)=x

{∫ T

t

L (ϕ(s), v(s, ϕ(s)), ϕ̇(s)) ds+ 2g(ϕ(T ))

}
(56)

and the function L, which we will refer to as a running cost, is defined as

L(x, α, β) = ‖β − b(x)‖2x −
1
2
‖β − b(x)− σ(x)α‖2x (57)

for α, β ∈ Rd.
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If G (and therefore v0) is smooth then we can apply the same argument
with v0 in place of v to establish Step 1. When G is smooth Step 2 is also
straightforward for the choice v = v0. One can use, for example, the method of
characteristics to prove that the limit of V ε is equal to 2G.

Considers however, the smooth function

v(t, x) = σ−1(t, x)
(

˙̂ϕ0,x0(t)− b(t, x)
)

(58)

which corresponds to the Cramér transform estimator at the point (0, x0) which
was introduced earlier. As mentioned in the introduction, this estimator is
constructed using sample paths of the process

dY ε(s) = ˙̂ϕ0,x0(s) ds+
√
ε σ(s, Y ε(s)) dW (s). (59)

In both expressions (58) and (59) ϕ̂0,x0 corresponds to the unique optimal con-
trol trajectory in (31) at the point (0, x0). For this choice of v expression (56)
implies that

lim
ε→0

V ε(0, x0) = inf
ϕ∈AC([0,T ]):
ϕ(0)=x0

{∫ T

0

‖ϕ̇(s)− b(s, ϕ(s))‖2ϕ(s) ds+ 2g(ϕ(T ))

− 1
2

∫ T

t

‖ϕ̇(s)− ˙̂ϕ0,x0(s)‖2ϕ(s) ds

}
. (60)

In order for the Cramér transform estimator to be log-efficient at the point
(0, x0) we must have that ϕ̂0,x0 is the optimal control trajectory in (60) so that
the second integral term in that expression vanishes.

Using expression (60) in the simple case that b ≡ 0 and σ ≡ I, it is not
hard to see that if g is a convex function then the Cramér transform estimator
is log-efficient. In the b ≡ 0, σ ≡ I setting the convexity of g implies that G
is actually a classical solution of (28). Note however that, even in this simple
setting, one can construct (non-convex) g so that G is a classical solution of
(28) yet the Cramér transform estimator is not log-efficient.

It is easier to understand why the Cramér fails to be log-efficient when G is
not a classical solution of (28). By a well known result in control theory (see
for example [24] or [14]) the viscosity solution of (28) fails to be differentiable
at exactly those points where the optimal control problem (30) has multiple
solutions, i.e. points at which there are multiple trajectories satisfying (31).
Suppose, for example, that ϕ̂′0,x0

is another optimal control trajectory at (0, x0)
(besides ϕ̂0,x0 which was used to define v in (58)). Then from (60) and the
definition of G in (30), it is clear that

lim
ε→0

V ε(0, x0) ≤ G(0, x0)− 1
2

∫ T

t

‖ ˙̂ϕ′0,x0
(s)− ˙̂ϕ0,x0(s)‖2ϕ̂′0,x0 (s) ds

which shows that the Cramér transform estimator is not log-efficient. Similar
problems can arise if there are multiple optimal controls at any point in [0, T ]×

25



Rd, i.e. when G fails to be differentiable at a point away from (0, x0), because
the control trajectories in (60) might find it favorable to pass through such a
point. In Section 4.2 below we will show that when we choose v = v0 these
problems cannot arise. However, we will see that special care is required to deal
with points at which G is not differentiable.

4.1 Step 1: a Laplace Principle when v0 is discontinuous.

Assume now that v0 is no longer continuous and consider the argument just used
to establish Step 1. As a consequence of the discontinuity of v0, the functional
F defined in (55) is no longer continuous. Moreover, the diffusion X̃ε

t,x has a
discontinuous drift coefficient. We cannot, therefore, apply the Laplace Principle
as in the previous discussion and relation (56) no longer holds. The validity of
the large deviations principle for diffusions with discontinuous drift coefficient
is an interesting problem and has been investigated in [19],[20], and [16] among
other papers. In a nontrivial setting these authors were able to identify a rate
function and prove a large deviations principle. In this subsection we will apply
the techniques in [16] to identify (in a nontrivial setting) a uniform limit for
V ε. The proof of Theorem 1 is completed in the next subsection where we show
that this uniform limit is equivalent to 2G.

