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Abstract

We propose a family of Markov chain Monte Carlo (MCMC) meth-
ods whose performance is unaffected by affine tranformations of space.
These algorithms are easy to construct and require little or no addi-
tional computational overhead. They should be particulary useful for
sampling badly scaled distributions. Computational tests show that

the affine invariant methods can be significantly faster than standard

MCMC methods on highly skewed distributions.

1 Introduction

Markov chain Monte Carlo (MCMC) sampling methods typically have param-

eters that need to be adjusted for a specific problem of interest [9] [10] [1]. For
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example, a trial step size that works well for a probability density 7(x), with

x € R", may work poorly for the scaled density

m(r) = X1 (\x) (1)

if \ is very large or very small. Christen [2] has recently suggested a simple
method whose performance sampling the density ) is independent of the value
of A. Inspired by this idea we suggest a family of many particle (ensemble)
MCMC samplers with the more general affine invariance property. Affine
invariance implies that the performance of our method is independent of the
aspect ratio in highly anisotropic distributions such as the one depicted in
Figure 1.

An affine transformation is an invertible mapping from R™ to R™ of the
form y = Az + b. If X has probability density 7(z), then Y = AX + b has
density

Tap(y) = Tap(Az +b) o m(x). (2)

Consider, for example, the skewed probability density on R? pictured in Figure

1:
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Single variable MCMC strategies such as Metropolis or heat bath (Gibbs sam-
pler) [13][10] would be forced to make perturbations of order /e and would

have slow equilibration. A better MCMC sampler for m would use perturba-



tions of order /€ in the (1, —1) direction and perturbations of order one in the

(1,1) direction. The R? — R? affine transformation

X1 — T2
Y = Je Yo = T1 + o

turns this challenging sampling problem into the easier problem:
maly) oc e”(iTR)/2 (4)

Sampling the well scaled transformed density (4) does not require detailed cus-
tomization. An affine invariant sampler views the two densities as equally diffi-
cult. In particular, the performance of an affine invariant scheme on the skewed
density (3) will be independent of e. More generally, if an affine invariant sam-
pler is applied to a non-degenerate multivariate normal m(x) o e ' He/2 the
performance is independent of H.

We call an MCMC algorithm affine invariant if it has the following prop-
erty. Suppose that starting point X (1) and initial random number generator
seed £(1) produces the sequence X (t) (t = 1,2,...) if the probability density
is m(z). Now instead apply the MCMC algorithm with the same seed to prob-
ability density 74 ,(y) given by (2) with starting point Y (1) = AX (1) +b. The
algorithm is affine invariant if the resulting Y (¢) satisfy Y'(t) = AX(t)+b. We
are not aware of a practical affine invariant sampler of this form.

In this paper we propose a family of affine invariant ensemble samplers.



An ensemble, X , consists of L walkers' X, € R™. Since each walker is in R,
we may think of the ensemble X = (X;,..., X,) as being in R"2. The target
probability density for the ensemble is the one in which the individual walkers

are independent and drawn from 7, i.e.

An ensemble MCMC algorithm is a Markov chain on the state space of ensem-
bles. Starting with X (1), it produces a sequence X (t). The ensemble Markov
chain can preserve the product density (5) without the individual walker se-
quences X(t) (as functions of ¢) being independent, or even being Markov.
The distribution of X (¢ + 1) can and will depend on X (¢) for j # k.

We apply an affine transformation to an ensemble by applying it separately

to each walker:

X = (X1,...,X1) 2% (AX, +b,.. . AX, +b) = (Vh,...,Y) = Y.
(6)
Suppose that X (1) S Y (1) and that Y () is the sequence produced using
mayp in place of 7 in (5) and the same initial random number generator seed.
The ensemble MCMC method is affine invariant if X (¢) A8 Y(t). We will
describe the details of the algorithms in Section 2.

Our ensemble methods are motivated in part by the Nelder Mead [11]

Here xy, is walker k in an ensemble of L walkers. This is inconsistent with (3) and (4),
where x; was the first component of z € R2.
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Figure 1: Contours of the Gaussian density defined in expression (3).



simplex algorithm for solving deterministic optimization problems. Many in
the optimization community attribute its robust convergence to the fact that it
is affine invariant. Applying the Nelder Mead algorithm to the ill conditioned
optimization problem for the function (3) in Figure 1 is exactly equivalent to
applying it to the easier problem of optimizing the well scaled function (4).
This is not the case for non-invariant methods such as gradient descent [6].

