Spring 2009: Number theory
Number theory
Syllabus
-
Arithmetic modulo p, Gauss sums, quadratic reciprocity, Riemann zeta function:
meromorphic continuation, functional equation, Dirichlet L-functions
- Galois theory
- Arithmetic in number fields: ideals, units
- Discriminants, ideal class groups
- Splitting of ideals, computation of ideal class groups
- Pell's equation, Dirichlet's unit theorem
- Fermat's last theorem for regular primes, Selmer's equation
- Hilbert 90, Kummer theory, main theorem of abelian class field theory,
3-rank of ideal class groups of quadratic fields
- Zeroes of the Riemann zeta function
- Tauberian theorems, Prime Number Theorem, primes in arithmetic progressions
- Convexity bounds
- Height zeta functions, algebraic aspects
- Height zeta functions, analytic aspects
Projects
- Primes:
- Agrawal, M., Kayal, N., Saxena, N. PRIMES is in P,
Ann. of Math. (2) 160 (2004), no. 2, 781--793.
- Inverse Galois problem:
-
Serre, J.-P. Topics in Galois theory,
Second edition. With notes by Henri Darmon.
Research Notes in Mathematics, 1. A K Peters, Ltd., Wellesley, MA, 2008.
- Class groups:
-
Cohen, H., Lenstra, H. W., Jr. Heuristics on class groups of number fields,
Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983),
33--62, Lecture Notes in Math., 1068, Springer, Berlin, 1984.
- Discriminants:
- Bhargava, M.
The density of discriminants of quartic rings and fields,
Ann. of Math. (2) 162 (2005), no. 2, 1031--1063.
- Ellenberg, J., Venkatesh, A.
The number of extensions of a number field with fixed degree and bounded discriminant,
Ann. of Math. (2) 163 (2006), no. 2, 723--741.
- Gauss class number one problem:
- Goldfeld, D.,
The Gauss
Class Number problem for Imaginary Quadratic Fields
-
Stark, H. M.,
The Gauss class-number problems,
Analytic number theory, 247--256,
Clay Math. Proc., 7, Amer. Math. Soc., Providence, RI, 2007.
Books
Number Theory,
S. Borevich & I. Shafarevich, Academic Press, 1966
A course in Arithmetic, J. P. Serre, Springer GTM, #7