As already mentioned the limiting behavior of V ε is more difficult to analyze
when v0 is not continuous. Under Assumption 2 the particular definition of v0

on any set of measure zero does not effect V ε. Thus when G is continuously
differentiable almost everywhere v0 can be redefined arbitrarily on the set of
points where it is not continuous without changing V ε. The same should be
true of V, the limit of V ε. This already suggests that the running cost L in the
definition of V in (66) will have to be modified. The new running cost (see (65))
does not depend on the value of v0 at its discontinuities, but it does depend
on the geometry of the set of discontinuities of v0. In fact, every possible form
of discontinuity of v0 requires different treatment, particularly in the proof of
Lemma 1 below. We restrict our analysis to the specific form of discontinuity
given in Assumption 3. This choice not only allows us to make use of the
arguments in [16] but also to illustrate some of the nontrivial consequences of
a nonsmooth v0. A major difficulty in adapting our arguments to handle more
general discontinuities is the identification of the new running cost in these cases
(for discussion of a closely related issue see [11]). In fact numerical experiments
suggest that Theorem 1 holds in much more generality.

We will assume that G is Lipschitz continuous and that v0 = −σT DxG is
also continuous on the sets [0, T ]×H+ and [0, T ]×H− where

H+ =
{
x ∈ Rd : x1 > 0

}
and H− =

{
x ∈ Rd : x1 < 0

}
but has a discontinuity on the set [0, T ]× Λ where

Λ =
{
x ∈ Rd : x1 = 0

}
.
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Assumption 3. There exist two bounded continuous functions v+ and v− de-
fined on all of [0, T ]× Rd such that

v0 = v+ on
{
x ∈ H+

}
and

v0 = v− on
{
x ∈ H−

}
.

We will prove a result of the form in (56) with a slightly more complicated
function in the place of the running cost L. Define the functions

L+(t, x, β) = L(x, v+(t, x), β), L−(t, x, β) = L(x, v−(t, x), β) (61)

and let
L0(t, x, β) = inf

{
λL+(t, x, β+) + (1− λ)L−(t, x, β−)

}
(62)

where the infimum in (62) is taken over λ ∈ [0, 1], and β+, β− ∈ Rd such that

β+
1 ≤ 0, β−1 ≥ 0 (63)

and
λβ+ + (1− λ)β− = β. (64)

Finally combine L+, L−, and L0 to form the function L̄ given by

L̄(t, x, β) =


L+(t, x, β) x ∈ H+

L0(t, x, β) x ∈ Λ
L−(t, x, β) x ∈ H−.

(65)

The next lemma establishes that

lim
ε→0

V ε = V

where V is now defined as

V (t, x) = inf
ϕ∈AC([t,T ]):
ϕ(t)=x

{∫ T

t

L̄(s, ϕ(s), ϕ̇(s)) ds+ 2g(ϕ(T ))

}
. (66)

In this definition of V the running cost L in (56) has been replace by L̄.

Lemma 1. Let g be any continuous and bounded function on Rd and suppose
that v0 satisfies Assumption 3. Then

lim
ε→0

V ε = V

and the convergence is uniform on compact subsets of [0, T ]× Rd.
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Proof. Recall from expression (53) that

V ε(t, x) = −ε log E
[
e−

1
εF (X̃εt,x)

]
where F is defined in (55) and the process X̃ε

t,x is the unique strong solution of
the stochastic differential equation in expression (54).

The functional F is not continuous but it is bounded and measurable. There-
fore we can apply Theorem 3.1 in [21] to obtain the stochastic control represen-
tation

V ε(t, x) = inf
U∈A(t)

E

[∫ T

t

1
2
|U(s)|2 ds+ F (X̃U,ε

t,x )

]
(67)

where A(t) is the space of all Rd valued F progressively measurable processes
on [t, T ] with

E

[∫ T

t

|U(s)|2 ds

]
<∞ for all U ∈ A(t)

and X̃U,ε
t,x is the unique strong solution1 of the stochastic differential equation

dX̃U,ε
t,x (s) = (b(X̃U,ε

t,x (s)) + σ(X̃U,ε
t,x (s)) (U(s)− v0(s, X̃U,ε

t,x (s)))) dt

+
√
εσ(X̃U,ε

t,x (s)) dW (s), X̃U,ε
t,x (t) = x. (68)