The Nelder-Mead symplex optimization scheme evolves many copies of the
system toward a local minimum (in our terminology: many walkers in an
ensemble). A new position for any one copy is suggested by an affine invariant
transformation which is constructed using the current positions of the other
copies of the system. Similarly, our Monte Carlo method moves one walker
using a proposal generated with the help of other walkers in the ensemble.
The details of the construction of our ensemble MCMC schemes are given in
the next section.

An additional illustration of the power of affine invariance was pointed out
to us by our colleague Jeff Cheeger. Suppose we wish to sample X uniformly
in a convex body, K (a bounded convex set with non-empty interior). A
theorem of Fritz John (see [8]) states that there is a number r depending only
on the dimension, and an affine transformation such that K = AK + b is well
conditioned in the sense that B; C K and K C B,, where B, is the ball of
radius r centered at the origin. An affine invariant sampling method should,
therefore, be uniformly effective over all the convex bodies of a given dimension

regardless of their shape.



After a discussion of the integrated autocorrelation time as a means of
comparing our ensemble methods with single particle methods in Section 3
we present the results of several numerical tests in Section 4. The first of
our test distributions is a difficult 2 dimensional problem which illustrates the
advantages and disadvantages of our scheme. In the second example we use
our schemes to sample from a 101 dimensional approximation to the invariant
measure of stochastic partial differential equation. In both cases the affine
invariant methods significantly outperform the single site Metropolis scheme.
Finally, in Section 5 we give a very brief discussion of the method used to

compute the integrated autocorrelation times of the algorithms.

2 Construction

As mentioned in the introduction, our ensemble Markov chain is evolved by
moving one walker at time. We consider one step of the ensemble Markov
chain X (t) — X (t + 1) to consist of one cycle through all L walkers in the

ensemble. This is expressed in pseudo code as

for k=1,...,L
{

update X (t) — Xp(t+1)



Each walker X}, is updated using the current positions of all of the other walkers
in the ensemble. The other walkers (besides X) form the complementary

ensemble
Xg) = {X1(t+ 1), o, Xpa(E+ 1), Xpsr (1), -, X ()} -

Let pu(dzy, x| Z) be the transition kernel for moving walker Xj,. The nota-
tion means that for each x;, € R™ and 7 € RE=D" the measure (-, 2y, | Ty
is the probability measure for Xy (¢t + 1), if Xy (t) = 25 and X'[k} (t) = Zpy.-

Our single walker moves are based on partial resampling (see [13] [10]). This
states that the transformation X (t) — X (t+1) preserves the joint distribution
IT if the single walker moves X (t) — Xj(t + 1) preserve the conditional
distribution of x;, given Xp;. For our II (which makes walkers independent),
this is the same as saying that ju(-, - | Zj)) preserves 7 for all ), or (somewhat

informally)

As usual, this condition is achieved using detailed balance. We use a trial
distribution to propose a new value of X}, and then accept or reject this move
using the appropriate Metropolis Hastings rule [13][10]. Our motivation is that
the distribution of the walkers in the complementary ensemble carries useful
information about the density 7. This gives an automatic way to adapt the
trial move to the target density. Christen [2] uses an ensemble of 2 walkers to

generate scale invariant trial moves using the relative positions of the walkers.



The simplest (and best on the Rosenbrock test problem in Section 4) move
of this kind that we have found is the stretch move. In a stretch move, we
move walker X} using one complementary walker X; € )?[k] (t) (ie. j # k).

The move consists of a proposal of the form (see Figure 2):
Xip(t) = Y =X, + Z(Xi(t) — Xj) . (7)

The stretch move defined in expression (7) is similar to what is referred to as
the “walk move” in [2] though the stretch move is affine invariant while the
walk move of [2] is not. As pointed out in [2], if the density g of the scaling

variable Z satisfies the symmetry condition

g (1) = z9(z), (8)

then the move (7) is symmetric in the sense that (in the usual informal way

Metropolis is discussed)
Pr(X;(t) — Y) = Pr(Y — Xi(t)).
The particular distribution we use is the one suggested in [2]

-, ifze[iq],

0, otherwise.



where the parameter a > 1 can be adjusted to improve performance.
To find the appropriate acceptance probability for this move we again ap-

peal to partial resampling. Notice that the proposal value Y lies on the ray
{yeR": y—X; =X (Xi(t) — X;), A>0}.
The conditional density of 7 along this ray is proportional to
ly = X511" 7 (y).-

Since the proposal in (7) is symmetric, partial resampling then implies that if

we accept the move Xy (t + 1) =Y with probability

| Y X)) Y f ()
mm{l’uxka)—ww(xk(t»}‘ {1’2 w(Xkos))}

and set Xj(t + 1) = Xj(t) otherwise, the resulting Markov chain satisfies
detailed balance.