Notice that by setting U ← U − v0(·, X̃U,ε
t,x (·)) expression (67) can be rewritten

as

V ε(t, x) = inf
U∈A(t)

E

[∫ T

t

|U(s)|2 − 1
2
|U(s)− v0(s,XU,ε

t,x (s))|2 ds+ 2g(XU,ε
t,x (T ))

]
(69)

where for any U ∈ A(t), XU,ε
t,x is the unique strong solution of the stochastic

differential equation

dXU,ε
t,x (s) = (b(XU,ε

t,x (s)) + σ(XU,ε
t,x (s))U(s)) dt

+
√
ε σ(XU,ε

t,x (s)) dW (s), XU,ε
t,x (t) = x.

With expression (69) in hand the proof can be completed using the weak
convergence arguments in [16] and [11].

Extentions of this result to certain classes of unbounded g and v0 can be
proved using standard techniques (see [11]).

1At several points we require that certain stochastic differential equations have unique
strong solutions. General conditions under which this is true can be found in [22] and [23].
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4.2 Step 2: A verification argument.

We now move on to establishing Step 2 in the procedure outlined on page 23. In
this subsection, as in the previous subsection, Assumption 3 continues to apply.
Notice that the value function V in expression (66) has a discontinuous running
cost L̄ and we know very little in advance about its behavior. For this reason it
is easier to work with G and use the fact that it is the viscosity solution of (28)
to show that it is also the optimal value of the control problem that defines V.
This will require a verification type argument in which we take special care at
the discontinuity of DxG.

Where G is not continuously differentiable we will use the following gener-
alized definition of the derivative of G (see [24]),

D∗G(t, x) =


(q, p) ∈ R× Rd : limn→∞(qn, pn) = (q, p) for some sequence

(tn, xn)→ (t, x) such that for each n,
G is differentiable at (tn, xn) and
(qn, pn) = (∂tG(tn, xn), DxG(tn, xn)).


(70)

If G is continuously differentiable at (t, x) then

D∗G(t, x) = {(∂tG(t, x), DxG(t, x))} .

Assumption 3 implies that the restrictions of the derivative DxG to H+ and H−
are continuously extendable to all of [0, T ]× Rd. We have also assumed that G
is continuous (in fact Lipschitz continuous). It is easy to check that these facts
imply that the derivatives ∂tG and ∂G

∂xj
for j > 1 must be continuous on Rd.

This implies that if (q, p) ∈ D∗G(t, x) then

q = ∂tG and p[1] = DxG[1]. (71)

where we have used the notation

x[1] = (x2, . . . , xd)

for x ∈ Rd. Assumption 3 also implies that if (q, p) ∈ D∗G(t, x) for x ∈ Λ then
either

p1 = p+
1 = lim

z→x
y∈H+

∂G

∂x1
(t, z) (72)

or
p1 = p−1 = lim

z→x
y∈H−

∂G

∂x1
(t, z) (73)

both of which exist. Thus D∗G(t, x) is a particularly simple set consisting of at
most two points which themselves only differ in 1 component.

The next lemma provides an instantaneous optimality condition that is
needed in the proof of Lemma 3 and follows from the the fact that the func-
tions v+ and v− in the definition of L̄ are not arbitrary but are related to the
continuous value function G.
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Lemma 2. Under Assumption 3 for (q, p) ∈ D∗G(t, x)

1. if x /∈ Λ then

sup
β∈Rd

{
− 〈β, 2 p〉 − L̄(t, x, β)

}
≤ 2H(x, p). (74)

2. if x ∈ Λ then

sup
β∈Rd
β1=0

{
− 〈β, 2p〉 − L̄(t, x, β)

}
≤ 2H(x, p). (75)

Proof. Part 1 of this Lemma follows from the fact that v0 = −σTDxG and a
direct computation. To prove part 2 first recall that a point (t, x) ∈ [0, T ]×Rd
is regular if there is a unique optimal trajectory, ϕ̂t,x ∈ AC([t, T ]) at (t, x)
(see expression (31)). By a standard result in control theory G is differen-
tiable at a point (t, x) ∈ [0, T ] × Rd if and only if (t, x) is a regular point.
Thus we can assume that every point in [0, T ] × Λ is not a regular point and
every point in [0, T ] × Λc is regular. If (t, x) is regular then every point in
{(s, ϕ̂t,x(s)) : s ∈ [t, T )} is also regular. By Proposition 1 ϕ̂t,x satisfies the or-
dinary differential equation

˙̂ϕt,x(s) = b(s, ϕ̂t,x(s)) + σ(s, ϕ̂t,x(s)) v0(s, ϕ̂t,x(s)).