The stretch move, and the walk and replacement moves below, define ir-
reducible Markov chains on the space of general ensembles. An ensemble is
general if there is no lower dimensional hyperplane (dim < n) that contains
all the walkers in the ensemble. The space of general ensembles is G C R*L.
For L > n + 1, a condition we always assume, almost every ensemble (with
respect to IT) is general. Therefore, sampling IT restricted to G is (almost) the

same as sampling II on all of R™Z. Tt is clear that if X (1) € G, then almost

10



surely X(t) € G for t = 2,3,... . We assume that X(1) is general. It is clear
that any general ensemble can be transformed to any other general ensemble
by a finite sequence of stretch moves.

The operation X (t) — X (¢+ 1) using one stretch move per walker is given

by:

for k=1,...,L

{
choose X € X[k](t) at random
generate Y = X; + Z(Xy(t) — Xj), all Z choices independent
accept, set Xi(t+1) =Y, with probability (7)

otherwise reject, set Xj(t+1)= X(t)

We offer two alternative affine invariant methods. The first, which we call
the walk move, is illustrated in Figure 3. A walk move begins by choosing a
subset S of the walkers in X[k] (t). It is necessary that |S| > 2, and that the
choice of S is independent of Xj ().

The center of mass of this subset is

- 1
XSZEZXm.

Xm€S

Let Z,, be independent mean zero variance o normals, and define the trial

11



walk step by

W= > Z,(X,-Xs) . (10)

XmeS
The proposed trial move is X (t) — Xy (t) + W. The random variable (10) is

symmetric in that
PriX - X4+W=Y) =Pr(Y Y -W=X).

Therefore, we insure detailed balance by accepting the move X, (t) — X (t) +

W with the Metropolis acceptance probability

The walk move ensemble Monte Carlo method just described clearly is
affine invariant in the sense discussed above. In the invariant density I1(Z)

given by (5), the covariance matrix for W satisfies (an easy check)

cov [W] o cov.[X].

The constant of proportionality depends on o2 and |S|. If 7 is highly skewed
in the fashion of Figure 1, then the distribution of the proposed moves will
have the same skewness.

Finally, we propose a variant of the walk move called the replacement mowve.

Suppose mg(z | S) is an estimate of 7(x) using the sub-ensemble S C Xy (2).

12



A replacement move seeks to replace Xy (t) with an independent sample from
ms(z | S). The probability of an z — y proposal is m(x)rg(y | S), and the
probability of a y — x proposal is 7(y)7s(z | S). It is crucial here, as always,
that S is the same in both expressions. If P,_,, is the probability of accepting

an x — y proposal, detailed balance is the formula

r()ms(y | S)Pocy = w(y)ms(a | S)Pye

The usual reasoning suggests that we accept an x — y proposal with proba-

bility

(y) _ ms(z | S)
| } . (11)

Fony = min { D EwlS) @)
In the case of a Gaussian 7, one can easily modify the proposal used in the
walk move to define a density mg(x | S) that is an accurate approximation to
mif L and | S| are large. This is harder if 7 is not Gaussian. We have not done

computational tests of this method yet.

3 Evaluating ensemble sampling methods

We need criteria that will allow us to compare the ensemble methods above to
standard single particle methods. Most Monte Carlo is done for the purpose

of estimating the expected value of something:

A= E[f(X)] = [ [fl)r(x)de, (12)

]Rn
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where 7 is the target density and f is some function of interest.? Suppose
X(t), fort =1,2,..., T, are the successive states of a single particle MCMC

sampler for w. The standard single particle MCMC estimator for A is

A= > x). (13)

s

An ensemble method generates a random path of the ensemble Markov chain
X(t) = (Xy(t),..., X, (t)) with invariant distribution II given by (5). Let T,

be the length of the ensemble chain. The natural ensemble estimator for A is

L

A = Tiz (%me(t)) . (14)

€ = k=1

When T, = LT,, the two methods do about the same amount of work, de-
pending on the complexity of the individual samplers.

For practical Monte Carlo, the accuracy of an estimator is given by the
asymptotic behavior of its variance in the limit of long chains [13][10]. For

large T we have

~ - X
var [As] ~ %ﬂi)] , (15)
where 75 is the integrated autocorrelation time given by
— O(t)
s — y 16
T t;w A0 (16)

2The text [9] makes a persuasive case for making this the definition: Monte Carlo means
using random numbers to estimate some number that itself is not random. Generating
random samples for their own sakes is simulation.

14



and the lag t autocovariance function is

Cut) = lim cov [ X +1)), F(X(E))] - (17)

t'—o0

We estimate 7, from the time series f(X (¢)) using a shareware procedure called
Acor [14] that uses a variant (described below) of the self consistent window
method of [7].

Define the ensemble average as

F@) = 73 fw).

Then (14) is

A= g DR,

The analogous definitions of the autocovariance and integrated autocorrelation

time for the ensemble MCMC method are:

with

C.(t) = lim cov[F(X(t’+t)), FX(@))

t'—o0
Given the obvious relation (IT in (5) makes the walkers in the ensemble
independent)
1

vary |F(X)| = pvar [/(X)]

15



the ensemble analogue of (15) is

vary [f(X)]

ﬁe] ~
var [ LT,/

The conclusion of this discussion is that, in our view, a sensible way to
compare single particle and ensemble Monte Carlo is to compare 75 to 7.. This
compares the variance of two estimators that use a similar amount of work.
Comparing variances is preferred to other possibilities such as comparing the
mixing times of the two chains [4] for two reasons. First, the autocorrelation
time may be estimated directly from Monte Carlo data. It seems to be a serious
challenge to measure other mixing rates from Monte Carlo data (see, however,
[5] for estimating the spectral gap). Second, the autocorrelation time, not the
mixing rate, determines the large time error of the Monte Carlo estimator.
Practical Monte Carlo calculations that are not in this large time regime have
no accuracy.

Of course, we could take as our ensemble method one in which each X ()
is an independent copy of a single Markov chain sampling 7. The reader can
easily convince herself or himself that in this case 7. = 7, exactly. Thus such
an ensemble method with T, = LT, would have exactly the same large time
variance as the single particle method. Furthermore with 7. = LT the two
chains would require exactly the same computation effort to generate. The

two methods would therefore be indistinguishable in the long time limit.

16



Figure 2: A stretch move. The light dots represent the walkers not participat-
ing in this move. The dot with the dark border represents X and the dark
dot represents X;. The thick dashed arrow connects X} to the proposed new
location, Y, marked by a dark star. The proposal is generated by stretching
along the grey dashed line connecting X; to Xj.
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Figure 3: A Walk move. The dots represent the ensemble of particles. The
dark ones represent the walkers in Xs. The dot with the dark border represents
X}. The black dashed arrow connects X to the proposed position Y, marked
by a dark star. The proposed perturbation has covariance equal to the sample
covariance of the three dark dots. The perturbation is generated by summing
random multiples of the dashed grey arrows. The black diamond represents
the sample mean X g.
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4 Computational tests

In this section we present and discuss the results of computational experiments
to determine the effectiveness of our ensemble methods relative to a standard
single particle Markov chain Monte Carlo method. The MCMC method that
we choose for comparison is the single site Metropolis scheme in which one cy-
cles through the coordinates of X (t) perturbing a single coordinate at a time
and accepting or rejecting that perturbation with the appropriate Metropo-
lis acceptance probability before moving on to the next coordinate. For the
perturbations in the Metropolis scheme we choose Gaussian random variables.
All user defined parameters are chosen (by trial and error) to optimize per-
formance (in terms of the integrated autocorrelation times). In all cases this
results in an acceptance rate close to 30%. For the purpose of discussion, we
first present results from tests on a difficult 2-dimensional example. The sec-
ond example is a 101-dimensional, badly scaled distribution which highlights

the advantages of our scheme.