Thus we can assume that Λ is not an attracting set for the field b+σ v0, i.e. for
any x ∈ Λ and all t ∈ [0, T ] we have that,

[b(t, x) + σ(t, x) v+(t, x)]1 ≥ 0 and [b(t, x) + σ(t, x) v−(t, x)]1 ≤ 0. (76)

where [x]1 represents the first component of a vector x ∈ Rd.
Further, G is a viscosity solution of (28),

−∂tG+H(x,DxG) = 0

where we recall from expression (26)

H(x, p) = −〈b(x), p〉+
1
2
|σ(x)T p|2.

The fact that ∂tG is continuous on [0, T ] × Rd and that G solves (28) in the
classical sense for x /∈ Λ, therefore implies that the function

f(t, x) = H(x,DxG(t, x)) (77)

is also continuous on [0, T ]× Rd.
Using (76) a direct computation reveals that for x ∈ Λ and β ∈ Rd with

β1 = 0 we have that,

L̄(t, x, β) = inf
λ∈[0,1]

{
1
2
‖β − b(x)− λσ(x) v+(t, x)− (1− λ)σ(x) v−(t, x)‖2x

− λ|v+(t, x)|2 − (1− λ)|v−(t, x)|2
}
. (78)
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We need to show that for (q, p) ∈ D∗G(t, x) (and by expressions (71), (72), and
(73) there are only two such points),

sup
β∈Rd
β1=0

{
−〈β, p〉 − L̄(t, x, p)

}
≤ 2H(x, p)

which can be rewritten as

sup
β∈Rd
β1=0

{
−〈β, p〉 − L̄(t, x, p)

}
≤ 2f(t, x) (79)

where f was defined in (77).
Because the more general computation is somewhat tedious we will prove

(79) only in the case that b ≡ 0 and σ is the d × d identity matrix. In other
words, using expression (78), we will verify that for some (q, p) ∈ D∗G(t, x)

sup
β∈Rd
β1=0

{
− 〈β, 2p〉 − inf

λ∈[0,1]

{1
2
|β − λv+(t, x)− (1− λ) v−(t, x)|2

− λ|v+(t, x)|2 − (1− λ)|v−(t, x)|2
}}
≤ 2f(t, x) (80)

where now
f(t, x) =

1
2
|DxG(t, x)|2

and v0 = −DxG on Λc. Note that f is continuous on [0, T ]×Rd and f = 1
2 |v

0|2.
Recalling expression (71) we have that

v+
j (t, x) = v−j (t, x) for j > 1,

i.e. the functions v0
j are continuous in all of [0, T ]×Rd for j > 1. We can rewrite

the left hand side of inequality (80) as

sup
β∈Rd−1

λ∈[0,1]

{
− 〈β, 2p[1]〉 −

1
2
(
λv+

1 (t, x)− (1− λ) v−1 (t, x)
)2

+ λ
(
v+

1 (t, x)
)2

+ (1− λ)
(
v−1 (t, x)

)2 − 1
2
|β − v0

[1](t, x)|2 + |v0
[1](t, x)|2

}
.

This quantity is bounded above by

max
{(

v+
1 (t, x)

)2
,
(
v−1 (t, x)

)2}
+ sup
β∈Rd−1

{
− 〈β, 2p[1]〉 −

1
2
|β − v0

[1](t, x)|2 + |v0
[1](t, x)|2

}
. (81)
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Noting that v0
[1] = −p[1] for (q, p) ∈ D∗G(t, x), a straightforward computa-

tion reveals that

sup
β∈Rd−1

{
− 〈β, 2p[1]〉 −

1
2
|β − v0

[1](t, x)|2 + |v0
[1](t, x)|2

}
= |v0

[1](t, x)|2.