4.1 The Rosenbrock density.

In this subsection we present numerical tests on the Rosenbrock density, which

is given by

(18)

100(zy — 21%)? + (1 — x1)2)

(21, 22) X exp (— 20

3To avoid confusion with earlier notation, in the rest of this section (z1,z2) represents
an arbitrary point in R2.

19



Contours of the Rosenbrock density are shown in Figure 4. Though only 2-
dimensional, this is a difficult density to sample efficiently as it exhibits the
scaling and degeneracy issues that we have discussed throughout the paper.
Further the Rosenbrock density has the feature that there is not a single affine
transformation that can remove these problems. Thus in some sense this
density is designed to cause difficulties for our affine invariant estimators. Of
course its degeneracy will cause problems for the single particle estimator and
we will see that the affine invariant schemes are still superior.

Tables 1 and 2 present results for the functionals f(xy,25) = x; and
f(zq,x9) = o respectively. The times should be multiplied by 1000 because
we subsampled every Markov chain by 1000. In both cases, the best ensem-
ble sampler has an autocorrelation time about ten times smaller than that of
isotropic Metropolis. The walk move method with |S| = 3 has autocorrela-
tion times a little more than twice as long as the stretch move method. All
estimates come from runs of length T, = 10" and T, = T, /L. In all cases we
estimate the autocorrelation time using the Acor procedure [14].

To simulate the effect of L = oo (infinite ensemble size), we generate the
complementary X, used to move X by independent sampling of the Rosen-
brock density (18). For a single step, this is exactly the same as the finite L
ensemble method. The difference comes in possible correlations between steps.
With finite L, it is possible that at time ¢t = 1 we take j = 4 for k = 5 (i.e.
use X4(1) to help move X5(1), and then use j = 4 for k = 5 again at the next

time ¢ = 2. Presumably, possibilities like this become unimportant as L — co.
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Figure 4: Contours of the Rosenbrock density.
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r; auto-correlation times (x107?)

ensemble size

method 1 10 100 00
Metropolis 163 - - -

Stretch moves - 19.4 8.06 8.71

Walk moves, |S| =3 - 46.4 19.8 18.6

Table 1: Auto-correlation times (multiplied by 1073) with f(z1,22) = 13
for single particle isotropic Metropolis and the chains generated by the two
ensemble methods. The ensemble methods with ensemble size L = oo generate
complementary walkers by exact sampling of the Rosenbrock density. The per-
step cost of the methods are roughly equivalent on this problem.

We sample the Rosenbrock density using the fact that the marginal of X is
Gaussian, and the conditional density of Y given X also is Gaussian.

Finally, we offer a tentative explanation of the fact that stretch moves are
better than walk moves for the Rosenbrock function. The walk step, W is
chosen using three points as in Figure 3, see (10). If the three points are
close to Xy, the covariance of W will be skewed in the same direction of the
probability density near Xj. If one or more of the X, are far from X, the
simplex formed by the X,, will have the wrong shape. In contrast, the stretch
move only requires that we choose one point X; in the same region as Xj.
This suggests that it might be desirable to use proposals which depend on
clusters of near by particles. We have been unable to find such a method that
is at the same time reasonably quick and has the Markov property, and is even
approximately affine invariant. The replacement move may have promise in

this regard.
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Ty auto-correlation times (x107?)

ensemble size

method 1 10 100 00
Metropolis 322 - — —

Stretch moves - 67.0 18.4 23.5

Walk moves, |S| = 3 — 68.0 44.2 47.1

Table 2: Auto-correlation times (multiplied by 1073) with f(z1,22) = 2
for single particle isotropic Metropolis and the chains generated by the two
ensemble methods. The ensemble methods with ensemble size L = oo generate
complementary walkers by exact sampling of the Rosenbrock density. The per-
step cost of the methods are roughly equivalent on this problem.

4.2 The invariant measure of an SPDE.

In our second example we attempt to generate samples of the infinite dimen-

sional measure on continuous functions of [0, 1] defined formally by

"1
exp (_ / Sa(a)? +V(u(x))das) (19)
0
where V' represents the double well potential
V(u) = (1—u?)?

This measure is the invariant distribution of the stochastic Allen Cahn equa-
tion

s = ttge — V'() + V27 (20)
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Figure 5: Sample path generated according to 7 in (21).

with free boundary condition at x = 0 and x = 1 (see [3, 12]). In these
equations 7 is a space time white noise. Samples of this measure tend to
resemble rough horizontal lines found either near 1 or near -1 (see Figure 5).

In order to sample from this distribution (or approximately sample from
it) one must first discretize the integral in (19). The finite dimensional dis-

tribution can then be sampled by Markov chain Monte Carlo. We use the
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discretization

m(uw(0), u(h), u(2h) ..., u(l)) =
! v h 4 .
exp ( % (1 +1)h) —u(ih))” + 5 (V(u((z+1)h) + u(lh))) (21)

=0

where N is a large integer and h = % This distribution can be seen to converge

o (19) in an appropriate sense as N — oo. In our experiments we choose
N = 100. Notice that the first term in (21) strongly couples neighboring
values of u in the discretization while the entire path roughly samples from
the double well represented by the second term in (21).

For this problem we compare the auto correlation time for the function

N—

,_.

Nlb‘

f(u(0), u(h), . )h) + u(ih)) (22)

=0

which is the trapezoidal rule approximation of the integral

/0 ) d.

As before we use |S| = 3 for the walk step and T, = Ty/L where Ts =
10!t and L = 102. As with most MCMC schemes that employ global moves
(moves of many or all components at a time), we expect the performance to
decrease somewhat as one considers larger and larger problems. However, as

the integrated auto correlation times reported in Table 3 indicate, the walk
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[ auto-correlation times (x107%)

ensemble size

method 102
Metropolis 80
Stretch moves 5.2
Walk moves, |S| =3 14

Table 3: Auto-correlation times with f given in (22) for single particle
Metropolis and the chains generated by the two ensemble methods. Note
that in terms of CPU time in our implementation, the Metropolis scheme is
about 5 times more costly per step than the other two methods. We have not
adjusted these autocorrelation times to incorperate the extra computational
requirements of the Metropolis scheme.

move outperforms single site Metropolis by more than a factor of 50 on this
relatively high dimensional problem. Note that in terms of CPU time in our
implementation, the Metropolis scheme is about 5 times more costly per step
than the other two methods tested. We have not adjusted the autocorrelation

times in Table 3 to incorperate the extra computational requirements of the

Metropolis scheme.

5 Software

Most of the software used here is available on the web [14]. We have taken
care to supply documentation and test programs, and to create easy general
user interfaces. The user needs only to supply procedures in C or C++ that
evaluate 7 () and f(z), and one that supplies the starting ensemble X (1). We

appreciate feedback on user experiences.

26



The Acor program for estimating 7 uses a self consistent window strategy
related to that of [7] to estimate (17) and (16). Suppose the problem is to
estimate the autocorrelation time for a time series, f© (t), and to get an error

bar for its mean, f. The old self consistent window estimate of 7 (see (16) and

70 — min{s

where C(t) is the estimated autocovariance function

[13]) is

@(0)(,5) B
142 Z 6(0)(0) = s} ) (23)

1<t<Ms

1 T—t

COM) = == S (fON) - ) (fOe+)-T) . ()

t'=1

The window size is taken to be M = 10 in computations reported here. An
efficient implementation would use an FFT to compute the estimated autoco-
variance function. The overall running time would be O(7 In(T)).

The new Acor program uses a trick that avoids the FFT and has an O(T)
running time. It computes the quantities C©(¢) for ¢ = 0,..., R. We used
R = 10 in the computations presented here. If (23) indicates that M7 > R,

we restart after a pairwise reduction

FEU@) = < (P2 + fBet+1)) .

N | —

The new time series is half as long as the old one and its autocorrelation time
is shorter. Repeating the above steps (24) and (23) successively for k = 1,2, ...

gives an overall O(T') work bound. Of course, the (sample) mean of the time
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series f()(t) is the same f for each k. So the error bar is the same too.
Eventually we should come to a k where (23) is satisfied for s < R. If not,
the procedure reports failure. The most likely cause is that the original time

series is too short relative to its autocorrelation time.

6 Conclusions

We have presented a family of many particle ensemble Markov chain Monte
Carlo schemes with an affine invariance property. Such samplers are uniformly
effective on problems that can be rescaled by affine transformations to be well
conditioned. All Gaussian distributions and convex bodies have this property.
Numerical tests indicate that even on much more general distributions our
methods can offer significant performance improvements over standard single
particle methods. The computational cost of our methods over standard single

particle schemes is negligible.
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