Combining this with (81) we have shown that for (q, p) ∈ D∗G(t, x),

sup
β∈Rd
β1=0

{
−〈β, p〉 − L̄(t, x, p)

}
≤ max

{
|v+(t, x)|2, |v−(t, x)|2

}
.

Since for x ∈ Λ both of the functions in the maximum on the right are equal to
2f(t, x), the proof is complete.

We can now prove the main result of this section.

Lemma 3. Under the Assumption 3,

V = 2G.

Proof. For any (t, x) ∈ [0, T ] × Rd and ϕ ∈ AC([t, T ]) with ϕ(t) = x define the
function h : [t, T ]→ R by

h(r) =
∫ r

t

L̄(s, ϕ(s), ϕ̇(s)) ds+ 2G(r, ϕ(r))

Notice that h(t) = 2G(t, x) and

h(T ) =
∫ T

t

L̄(s, ϕ(s), ϕ̇(s)) ds+ 2g(ϕ(T )).

We will prove that h(t) ≤ h(T ) by showing that ḣ ≥ 0 almost everywhere in
[t, T ]. Since ϕ ∈ AC([t, T ]) is arbitrary this will imply that

2G(t, x) ≤ inf
ϕ∈AC([t,T ]):
ϕ(t)=x

{∫ T

t

L̄(s, ϕ(s), ϕ̇(s)) ds+ 2g(ϕ(T ))

}

= V (t, x)

and the proof will be complete.
Since ϕ is absolutely continuous we can restrict our attention to those

r ∈ [t, T ] where ϕ is differentiable. The Lipschitz continuity of G and the
absolute continuity of ϕ imply that h is also absolutely continuous and there-
fore differentiable almost everywhere. Where it exists, the derivative of h is
given by

ḣ(r) = 2
d

dr
G(r, ϕ(r)) + L̄(r, ϕ(r), ϕ̇(r)). (82)
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We need to consider both of the cases ϕ(r) /∈ Λ and and ϕ(r) ∈ Λ. However,
note that if ϕ(r) ∈ Λ and [ϕ̇(r)]1 6= 0 then r is contained in some neighborhood
U ∈ [t, T ] such that ϕ /∈ Λ almost everywhere in U. We can therefore ignore
such points and assume that whenever ϕ(r) ∈ Λ, we also have that [ϕ̇(r)]1 = 0.

If ϕ(r) /∈ Λ then

d

dr
G(r, ϕ(r)) = ∂tG(r, ϕ(r)) + 〈ϕ̇(r), DxG(r, ϕ(r))〉. (83)

As in the discussion around expression (71) above, DxG[1] is exists and is con-
tinuous so that if ϕ(r) ∈ Λ with ϕ̇[1](r) = 0 then

d

dr
G(r, ϕ(r)) = ∂tG(r, ϕ(r)) + 〈ϕ̇[1](r), DxG[1](r, ϕ(r))〉.

Since p[1] = DxG[1](t, x) for (q, p) ∈ D∗G(t, x), we have that for ϕ(r) ∈ Λ with
ϕ̇[1](r) = 0

d

dr
G(r, ϕ(r)) = ∂tG(r, ϕ(r)) + 〈ϕ̇(r), p〉. (84)

Plugging expressions (83) and (84) into (82) we conclude that if ϕ(r) /∈ Λ or
if ϕ(r) ∈ Λ with ϕ̇[1](r) = 0 then for (q, p) ∈ D∗G(r, ϕ(r)),

ḣ(r) = 2∂tG(r, ϕ(r)) + 〈ϕ̇(r), 2p〉+ L̄(r, ϕ(r), ϕ̇(r)).

Lemma 2 then implies that

ḣ(r) ≥ 2∂tG(r, ϕ(r))− 2H(ϕ(r), p).

By the continuity of ∂tG and H, and from the definition of D∗G, for some
sequence xn /∈ Λ with xn → ϕ(r), we have that,

ḣ(r) ≥ 2 lim
n→∞

∂tG(r, xn)−H(xn, DxG(r, xn)).

Since G solves (28) in the classical sense on Λc,

∂tG(r, xn)−H(xn, DxG(r, xn)) = 0

for all n so that
ḣ(r) ≥ 0

and the proof is complete.

Taken together Lemmas 1 and 3 prove Theorem 1.

5 Vanishing relative error.

In the previous section we provide conditions under which the estimator δ0(ε) is
uniformly log-efficient. Uniform log-efficiency is difficult to establish as reflected
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by need for Assumption 3 in that section. In contrast, once uniform log-efficiency
has been established it is relatively easy to prove that for initial conditions
in appropriate regions, δ0(ε) satisfies asymptotic error properties much more
favorable than log-efficiency. This section’s main result, Theorem 2 establishes
that the relative error of δ0(ε) can decrease to zero as ε→ 0. We will again focus
our attention on the estimation problem for

E
[
e−

1
ε g(X

ε
t,x(T ))

]
.

In this section and in Theorem 2 we make no explicit restrictions on the form
of the set of possible discontinuities of G (i.e. Assumption 3 is not required).
Instead we assume that the estimator δ0(ε) is uniformly log-efficient and show
that if (t, x) is contained in a region of sufficient regularity for G then the relative
error of δ0

t,x(ε) satisfies
lim
ε→0

ρ
(
δ0
t,x(ε)

)
= 0

where ρ
(
δ0
t,x(ε)

)
is the relative error of the estimator δ0

t,x(ε) and is defined in
(12).

These “region(s) of sufficient regularity for G” just mentioned are defined as
follows (see [26] and [27]).

Definition 9. Let N be any relatively open subset of [0, T ]× Rd. We call N a
region of strong regularity if

1. G is C1 on N and

2. For every (t, x) ∈ N, there exists a unique optimal control trajectory (see
(31)) ϕ̂t,x ∈ AC([t, T ]) such that

{(s, ϕ̂t,x(s)) : (t, x) ∈ N and t ≤ s ≤ T} ⊂ N. (85)

Both properties in Definition 9 are crucial in the proof of Theorem 2. They
are also not very restrictive. The next proposition shows that, at least when g is
smooth, there are actually very few points which are not contained in a region
of strong regularity. The essential elements of the proof can be found in Section
I.10 of [14].

Proposition 2. Suppose that g is smooth. Then the set of points which are
contained in a region of strong regularity has full Hausdorff Dimension.

We now proceed to the statement and proof of our vanishing error result.
First notice that it follows from Remark 1 that

V ε(t, x) = −ε log E

[
e
− 2
ε g(X̂

ε
t,x(T ))− 2√

ε

R T
t
〈v0(s,X̂εt,x(s)),dW (s)〉− 1

ε

R T
t
|v0(s,X̂εt,x(s))|2 ds

]
(86)

where the process X̂ε
t,x is the unique strong solution of the stochastic differen-

tial equation in (35) and V ε was originally defined in (43). We will use this
alternative representation of V ε in the proof of Theorem 2.
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Before we give the statement of Theorem 2 the reader should recall from
expression (12) that the relative error of our estimator δ0

t,x(ε) can written as

ρ
(
δ0
t,x(ε)

)
=

1√
M

√√√√√√√EQ

[
e−

2
ε g(X

ε)
(
dP
dQ

)2
]

E
[
e−

1
ε g(X

ε)
]2 − 1

=
1√
M

√
e−

1
ε (V ε(t,x)−2Gε(t,x)) − 1

where the function Gε is defined in expression (24).

Theorem 2. Let (t, x) be contained in a region of strong regularity N ⊂ [0, T ]×
Rd. Suppose that G is smooth on N̄ and that δ0(ε) is uniformly log-efficient.
Then

lim
ε→0

ρ
(
δ0
t,x(ε)

)
= 0.

Proof. This result essentially requires that we identify the first term in an
asymptotic expansion of a large deviations limit. We follow the basic outline
of the argument in [26]. We can assume without loss of generality that N̄ is
compact. We begin by defining the stopping time

τ̂ = inf
{
s ∈ [t, T ] : (s, X̂ε

t,x(s)) /∈ N
}
,

i.e. the first exit time of (s, X̂ε
t,x(s)) from the set N.

Notice that, since G ∈ C2(N̄), Ito’s formula implies that,

G(τ̂ , X̂ε
t,x(τ̂))−G(t, x)

ε
=

1
ε

∫ τ̂

0

(
∂tG(s, X̂ε

t,x(s))

+
〈
b(X̂ε

t,x(s)) + σ(X̂ε
t,x(s))v0(s, X̂ε

t,x(s)), DxG(s, X̂ε
t,x(s))

〉
+
ε

2
tr a(X̂ε

t,x(s))D2
xG(s, X̂ε

t,x(s))
)
ds

+
1√
ε

∫ τ̂

0

〈DxG(s, X̂ε
t,x(s)), σ(X̂ε

t,x(s)) dW (s)〉.

On N, G is smooth and is a solution of the equation

∂tG+ 〈b,DxG〉 =
1
2
|σT DxG|2
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in the classical sense. Therefore, the last expression can be rewritten as

G(τ̂ , X̂ε
t,x(τ̂))−G(t, x)

ε
=

1
ε

∫ τ̂

0

(
1
2
|σ(X̂ε

t,x(s))T DxG(s, X̂ε
t,x(s))|2

+ 〈σ(X̂ε
t,x(s)) v0(s, X̂ε

t,x(s)), DxG(s, X̂ε
t,x(s))〉

+
ε

2
tr a(X̂ε

t,x(s))D2
xG(s, X̂ε

t,x(s))
)
ds

+
1√
ε

∫ τ̂

0

〈DxG(s, X̂ε
t,x(s)), σ(X̂ε

t,x(s)) dW (s)〉.

Inserting the identity v0 = −σT DxG we obtain

G(τ̂ , X̂ε
t,x(τ̂))−G(t, x)

ε
=

1
ε

∫ τ̂

0

(
− 1

2
|v0(s, X̂ε

t,x(s))|2

+
ε

2
tr a(X̂ε

t,x(s))D2
xG(s, X̂ε

t,x(s))
)
ds− 1√

ε

∫ τ̂

0

〈v0(s, X̂ε
t,x(s)), dW (s)〉.

or after rearranging and multiplying both sides by 2,

− 2√
ε

∫ τ̂

0

〈v0(s, X̂ε
t,x(s)), dW (s)〉 − 1

ε

∫ τ̂

0

|v0(s, X̂ε
t,x(s))|2ds

=
2
(
G(τ̂ , X̂ε

t,x(τ̂))−G(t, x)
)

ε
−
∫ τ̂

0

tr a(X̂ε
t,x(s))D2

xD
2
xG(s, X̂ε

t,x(s)) ds. (87)

Now notice that from expression (86) and the Strong Markov Property we
have the following representation for V ε,

e−
1
εV

ε(t,x) = E

[
e
− 1
εV

ε(τ̂ ,X̂εt,x(τ̂))− 2√
ε

R τ̂
0 〈v

0(s,X̂εt,x(s)),dW (s)〉− 1
ε

R τ̂
0 |v

0(s,X̂εt,x(s))|2 ds

]
.

Inserting (87) into this expression and multiplying both sides by e
2
εG(t,x) we

obtain the representation

e−
1
ε (V ε(t,x)−2G(t,x)) =

E

[
e−

1
ε (V ε(τ̂ ,X̂εt,x(τ̂))−2G(τ̂ ,X̂εt,x(τ̂)))−

R τ̂
0 tr a(X̂εt,x(s))D2

xG(s,X̂εt,x(s)) ds

]
. (88)

Now choose η > 0 so small that

dist ({(s, ϕ̂t,x(s)) : t ≤ s ≤ T} , N c) > η

where the function ϕ̂t,x is the unique minimizer in expression (30). That this
is possible follows from the definition of a region of strong regularity, Definition
9. Then on the event

Aη =
{

sup
0≤s≤T

|X̂ε
t,x(s)− ϕ̂t,x(s)| < η

}
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we have that τ̂ = T . Since v0 is smooth on N̄ and N̄ is compact, Proposition
1 and the Large Deviations Principle for the process X̂ε

t,x (see [28]) imply that
there exists a constant η > 0 and an ε1 > 0 such that if 0 < ε < ε1,

sup
(s,y)∈N̄

P
(
Acη
)
≤ e−η/ε.

Our uniform log-efficiency assumption implies that,

V ε − 2G→ 0

uniformly on N̄ . Therefore, there exists a constant C and an ε0 ≤ ε1 such that
if 0 < ε < ε0 then

|e− 1
ε (V ε−2G)| ≤ Ceη/2ε

on N̄ . This implies that

E

[
e−

1
ε (V ε(τ̂ ,X̂εt,x(τ̂))−2G(τ̂ ,X̂εt,x(τ̂)))−

R τ̂
0 tr a(X̂εt,x(s))D2

xG(s,X̂εt,x(s)) ds 1Acη

]
≤ Ceη/2εP

(
Acη
)

≤ Ce−η/2ε. (89)

Notice that since τ̂ = T on Aη and

V ε(T, x) = 2G(T, x) = 2 g(x),

we have that
e−

1
ε (V ε(τ̂ ,X̂εt,x(τ̂))−2G(τ̂ ,X̂εt,x(τ̂))) = 1

on Aη. Therefore,

E
[
e−

1
ε (V ε(τ̂ ,X̂εt,x(τ̂))−2G(τ̂ ,X̂εt,x(τ̂)))−

R τ̂
0 tr a(X̂εt,x(s))D2

xG(s,X̂εt,x(s)) ds 1Aη
]

= E
[
e−

R τ̂
0 tr a(X̂εt,x(s))D2

xG(s,X̂εt,x(s)) ds 1Aη
]
. (90)

By the uniform Lipschitz continuity of tr aD2
xG on N̄ , and since, τ̂ = T on

Aη, there exists a constant C such that∣∣∣∣ ∫ τ̂

0

tr a(X̂ε
t,x(s))D2

xG(s, X̂ε
t,x(s)) ds−

∫ T

0

tr a(ϕ̂t,x(s))D2
xG(s, ϕ̂t,x(s)) ds

∣∣∣∣
≤ C η

on the event Aη. Therefore, since σ and D2
xG are bounded on N̄ ,∣∣∣∣e− R τ̂

0 tr a(X̂εt,x(s))D2
xG(s,X̂εt,x(s)) ds − e−

R T
0 tr a(ϕ̂t,x(s))D2

xG(s,ϕ̂t,x(s)) ds

∣∣∣∣
≤ C

∣∣∣∣ ∫ τ̂

0

tr a(X̂ε
t,x(s))D2

xG(s, X̂ε
t,x(s)) ds

−
∫ T

0

tr a(ϕ̂t,x(s))D2
xG(s, ϕ̂t,x(s)) ds

∣∣∣∣
≤ C η
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on the event Aη for some constant C. Applying this bound in expression (90)
we obtain,∣∣∣∣∣E [e− 1

ε (V ε(τ̂ ,X̂εt,x(τ̂))−2G(τ̂ ,X̂εt,x(τ̂)))−
R τ̂
0 tr a(X̂εt,x(s))D2

xG(s,X̂εt,x(s)) ds 1Aη
]

− e−
R T
0 tr a(ϕ̂εt,x(s))D2

xG(s,ϕ̂εt,x(s)) ds

∣∣∣∣∣ ≤ C η (91)

for some constant C.
Using the bounds in (89) and (91) in expression (88) we obtain∣∣∣∣e− 1

ε (V ε(t,x)−2G(t,x)) − e−
R T
0 tr a(ϕ̂t,x(s))D2

xG(s,ϕ̂t,x(s)) ds

∣∣∣∣ ≤ C (e−η/2ε + η
)

for some constant C. Since η is arbitrary this implies that

lim
ε→0

e−
1
ε (V ε(t,x)−2G(t,x)) = e−

R T
0 tr a(ϕ̂t,x(s))D2

xG(s,ϕ̂t,x(s)) ds. (92)

In exactly the same way we can show that

lim
ε→0

e−
2
ε (Gε(t,x)−G(t,x)) = e−

R T
0 tr a(ϕ̂t,x(s))D2

xG(s,ϕ̂t,x(s)) ds. (93)

Combining expressions (92) and (93) we obtain

lim
ε→0

e−
1
ε (V ε(t,x)−2Gε(t,x)) = lim

ε→0

e−
1
ε (V ε(t,x)−2G(t,x))

e−
2
ε (Gε(t,x)−G(t,x))

= 1

which implies that
lim
ε→0

ρ
(
δ0
t,x(ε)

)
= 0

and completes the proof.
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